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Abstract 
Severely dry climate plays an important role in the occurrence of wildfires in Thailand. Soil water deficits 
increase dry conditions, resulting in more intense and longer burning wildfires. The temperature vegetation 
dryness index (TVDI) and the normalized difference drought index (NDDI) were used to estimate soil moisture 
during the dry season to explore its use for wildfire risk assessment. The results reveal that the normalized 
difference wet index (NDWI) and land surface temperature (LST) can be used for TVDI calculation. Scatter 
plots of both NDWI/LST and the normalized difference vegetation index (NDVI)/LST exhibit the triangular 
shape typical for the theoretical TVDI. However, the NDWI is more significantly correlated to LST than the 
NDVI. Linear regression analysis, carried out to extract the maximum and minimum LSTs (LSTmax, LSTmin), 
indicate that LSTmax and LSTmin delineated by the NDWI better fulfill the collinearity requirement than those 
defined by the NDVI. Accordingly, the NDWI-LST relationship is better suited to calculate the TVDI. This 
modified index, called TVDINDWI-LST, was applied together with the NDDI to establish a regression model for 
soil moisture estimates. The soil moisture model fulfills statistical requirements by achieving 76.65% 
consistency with the actual soil moisture and estimated soil moisture generated by our model. The relationship 
between soil moisture estimated from our model and leaf fuel moisture indicates that soil moisture can be used 
as a complementary dataset to assess wildfire risk, because soil moisture and fuel moisture content (FMC) show 
the same or similar behavior under dry conditions.  
Keywords: wildfire, soil moisture, fuel moisture content, vegetation index, Landsat 8, northern Thailand 

1. Introduction 
Severely dry climate plays an important role in the occurrence of wildfires. In Thailand, forest wildfires are 
particularly prevalent during the dry season and are especially damaging because of forest loss and degradation. 
During the dry season, the number of wildfires in Thai conserved forest areas were 4207, 4982, and 6685 in 
2014, 2015, and 2016, respectively (Forest Fire Control Division, 2016). These numbers indicate that the number 
of wildfires appears to be increasing because Thailand has been experiencing longer dry seasons and under dry 
conditions, wildfires can ignite easily, as fuel sources are readily available. Fuel availability, which drives 
wildfire occurrences and directly affects wildfire behavior, depends on fuel characteristics, which are fuel load 
(influencing fire intensity) and fuel moisture content (influencing both fire ignition and spread). It appears that 
recurring dry seasons foster fuel availability and reduce fuel moisture content, resulting in potentially more 
damaging high-intensity fires, which may spread rapidly during extremely dry conditions.  

Soil moisture, defined as the volumetric water content of soil (Eller & Denoth, 1996), is an important indicator 
of dry conditions and is linked to wildfire occurrence. The reduction of water in soil increases dry conditions, 
resulting in more intense and longer burning fires (Kozlowski & Pallardy, 2002; Chmura et al., 2011). Previous 
studies pointed out that soil moisture affects wildfire occurrence. For example, Krueger et al. (2015) showed that 
large growing-season wildfires occurred exclusively under conditions of low soil moisture. Yebra et al. (2013) 
suggested that improving wildfire assessments involves using soil moisture as a representative for fuel moisture, 
which is a key factor for ignition and spread of wildfires. Therefore, surface measurements of soil moisture may 
provide opportunities for improving estimates of fuel moisture (Qi, Dennison, Spencer, & Riano, 2012), because 
both are physically linked through soil-plant interactions (Hillel, 1998). 
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Remote sensing techniques have been extensively used for the analysis of soil moisture, and have provided 
alternative tools for obtaining rapid estimates of soil moisture on large spatial scales (Goward, Xue, & 
Czajkowski, 2002; Sandholt, Rasmussen, & Andersen, 2002; Ishimura, Shimizu, Rahimzadeh, & Omasa, 2011). 
Vegetation indices (VIs), which are mathematical combinations of different spectral bands from satellite 
remotely sensed data, have been utilized to estimate soil moisture (Z. Gao, W. Gao, & Chang, 2011; Chen et al., 
2015). The normalized difference vegetation index (NDVI) is the normalized reflectance difference between the 
near-infrared (NIR) and visible red (R) bands (Rouse, Haas, Deering, Schell, & Harlan, 1974; Tucker, 1979), 
which measures changes in chlorophyll content. As a result, it is considered a function of vegetation strength, 
which changes as vegetation interacts with soil moisture. The normalized difference water index (NDWI) is a 
more recent satellite-derived index from the NIR and short-wave infrared (SWIR) channels that reflects changes 
in both water content and spongy mesophyll in vegetation canopies (Gao, 1996). This index has been employed 
for the determination of vegetation water content and stress (Ceccato, Gobron, Flasse, Pinty, & Tarantola, 2002), 
and is therefore expected to be linked to soil moisture due to its impact on vegetation water stress. Moreover, 
land surface temperature (LST) can rise rapidly with water stress (Goetz, 1997), which is directly related to soil 
moisture. Accordingly, LST is also widely used as a soil moisture indicator (Carlson, 2007).  

