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Abstract

Commercial processing of cassava produces vast quantities of cyanide-laced waste which can adversely infiltrate
water supplies and air breathed by factory workers. This study aimed to determine the comparative concentration
of cyanogens in the cassava peel as opposed to that of the pith and the effect of the moisture-pressure
combination treatments on cyanide concentration. A semi-quantitiative test using the picrate-spectrophotometer
method was applied, where, at room temperature in a closed vial, reactions caused liberation of HCN which
reacts with a picrate paper. The results showed a 25% higher level of cyanogen concentration in casssava peels
compared to that of blended peels and pith. Treatments released cyanide from samples in the order: 2 h wetting
at 50 °C + pressing > 4 h wetting at 25 °C + pressing = 2 h wetting at 40 °C + pressing > 2 h wet at 25 °C +
pressing = 4h wet at 25 °C > 12 h pressing. In this manner, wetting for 2 h at 50 °C followed by pressure for 12 h
released cyanide by at least 20% more than that of any other treatment. The combination of moisture and
pressure enhanced the contact time between linamarin and linamarase to increase the release of HCN.
Physiological cyanide overload in organisms from cassava processing occurs in water, land, and air. Therefore
the reduction in concentration observed in this study, if applied at an early stage of the cassava processing,
should reduce the rate of morbidity in environments at risk.
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1. Introduction

Starch finds uses in fast food, sweets, sausages, tablets, paper, corrugated board etc. and plays a prominent part
in everyday life (International Starch Institute, 2014) including, in recent years, beer-manufacturing in parts of
Africa, followed by Jamaica. However, the many varieties of cassava fall into two main categories, namely bitter
and sweet cassava (respectively, Manihot palmata and Manihot aipi) (International Starch Institute, 2014),
depending on their content of cyanohydrin. For industrial purposes bitter varieties are most often used because of
their higher starch content (CAADP, 2010; International Starch Institute, 2014), being better suited to the
production of high-value starch and maltose for industrial use (CAADP, 2010). Farmers, like commercial
operators, often prefer the bitter (most dangerous) varieties because they deter pests, animals, and thieves
(Oluwole et al., 2014). Sweet cassava is preferred for food due to its taste and dough forming facility (Juang,
2001).

Cassava wastewater contains toxic materials that can endanger humans, as well as other living organisms if they
are not properly treated before disposal (Okafor & Maduagwu, 2000). Cyanogenic concentrations in cassava
roots range from 10-500 mg HCN (Siritunga & Sayre, 2004), up to fifty times greater than the recommended
safe levels of 10 ppm for human consumable food products (FAO/WHO, 1991) and levels exceeding 100 ppm
are a health danger (Bokanga, 1994; Ernesto et al., 2002; Manjunatha et al., 2015; Minerals Council of Australia,
2016). During cassava starch production, large amounts of cyanoglycosides are often released and hydrolyzed by
plant-borne enzymes, leading to cyanide concentrations in wastewater as high as 200 mg L™ (Siller & Winter,
1998). Akinrele (1986) reported that large scale cassava processing could be hazardous, not by consuming
residual cyanide in food, but the discharge of hydrocyanic acid into the air. In this context, the hydrocyanic acid
contamination of the atmospheric air (Okafor & Maduagwu, 2000) and natural water sources (Okafor et al., 2001;
Otuu et al., 2014) in areas near large scale “gari” processing as well as possible occupational exposures of
humans to cyanide poisoning during large scale cassava processing (Okafor et al., 2002) have been reported.
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They found a statistically significant difference (p value < 0.05) between the mean thiocyanate excretion of the
processors and the consumers, such that gari processing is the highest source of cyanide exposure among
Nigerian communities dependent on cassava as their major staple. Hydrogen cyanide was readily absorbed from
the skin or inhaled during roasting of gari, and converted to SCN in the liver and kidneys (Okafor et al., 2001).