The relationship between VI and LST has been investigated to evaluate evapotranspiration rates. The VI-LST 
relationship normally shows a negative correlation, resulting in triangular-shaped VI-LST plots at different 
spatial scales (Nemani, Pierce, Running, & Goward, 1993; Goetz, 1997). Based on the VI-LST correlation, the 
temperature vegetation dryness index (TVDI), computed from the NDVI-LST relationship has become a widely 
used dryness index to estimate surface soil moisture (Sandholt, Rasmussen, & Andersen, 2002; Mallick, 
Bhattacharya, & Patel, 2009; Patel, Anapashsha, Kumar, Saha, & Dadhwal, 2009). For example, Wang, Qu, 
Zhang, Hao, and Dasgupta (2007) applied NDVI-LST produced from moderate resolution imaging 
spectroradiometer (MODIS) data to investigate the correlation with soil moisture determined by field 
measurements. The results revealed that NDVI-LST is strongly correlated with soil moisture and can be used to 
generate soil moisture estimates. Chen et al. (2015) used the TVDI (NDVI-LST) derived from Landsat-5 TM 
data to estimate soil moisture and found that the TVDI can reflect the soil moisture status under different tree 
species. In this study, we propose a new application of the NDWI-LST relationship, which could enhance the 
efficiency of the TVDI calculation. Additionally, the normalized difference drought index (NDDI), which 
combines information about both greenness and water obtained from the NDVI and the NDWI (Gu, Brown, 
Verdin, & Wardlow, 2007), has been applied in numerous studies to evaluate drought and it was found that it is 
an appropriate indicator for the dryness of a particular area (Renza, Martinez, Arquero, & Sanchez, 2010; 
Gouveia, Bastos, Trigo, & DaCamara, 2012). The NDDI appears to respond to soil moisture based on drought 
conditions, and was used in this study to determine soil moisture. 

The objectives of this study are to estimate the spatial distribution of soil moisture using VIs based on Landsat 8 
OLI/TIRS data and to evaluate the use of soil moisture data for wildfire risk assessment. Specifically, this paper 
includes: (1) soil moisture estimates for mapping the spatial distribution of soil moisture by combining TVDI 
and NDDI based on a regression approach. We propose a possible adaptation and application of NDWI and LST 
for constructing a TVDI based on the similar design of the triangular NDVI-LST space. We then compare the 
efficiencies of NDVI-LST and NDWI-LST for calculating the TVDI. (2) An investigation of the relationship 
between estimated soil moisture and fuel moisture measured in the field to assess the suitability of the simulated 
soil moisture data for wildfire prediction. (3) We hypothesize that (i) the NDWI-LST relationship performs as 
well as or better than the NDVI-LST relationship and can be applied for calculating TVDI, and (ii) that estimated 
soil moisture derived from our model is directly related to fuel moisture, influencing wildfire occurrence. In this 
study, we used the Landsat 8 TIRS and MODIS products for calculating LST and the Landsat 8 OLI product for 
determining TVDI and NDDI. 