1.1 Usefulness of Thiocyanate as a Marker

Urine thiocyanate SCN is a useful biomarker of exposure to cyanide from cassava foods (Okoh, 1983; Oluwole
& Oludiran, 2014), and there is strong ecological association of exposure to cyanide and endemicity of ataxic
polyneuropathy (Oluwole & Oludiran, 2014). The HCN ion is readily absorbed by the gastrointestinal tract and
is rapidly converted into thiocyanate by the enzyme rhodanese (WHO, 1996). Oral and subcutaneous doses of
cyanide in rats are excreted as thiocyanate, primarily in the urine (Okoh & Pitt, 1982; Okoh, 1983). Plasma
proteins (especially albumin) are known to be involved in cyanide detoxification via its conversion to
thiocyanate (Manahan, 2009). Nevertheless, the amounts of sulphur needed to detoxify ingested cyanide of
cassava is very small compared with the daily intake of sulphur containing amino acids and therefore cannot
affect levels of protein energy malnutrition (Bradbury & Denton, 2010). In other words, physiological
detoxification of cyanide does not cause protein deficiency. The corollary is that even an adequate level of
dietary protein cannot confer protection against the effects of exceeding maximum limits.

1.2 Commercial/Industrial Advantages of Cassava

In the tropics, large-scale cassava inputs for beer-making and soft drinks are a commercially less costly
alternative to the importation of barley malt and corn syrup, based on the following reasons:

»  Itis affordable not only as a nutrition source but as a commercial and industrial source of starch.

»  Cassava is one of the most drought-tolerant crops, growing successfully in marginal soils.

»  Yields are reasonable where many other crops do not grow well.

» Cassava is well adapted within latitudes 30° north and south of the equator, at altitudes up to 2,000 m

(6,600 ft) above sea level in widely ranging rainfall regimes, and to poor soils with a pH ranging from acidic to
alkaline.

The USDA Foreign Agricultural Service (2014) reports the following:

China is poised for a 6% increase in the manufacture of biofuels. The government is encouraging development
of non-food grain feed stocks, such as cassava and sweet sorghum.

However, these crops still compete with food crops for land, and only one cassava and one sweet sorghum
ethanol plant are approved for production by the government. Currently 8% of fuel ethanol is produced using
cassava.

The 11th Five-Year Plan (2006-2010) set goals for expanding non-grain based ethanol production, targeting
cassava and sweet sorghum. The world’s first cassava ethanol plant was built in Guangxi in 2007 with an annual
production capacity of 200,000 tons.

Dai et al. (2006) claim that cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel
ethanol but less efficient than biodiesel (Dai et al., 2006). However, with reference to gasoline, the opposite
position is stated by the USEPA (Dunham, 2006). Through fuel ethanol production, one Joule of petroleum fuel,
plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol (Dai et al., 2006). Biodiesel
from cassava was expected to be to 200 thousand tonnes in 2010. This is equivalent to 10 million tonnes of
petroleum. Cassava starch production therefore, is potentially a growing activity in the tropics.

1.3 Study Area
1.3.1 St. Thomas-Kingston Sub-Region

Cassava plantations in the southeast section of Jamaica for supplying a beer brewery in the same sub-region have
been established. Being a rain shadow zone (Figure 1), calm conditions often prevail.
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Figure 1. The location of cassava-processing in southeastern Jamaica

Note. The beer brewery is located south of the Blue Mountain Range in the rain shadow zone.

Diurnal temperatures range from 20-35 °C (April-September) and 17-35 °C (October-March) with average
monthly temperatures varing by 2.5 °C. The annual average temperature is 27.1 °C. There is no cold season.

Kingston’s climate can be classified as a tropical wet and dry/savanna climate (Koppen-Geiger classification: Aw)
with a pronounced dry season in the months having a low-sun-altitude (December-April) months. The wet
season occurs in months dominated by a high sun-angle (June-November). Total annual precipitation averages
811 mm. On the other hand, north-eastern Jamaica receives more than three times as much rain mainly from the
North-east Trade Winds (Figure 1).

1.4 Dangers of Cassava Processing in Study Area

In Jamaica, referring to the “cassava starch in beer” project, Kareena (2014) stated: “Once the cassavas reach the
factory, they will be placed on a scale and placed in silos. From there, water and a mechanical agitator are used
to start processing the cassava. The roots will then go through a rasping (grating) after which a wet extraction
will be done. This process involves the repeated washing of cassavas and putting them through a series of hydro
sieves where the starch precipitates out of the product. The product is then continuously dried using a sieve and
cyclone and then scraped and placed in a fluidized bed drier, which is a hot stream of dry air to dry the wet starch
to a starch powder. The powder will then be used in the production of beer.” Therefore, from the above account
of the production process, it is unclear as to whether the rind (this is not merely outer skin) of roots will be
discarded or used to increase the starch quantities.