This study could also be used as an approach to enhance the efficiency of wildfire assessment using soil moisture 
as a surrogate for fuel moisture, identifying areas prone to wildfire across different landscapes. Until now, 
Thailand has not widely applied remote sensing to wildfire management. Using soil moisture measured by 
remote sensing as a complementary dataset for wildfire management may have the unique potential to predict 
wildfire danger for Thailand’s forest areas and enhance the effectiveness of planning and decision-making in the 
area of wildfire management.  
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Hong, Qin, & Zhu, 2013). Each soil sample was placed in a plastic container and sealed tightly for further 
laboratory analysis. For the gravimetric analysis of soil moisture, we first weighed the soil samples (wet weight 
in grams) using a standard laboratory scale and then placed them in a drying oven at 105 °C for 48 hours 
(Gardner, 1986). After drying, we weighed the dried soil samples (dry weight in grams). The percentage of 
gravimetric soil moisture was calculated using Equation 1: 

%100
dry weight

dry weight -  weightwet
moisture Soil                         (1) 

Five soil moisture measurements from each of the five subplots within each sample plot were averaged to obtain 
representative soil moisture for each 30-m2 site, corresponding to the spatial resolution of the Landsat 8 images. 
The averaged soil moisture data from 34 sample plots were used for both training (80%) and validation (20%) 
data. 

2.2.2 Leaf Fuel Moisture Measurements  

Leaf fuel was collected for fuel moisture measurements, which were used for analyzing the relationship with 
simulated soil moisture. We specifically focused on dead leaves on the ground surface, because those represent 
the largest fuel component. A small sample of leaf litter was randomly collected from each 1-m2 subplot and then 
placed into a sealed envelope for further laboratory analysis. In the laboratory, leaf litter samples were weighed 
and oven-dried at 80 °C for 48 hours, then weighed again to calculate the fuel moisture content (FMC) in percent 
following the procedure described by Desbois, Deshayes and Beudoin (1997). The most common FMC 
calculation is the ratio of water to dry weight as expressed by Equation 2. The FMC values for the five subplots 
were averaged to obtain a representative FMC for each 30-m2 sample plot.  

%100
dry weight

dry weight -  weightwet
FMC                          (2) 

2.3 Remotely Sensed Data and Preprocessing 

We used cloud-free Landsat 8 OLI/TIRS and MODIS eight-day composite LST datasets at a spatial resolution of 
30 m and 1000 m, respectively, as primary data (Table 1). Estimates of soil moisture require: (i) Landsat 8 
images to extract the TVDI and NDDI, and (ii) MODIS eight-day composite LST and Landsat 8 thermal infrared 
(TIR) data to produce the LST. Landsat 8 datasets used are the L1G level product and were geographically 
corrected and clipped based on the study area’s boundary. The MODIS data were (i) projected to UTM Zone 
47N with the WGS84 datum, (ii) clipped based on the study area’s boundary, and (iii) co-registered to Landsat 8 
images to reduce potential geometric errors. 

 

Table 1. Selected Landsat 8 and MODIS images for dry season 

Season Parameter 
Landsat 8 MODIS eight-day composite 

Acquisition date Spectral band Acquisition date Product 

Dry TVDI, NDDI 19 Feb 2015 Visible, NIR, SWIR – – 

Dry LST 19 Feb 2015 TIR (band 10) 18-25 Feb 2015 MOD11A2 

 
2.4 Soil Moisture Estimates 

2.4.1 Calculation of the TVDI 

The LST is the temperature of the Earth’s surface as derived from remotely sensed thermal infrared data (Weng, 
Fu, & Gao, 2014). It depends on the albedo, vegetation cover, and soil moisture. The Landsat 8 LST was 
computed by fusing images of MODIS LST and Landsat 8 brightness temperature (Tb), provided by Hazaymeh 
and Hassan (2015). Generating Landsat 8 LST was based on the linear relationship between MODIS LST and 
Landsat 8 Tb, which were obtained almost simultaneously and under similar atmospheric conditions.  