The “land and sea breezes” in the study area (Figure 1) are weak, compared with those of the Trade Wind system
of the northern section of the island. Such mainly calm conditions and insufficient air movements (Figure 2)
should fail to efficiently dilute and disperse toxic atmospheric gases. Otuu et al. (2013) refer to the clustering
location of cassava processing plants without any designated site for waste disposal. To improve public health of
the inhabitants, their study was expected to guide relevant government agencies on relocation of existing cassava
plants to minimize effluent infiltration into wells. In this context, buildings without adequate designated sites for
disposal of cassava solid peels and liquid wastes remain a health concern.

Otuu et al. (2013) note that the location with regards to slope influences cyanide content to a greater degree than
the linear distance. Thus two sites at varying distances from the processing plant had the same cyanide content
because the closer site was located on a slope, which enhanced the flow of the effluent into the well water.
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Figure 2. Calm atmospheric conditions of southeastern Jamaica are inimical to the dilution and dispersion of
environmentally toxic gases

Note. Drawn by M. A. Harris.

1.5 Previous Processing Methods

Very little research except Bolhuis (1953) has been published on the effectiveness of the pressing method for
releasing HCN from freshly grated cassava root. However, Bradbury and Denton (2010), and Cumbana et al.
(2007) found that wetting fresh shredded cassava with added linamarase in water for 5 h decreased cyanide
levels by up to 84% in 5 g samples. Nevertheless, as many cassavas contain low levels of linamarase (Bokanga,
1994), such favourable results were often obtained when the enzyme linamarase was deliberately added to the
sample (Bradbury & Denton, 2010), and the cost of such enzymes is often prohibitive. Further, the wetting
treatment would be insufficient for cassavas containing > 300 ppm of cyanide because > 50 ppm cyanide (a
safety limit) would remain in the product. Therefore Harris and Koomson (2011) studied the effects of
moisture-pressure combination treatments on the removal of cyanide from bitter cassava. They found that
pressure for a specified time, when prededed by moisture applications, decreased the concentration of cyanogens
as compared with any wetting treatments. Harris and Koomson (2011) reported that traditional 12 h pressing of
grated bland or bitter cassava roots containing sufficient reactants rarely reduced cyanide concentration tc safe
levels. They discovered that although long wetting was more efficient at releasing HCN than pressing, pressing
following wetting was more efficient at releasing HCN than either wetting or pressing acting alone. Thus, of all
their treatments, pressing for 12 h was easily the least effective, but the combination of moisture and pressure
increased contact between linamarin and linamarase to increase the release of HCN.

This research aims to study the differences in cyanogen concentration between peeled and unpeeled cassava
roots and the effects of moisture-pressure combination treatments on the whole tuber inclusive of pith and peel.

Cyanogens in plants protect against destruction by predators seeking food (Minerals Council of Australia, 2016).
Thus, it is supposed to hypothesize that highest levels of cyanogens are located in the outer section (peel, or, rind)
of the the cassava tuber.

Moisture-pressure treatments are more effecient than moisture and/or heat in removing cyanogens from whole
cassava tubers (pith + peel).

2. Materials and Methods
2.1 Cassava Treatments

Cassava tubers were thoroughly washed in de-ionized water, and dried. The gratings of peeled or unpeeled (rind
+ pith) bitter cassava roots were soaked overnight after Harris and Koomson (2011).

2.2 Moisture-Pressure Treatments of Grated Cassava

Both peeled and unpeeled, grated cassava, were subjected to soaking and pressure according to the method of
Harris and Koomson (2011) as follows:
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Some of the fresh, grated material was divided up and pressed for 12 h (P). For pressing, twenty grams of grated
cassava were placed in an 8 x 12 cm cotton cloth bag and the bag placed on a concrete surface inclined at 30
degrees from the horizontal. A 30 x 15 x 10 cm concrete block weighing 10 kg was placed on the sample and left
in that position for 12 h. The inclined surface was evaluated as a necessary step to facilitate the potential outward
flow of liquid from the porous sample bag. All other samples were wet in the proportion 1:1.25 cassava: water
(w/w) for 2 h at 50 °C. This is because Harris and Koomson (2011) found that wetting for 2 h at 50 °C removed
more cyanogens than wetting at temperatures below 50 °C. This was followed by pressing (P) for 12 h.