A scatter plot of remotely sensed LST and VI often results in a triangular shape (Price, 1990; Carlson, Gillies, & 
Perry, 1994) and the “dry” and “wet” edges of the triangle can be used to obtain information on soil moisture 
content. Figure 2 shows the conceptual TVDI based on the NDVI-LST triangle, where LST is plotted as a 
function of NDVI. The linear combination of NDVI-LST typically shows a strongly negative relationship and 
the TVDI can be estimated from the dry and wet edges of the triangle.  
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2.4.2 Calculation of the NDDI 

The NDDI was computed from the NDVI and NDWI values according to the definition proposed by Gu, Brown, 
Verdin, and Wardlow (2007). The combination of information about both vegetation (NDVI) and water (NDWI) 
conditions can be used to determine vegetation drought conditions, which reflect the effects of soil moisture. 
Due to the variation of the NDVI and NDWI within a range from -1 to +1, these values were converted to 8 bits 
(0-255) for the calculation of the NDDI, which ranges between -1 and +1. Higher NDDI values indicate more 
severe drought and lower soil moisture. The NDDI is computed as: 

NDWINDVI

NDWINDVI
NDDI




                                  (8) 

2.4.3 Soil Moisture Model and Validation 

We established a soil moisture estimation model based on a collection of field sampling and remote sensing data. 
A stepwise multiple regression approach was used to assess the relationship between field soil moisture data and 
remote sensing data, i.e., TVDI and NDDI were used as independent variables. The model can be computed by a 
regression formula as follows:  

Estimated soil moisture = a + b(TVDI) + b'(NDDI)                     (9) 

Where, the estimated soil moisture is given as a percentage (%), and a, b, and b' are the coefficients of the 
regression lines of the TVDI and NDDI. 

The model was validated by ground and remote sensing data. We used the actual soil moisture from the field 
measurements to evaluate the accuracy of the predictive model by statistical inference: (i) adj-R2, (ii) root mean 
squared error (RMSE), (iii) absolute average difference (AAD), and (iv) the precision of the model. The 
precision (%) of the model is calculated as follows: 

%100
2]'/)'[(





N

iYiYYi
Precision                          (10) 

Where, Yi is the actual soil moisture of the field samples (%), Y'i is the estimated soil moisture from remotely 
sensed data (%), and N is the sample size. 

Finally, the validated model was applied to a Landsat 8 image acquired on 19 February 2015 in Sri Lanna 
National Park (dipterocarp and deciduous forests) in order to estimate and map the spatial soil moisture 
distribution during the dry season.  

2.5 Analysis of the Relationship between Estimated Soil Moisture and Leaf Fuel Moisture 

To investigate the relationship between soil moisture estimated from our model and FMC, we performed a 
correlation analysis using the Pearson correlation and linear regression methods. Estimated soil moisture was 
extracted from the model at the same locations as were used to measure leaf fuel moisture in the field to 
determine correlation. We then explored the possibility of applying estimated soil moisture from our model to 
the prediction of wildfire occurrences. 

3. Results and Discussion 
Scatter plots of the relationships between NDVI-LST and NDWI-LST are shown in Figure 3. Compared to the 
NDVI-LST plot, the NDWI-LST relationship shows a clearer triangular shape, following the theoretical triangle 
of the TVDI. We determined LSTmax (dry edge) and LSTmin (wet edge) to highlight linear trends. A comparison 
of pixels representing LSTmax and LSTmin extracted from the NDVI-LST and the NDWI-LST plots indicates a 
stronger relationship between these pixels in the NDWI-LST space. Based on Figure 3, the LSTmax, representing 
the dry edge, shows a strong negative correlation between the NDWI and LST (adj-R2 = 0.84, p-value < 0.01), 
and the LSTmin, representing the wet edge, shows a negative correlation between the NDWI and LST with adj-R2 
= 0.63 at a significant level for p < 0.01. In contrast, NDVI has a lower correlation with LST, with LSTmax at 
adj-R2 = 0.62 (p-value > 0.05) and LSTmin at adj-R2 = 0.47 (p-value < 0.01). The results of the collinearity 
requirement indicate that the NDWI has a stronger negative correlation with the LST than the NDVI, which is 
why the NDWI was used to calculate TVDI. 

 

 



jas.ccsenet.

Figure 3. 

 

The reason
the water 
NDVI me
mesophyll
capability 
(chlorophy
Gobron, F
imply a di
because th

The water
temperatur
Evaporatio
temperatur
LST. Gu, B
conditions
more sens
follows m
between th

A TVDI m
shown in F
maps, whi
drought in
both VIs c

org 

Observed rela

n for the bette
content of veg

easures change
l (reflection of
for retrieving 

yll), which is 
Flasse, Pinty, &
irect change in
he green vegeta

r content in le
re increases, 
on within leav
re or LST. The
Brown, Verdin
s when compar
itive to moistu

more closely th
he NDWI and 

map of the stud
Figure 4a, wh
ich show drou
nfluences the s
can be used as 

(a)       

ationships for (

r correlation b
getation (captu
es in chloroph
f NIR radiatio
vegetation wa
not directly an

& Tarantola, 2
n leaf water co
ation spectra in

eaves is direct
evaporation f

ves also cause
erefore, NDWI
n, and Wardlow
red to NDVI v
ure than other
he conceptual 
LST can be us

dy area extracte
ile a NDDI m

ught condition
soil moisture s
predictor varia

Journal of A

           

(a) NDVI-LST

between the ND
ured by NDW
hyll content (a
on) within the
ater content inf
nd uniformly 

2002). A chang
ontent. Conver
n the SWIR re

tly affected by
from leaves i
es an increase
I is more sensi
w (2007) foun
values. This is
r spectra. As a

TVDI model
sed to improve

ed from LSTm

map computed 
ns during the d
status. Extrem
ables to estima

Agricultural Sci

113 

          

T and (b) NDW

DWI and LST
WI) than to the 

absorption of 
e vegetation ca
formation, as i
related to the 

ge in chloroph
rsely, the NDW
gion are domin

y temperature
s higher, whi

e in heat, and 
itive to LST, r

nd that NDWI 
 because the N

a result, the ND
l. This result 
e the calculatio

max and LSTmin

from the NDV
dry season, ca

me drought resu
ate soil moistur

ience

           

WI–LST, based

T might be that
chlorophyll c
visible red ra

anopy. Conseq
t provides info
quantity of w

hyll content de
WI is sensitive 
nated by water

 conditions, e
ich affects th

the leaf temp
resulting in a s
values exhibit

NDWI is const
DWI shows a 
supports our 

on of the TVDI

based on the s
VI and the ND
an reflect the 
ults in lower s
re. 

      (b) 

d on the concep

t LST is more 
ontent (captur

adiation) and i
quently, the N
ormation on ve
water in the ve
etected using t

to changes in
r absorption. 

especially high
he water cont
perature rises 
stronger negati
ted a quicker r
tructed from th
better correla
hypothesis th

I. 

strong NDWI-
DWI is shown 

degree of soil
soil moisture c

Vol. 8, No. 10;

ptual TVDI mo

strongly relat
red by NDVI).
in the leaf sp

NDVI has a lim
egetation green
egetation (Cec
the NDVI doe
n leaf water co

h temperatures
ent of the le
relative to th

ive correlation
response to dro
he SWIR, whi

ation with LST
hat the relation

LST relationsh
in Figure 4b. 
l moisture bec
content. There

2016 

 

odel 

ed to 
. The 
ongy 

mited 
nness 
ccato, 
s not 
ntent 

s. As 
aves. 

he air 
with 

ought 
ich is 
T and 
nship 

hip is 
Both 

cause 
efore, 



jas.ccsenet.