For total cyanide content analysis, linamarase/buffer papers were placed in plastic vials. Samples of 100 mg
were added followed by picrate paper and a lid. The vials were kept at room temperature for 18 hrs, the picrate
paper was removed from the plastic strip and the paper eluted for 30 min with 5 mL of distilled water. The
absorbance (A) of the solution was measured using 10 mm cuvettes in a Genesys 20 spectrophotometer in the
direct reading mode, against a blank solution prepared from a 4 cm?® picrate paper not exposed to HCN and
eluted with 5 mL distilled water. The total cyanogen content in mg HCN equivalents/kg sample (ppm) was
calculated by the equation (Bradbury et al., 1999):

ppm = (396 x A x 100)/z )
Where, A = absorbence (nm), and z is the mass of the sample (mg).
2.3 Statistical Method

Three replicates were compiled for each treatment. Statistical analyses were conducted on treatment means using
the parametric Student’s t-test to test the difference between means of independent samples at a 5% level of
significance.

3. Results and Discussion
3.1 Cyanide in Peel vs Pith

Table 1 depicts the concentration of cyanide in freshly grated peeled cassava or unpeeled cassava. It can be seen
that concentration in peel + pith exceeded that of the pith by > 25%. For the t-test, this result was significant at (p
=<.095).

Table 1. Concentration of cyanide in peeled vs unpeeled + peeled cassava

Samples Replicates Mean S.D.
Pith + peel 287,263, 297 282.20 17.70
Pith 244,221, 196 220.30 24.50

Hence, as the concentration in the peel had been diluted by that of pith, the difference between the two zones is
even greater than that shown by the calculations. Such high increases by the cassava outer pith occurring on a
large scale can lead to significantly increased contamination of factory air and waste water in the environment.

Nevertheless, as the samples in this case were within the same cassava variety, more studies may be required.
3.2 Moisture-Pressure Treatments

Table 1 shows the total levels of cyanide in samples after treatment of fresh grated cassava. In this study, the
most effective treatment is pressing for 12 hours after wetting (without added linamarase) for 2 hours at 50 °C,
which reduced cyanide in a bitter cassava from 284 ppm cyanide to 38 ppm, an 87.2% drop. The amount of
cyanide remaining in samples after that treatment was therefore only 12.8%. But, using the same cassava
varieties and applying moisture-pressure combination treatments, Harris and Koomson (2011) reduced similarly
high cyanide concentration in the ambient surroundings. They observed the greatest reduction of cyanide from
the 2W50 treatment in the following order: 2WP50 > 4WP25 = 2WP40 > 2WP25 > 4W25 > 2W25 > 12P. These
results show that even more bitter cassavas could be brought down to much safer levels with this treatment.
Therefore, even for cassava peels, the method of Harris and Koomson (2011) could reduce this high cyanide
concentration in the ambient surroundings.

Also, these results, like those of Harris and Koomson (2011) again exceeded those of Bradbury and Denton
(2010) who achieved a maximum of 16% of cyanide remaining in their samples when they applied wetting only
for 2 hours at 50 °C.
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Linamarin breakdown varies directly with the availability of linamarase, and the amount of linamarase lost
through its catalysis of linamarin breakdown varies directly with temperature and duration of wetting. In this
study, linamarase acted efficiently due to increased rupturing of cells. This was also observed by Harris &
Koomson (2011), where the high viscosity amylopectin with molecules (up to 80,000,000 in mass with many
branch points) mainly comprising the cassava gel (WHO, 1974) could have sealed off internal conduits, thereby
trapping cyanide gas in internal pores of the gel mass of their treated samples.
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Figure 3. Cyanogen remaining in cassava tuber after treatment

As release of reactants for the production of HCN occurs only after the rupture of cells, this implies the rupturing
of cells during pressing. A longer time-period of contact between enxyme and substrate combined with a higher
concentration of reactants contributed to the increased release of HCN. However, though some rupturing must
have occurred, there is no proof that rupturing is the only cause of the high level of cyanide release. On the
assumption, therefore, that pressing merely expelled pre-trapped HCN gas from gelatinized samples, the
effectiveness of the treatment is even more convincing.

4. Conclusions

Higher cyanide levels exist in cassava peels compared with the pith. Removing the peels before processing bitter
cassava can reduce the concentration of cyanide in the atmosphere of factories which process bitter cassava.
However, environmentally safer disposal of unwanted bitter cassava peels requires further research.
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