Figu

 

Linear reg
TVDINDWI

variable. T
likely has 
and low R
TVDINDWI

model that
highest RM
collinearity
of soil moi

 

Table 2. C

Predicto

TVDI N
NDDI 

TVDI N
Note. * is 

 

The best m
accuracy w
The mode
obtained l
respectivel
soil moistu
the NDDI 

 

 

org 

ure 4. Extractio

gression mode
I-LST and the ND
The model con
a greater abili

RMSE (0.87%
I-LST has a low
t only uses the
MSE of 1.82%
y requirement
isture estimati

omparison of 

or variable 

NDWI-LST 

NDWI-LST, NDDI 

significant at t

model, develop
with regard to
el fulfills the s
low RMSE an
ly. In addition
ure. These sta
can provide re

(a) TVDI NDW

on of a Landsa

els for soil mo
DDI as depend
nstructed from
ity to accurate

%) for actual 
wer adj-R2 (0.7

e NDDI show
%. Thus, the so

s with an incre
on.  

statistical soil 

Soil m

10.67 –

13.93 –

14.32 –

the 0.01 level. 

ped from the 
o field-measure
statistical requ
nd AAD value
, the model pr
tistical tests d
eliable estimat

Journal of A

WI-LST        

at 8 image from

oisture estimat
dent variables,

m both indices
ely estimate so

versus estima
72, p-value <

ws the weakest 
oil moisture m
ease in the adj

moisture mod

moisture model (%

– 12.24(TVDI N
– 35.44(NDDI)

– 9.45(TVDI ND

combination o
ed soil moistu

uirements. We 
es of 1.22% a
recision was fo
demonstrate tha
es of soil mois

Agricultural Sci

114 

           

m 19 February 

tion shown in
, and field-mea
s has the stron
oil moisture, b
ated soil moi
0.01) and a h
correlation w

model using bo
j-R2 and a redu

dels 

%) 

NDWI-LST) 

DWI-LST) – 21.78(

of the modifie
ure, resulting i

found a high 
and 1.06% bet
ound it to be 7
at the model g
sture. 

ience

       (b) N

2015 for (a) T

n Table 2 wer
asured soil mo
ngest response
based on its hi
isture. In cont
higher RMSE 

with an adj-R2

oth the TVDIND

uced RMSE, w

N

27

27

(NDDI) 27

ed TVDINDWI-L

in the statistica
adj-R2 of 0.7

tween the actu
6.65% consist
generated from

NDDI 

TVDINDWI-LST a

re calculated u
oisture content 
e to the actual
igh adj-R2 (0.8
trast, the mod
value of 1.39
of 0.52 (p-val
DWI-LST and the
which can enh

adj-R2 

0.72* 

0.52* 

0.89* 

LST and the ND
al parameters 

75 with a p-va
ual and estima
tent with the ac
m the modified

Vol. 8, No. 10;

 

and (b) NDDI

using the mod
as the indepen

l soil moisture
89, p-value < 
del that only 
9 %. Similarly
lue < 0.01) an
e NDDI fulfill

hance the effici

RMSE (%)

1.39 

1.82 

0.87 

DDI, was teste
shown in Tab

alue of < 0.01
ated soil mois
ctual and estim
d TVDINDWI-LS

2016 

dified 
ndent 
e and 
0.01) 
uses 

y, the 
d the 
ls the 
iency 

d for 
ble 3. 
. We 

sture, 
mated 

T and 



jas.ccsenet.

Table 3. St

Soil mois

14.32 – 9

Note. * is 

 

These resu
(modified 
soil moistu
variations 
drought str
we applied
spatial dist
the dry sea
can indica
moisture a
occurrence

 

Figure 5.

 

We also in
field (Figu
correlation
of estimate
fuel moist
tests also s

 

org 

tatistical valid

sture model (%)

9.45(TVDI NDWI

significant at t

ults demonstra
from NDWI-L
ure measured 
in soil moistu
ress in plants (
d the model to
tribution map 
ason at around
ate drought co
and resulting lo
e. 

. Spatial distrib
and the ND

nvestigated the
ure 6). Pearso
n to the estima
ed soil moistu
ture has a tend
support our hy

dation between 

) 

I-LST) – 21.78(ND

the 0.01 level. 

ate that the ef
LST) and NDD

in the field. 
ure and change
(Gu et al., 200
 a Landsat 8 im
shows that the

d 0.001% to 31
onditions, whi
ower fuel mois

bution of soil m
DDI in Sri Lan

e correlation be
n’s correlation
ted soil moistu

ure tend to be 
dency to increa
ypothesis that th

Journal of A

 the actual and

N

DDI) 7

fficacy of soil
DI as dependen
The reason fo
es in vegetatio

08), which is ca
mage taken du
e percentage of
1.1%, with a m
ich in turn inf
sture, which in

moisture deriv
nna National P

etween the esti
n reveals that 
ure (Pearson’s 
associated wi
ase when estim
he estimated s

Agricultural Sci

115 

d soil moisture

adj-R2 R

0.75* 1

l moisture esti
nt variables, be
or this strong 
on; consequent
aptured by bot
uring the dry s
f soil moisture

mean value of 
fluence the oc
nfluences fire 

ved from the m
Park during the

imated soil mo
leaf fuel moi
correlation co

ith larger value
mated soil mo
soil moisture is

ience

e estimated from

RMSE (%) 

1.22 

imation can b
ecause both V
correlation is 
tly, soil moistu
th the TVDI an
eason to estim

e in Sri Lanna N
15.49%. The d
ccurrence of w
ignition and sp

model generated
e dry season on

oisture and lea
isture shows a
oefficient = 0.6
es of leaf fuel

oisture increase
s directly relate

m the model 

AAD (%) 

1.06 

be greatly enha
VIs show a stro

the causal re
ure deficits are
nd NDDI. Bas

mate soil moistu
National Park 
degree of estim
wildfires. Are
pread, are mor

d by the modif
n 19 February 

af fuel moisture
a statistically s
67, p-value < 0
l moisture. Th
es and vice ve
ed to FMC.  

Vol. 8, No. 10;

Precision (%)

76.65 

anced using T
ng correlation
lationship betw
e ultimately ti
ed on these re
ure (Figure 5)
is quite low du

mated soil moi
as with lower
re prone to wil

fied TVDINDWI

2015 

e determined i
significant pos

0.01). Larger v
his implies that
ersa. The statis

2016 

TVDI 
with 

ween 
ed to 
sults, 
. The 
uring 
isture 
r soil 
ldfire 

I-LST 

n the 
sitive 
alues 
t leaf 
stical 



jas.ccsenet.

Moreover,
moisture is
influences
occurrence
because hi
soil moistu
is high, fir
before it c
energy cre
moisture c
tend to abs
reduced. I
rapidly res

Based on 
Additional
wildfire ri
indicator f
manageme
used as a c

4. Conclus
The main 
derived fro
TVDI can 
the NDVI,
soil moistu
theoretical
The good 
LSTmin; co
relationship

The soil m
accuracy o
found to b
model. We
the correla
estimated 
0.67 (p-va
FMC, can 
similar beh

org 

Figure 6. Scat

, a median adj
s a significant 
 FMC since so
e. At high tem
igh temperatur
ure to assess w
res do not rea
an burn. Durin
eated is then 
can transfer m
sorb more hea
In cases where
sulting in unco

the result, ma
lly, soil moist
isk. Therefore
for monitoring
ent, thus in ou
complementary

sion 
goal of this s

om Landsat 8 
be obtained fr

, and LST. Thi
ure estimation
l concept of th
correlation be

onsequently, th
p. 

moisture model
of soil moistu
be more than 7
e further explo
ation between 
soil moisture 

alue < 0.01). T
be identified 

havior under c

tter plot of leaf

-R2 of 0.45 w
variable for pr
oil moisture c
mperatures du
res result in lo

wildfire risks b
adily ignite, be
ng the combus
transferred in 
ore heat into t

at energy (DeB
e both the FM
ontrollable fire 

apping of estim
ture can give 
, to reduce w

g wildfire pron
ur study we hi
y dataset for w

study was to 
OLI/TIRS dat

from the relatio
is modified TV

n. A scatter plo
he TVDI, whic
etween NDWI
he NDWI-LST

l generated fro
ure estimates. 
76% consisten
ored the relatio
estimated soil
is positively c

This relationsh
through soil m

conditions of h

Journal of A

f fuel moisture

with a p-value 
redicting leaf 
ondition affec

uring the dry 
ow soil moistu
by exploiting th
ecause heat en
tion of the abo
the soil (DeB

the soil during
Bano, Neary, &
MC and soil m

condition. 

mated soil moi
an insight on

wildfire risk an
ne areas. An an
ighly recomm

wildlife manage

estimate the s
ta for wildfire
onship between
VDINDWI-LST ca
ot of NDWI-L
ch is character
I and LST fulf
T relationship p

om a combinati
The accuracy 

nt with actual 
onship betwee
l moisture and
correlated to le

hip demonstrate
moisture estim
igh temperatur

Agricultural Sci

116 

e measured in 

 

of < 0.01 as s
fuel moisture. 

cts fuel moistu
season, soil m

ure, which in tu
he relationship

nergy has to b
ove ground pla
Bano, Neary, 
g the combusti

& Ffolliott, 199
moisture are lo

isture can be u
n the dryness 
nd intensity, s
nalysis of soil
end estimating
ement in terms

spatial distribu
e risk assessme
n NDWI, whic

an be used toge
ST shows a lin
rized by the tr
fills the collin
provides a bet

ion of the mod
of the model
soil moisture 

en estimated s
d leaf fuel moi
eaf fuel moist
es that wildfir

mates, because b
res during the 

ience

the field and e

shown in Figu
This suggests

ure levels whic
moisture and 
urn leads to lo
p between soil
e used to evap

ant material an
& Ffolliott, 1
ion of fuel. So
98, 2005); as a
w wildfires w

used to investi
of the fuel, w
oil moisture s
l moisture cou
g soil moistur
s of risks and d

ution of soil m
ent. Results re
ch is more sig
ether with the 
near relationsh
riangular shape
nearity requirem
tter estimate o

dified TVDIND

l was tested u
and estimated
oil moisture a
isture measure
ture with a Pe
re-prone areas,
both soil mois
dry season. 

 
estimated soil m

re 6 indicates 
 that soil mois

ch are directly
FMC are po

ow FMC. As a
l moisture and 
porate water f

nd surface orga
1998). Thus, f
oils with highe
a result, the int
will start much

igate wildfire 
which is a cru
should be con

uld considerabl
re by remotely
danger assessm

moisture using
eveal that an a
gnificantly corr

NDDI to enha
hip and is a go
e of the NDVI
ments for extr
f the TVDI th

DWI-LST and NDD
using statistica
d soil moisture
and wildfire ris
ed in the field.
arson’s correla
, which are ch
sture and FMS

Vol. 8, No. 10;

moisture 

that estimated
sture is a factor
y related to wil
sitively correl

a result, we can
FMC. When F

from plant ma
anic layers, the
fuel load with
er moisture co
tensity of the f
h easily and sp

risk in large a
ucial paramete
nsidered as an
le enhance wil
y sensed data t
ment. 

g TVDI and N
ccurate estima
related to LST
ance the effica
ood match wit
I-LST relation
racting LSTmax

han the NDVI

DI can improv
l metrics, and
e derived from
sk by investig
. Results show
ation coefficie
haracterized by
S show the sam

2016 

d soil 
r that 
ldfire 
lated, 
n use 
FMC 
terial 

e heat 
h low 
ntent 

fire is 
pread 

areas. 
er for 
other 
ldfire 
to be 

NDDI 
ate of 

than 
cy of 
h the 

nship. 
x and 
-LST 

ve the 
d was 
m our 
ating 

w that 
ent of 
y low 
me or 



jas.ccsenet.org Journal of Agricultural Science Vol. 8, No. 10; 2016 

117 

The model allows to remotely determine the spatial distribution of soil moisture as a complementary dataset for 
identifying wildfire-prone areas, which is a fundamental step toward involving soil moisture in the assessment of 
wildfire risk. We therefore recommend soil moisture estimation by remotely sensed model as another indicator 
for monitoring wildfire risks and intensity. Furthermore, the demonstrated NDWI-LST relationship provides 
another option for researchers studying soil moisture when the established TVDI based on the NDVI-LST 
relationship is insufficient. Future studies should address soil moisture as one of the factors used for enhancing 
estimates of FMC, as soil moisture is shown to be correlated with FMC. 
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