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Abstract 

The general equations available/developed for forest/wild mango trees based on measurement of diameter at breast 
height (DBH) (cannot be used) are not applicable for mango orchards which are predominantly established with 
grafted plants. Hence allometric equations were developed with destructive sampling of grafted mango trees. The 
selected parameters showed that allometric parameters were significantly related with age of the trees. The 
proportion of roots (22%) in grafted mangos was found to be higher than those reported for tropical forest trees 
(18%) with a R ratio of 0.291. The biomass expansion factor (BEF) varied with age. Initially the BEF was very 
high followed by a decreasing phase and finally a steady phase by and large attained stability beyond 20 years. The 
equations generally fitted the data well, and in most cases more than 50% of the observed variation in biomass was 
explained by primary branch girth (PBG) × number of primary branches (NPB). All equations were statistically 
significant (p < 0.05) for both scaling parameters, a and b. Based on the R2 values the best fit model for estimation 
of above ground biomass of grafted mango trees is a power model using PBG × NPB as the best dimension: There 
was a good agreement between the observed and the predicted biomass using this equation.  

Keywords: allometric equation, biomass expansion factor, grafted trees, mango 

1. Introduction 

Non-destructive estimates of tree biomass are essential for several purposes. For example, it is essential in 
assessing forest structure and conditions (Westman & Rogers, 1977); estimating forest productivity and carbon 
fluxes (Chambers et al., 2001); for sequestration of carbon in wood, leaves, and roots (Specht & West, 2003); for 
estimating carbon sequestration and for assessing site productivity. All these depend on sequential changes in 
biomass.  

Tree allometry is a statistical tool to relate some fairly easy to measure parameters of trees like DBH to such 
parameters which are often more difficult to assess. To obtain such relationships detailed measurements on a small 
sample of typical trees are made and then relationships are worked out such that they permit extrapolations and 
estimations of a host of dendrometric quantities on the basis of a single (or at most a few) measurements. This 
approach eases out difficult field work and enhances the speed of data collection and estimating tree biomass. This 
approach is very commonly practiced in forestry, but the same is not true in perennial horticulture. The data base in 
perennial horticulture are very poor to develop allometric relationship that relate, if any, existing between the parts 
of the subject measured and the  quantities of parameters of interest (Smith & Brand, 1983). This should also take 
in to account the factors which affect tree growth such as age, species, site location, etc. (Avery & Burkhart, 2002). 
Once all these guidelines are met, one may attempt to develop an allometric equation.  

In forestry many attempts have been made to develop biomass-prediction equations from mixtures of tropical 
species. But use of such relationships are not successful because the species especially dicotyledonous trees 
differ in allometry, wood density, and architecture, all of which can affect the relationship between the 
measurements taken during forest inventories and the biomass of individual trees (e.g., Chambers et al., 2001; 
Ketterings et al., 2001; Chave et al., 2005).  
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2.4 Allometric Measurements 

Allometric parameters such as number of primary and secondary branches, girth of primary and secondary 
branches, tree height, tree volume, basal diameter, diameter below graft union (DBGU), were measured on 74 
randomly selected mango trees of different age groups: 3, 5, 8, 10, 12, 15, 16, 20, 45 and 85-year-old. Stem 
diameter (below graft union) was measured with a diameter tape. The height of the tree and the diameter of the 
crown were measured with a Spiegel relaskop.  

2.5 Tree Harvesting 

Trees were measured for all allometric parameters and felled. The harvested biomass was segregated into foliage, 
Stem & primary branches and secondary branches. The foliage, branches and small stem were weighed 
separately, taking a subsample to obtain dry matter content (60 °C).Wood samples were taken to estimate 
specific gravity. Biomass was estimated based on volume and specific gravity. Total aboveground biomass was 
calculated as the sum of the biomass of all components.  

2.6 Biomass Expansion Factor (BEF) 

The BEF was calculated as the ratio of the biomass tothe volume, resulting in a dimensional variable (Mg m-3): 

BEF = W/V= ρBEF′                                 (1) 

Where, W is the stand biomass (Mg ha-1), ρ is the dry matter basic wood density (Mg m-3) and V is the stand 
volume (m3ha-1) (Soares & Tome, 2012).  

2.7 Statistical Modelling 

Logistic Model: the rate of growth of population size is given by a model represented by the differential equation: 

= rN                                        (2) 

Where, N(t) denotes the population size or biomass at time t and r is the intrinsic growth rate. 

Integrating, we get,  

                      (3) 

Gompertz Model: Unlike the logistic model, this is not symmetric about its point of inflexion. The differential 
equation for this model is,  

= rN loge                                   (4) 

Integration of this equation yields, 

N(t) =                                         (5) 

The equation may equally return as, 

,                                  (6) 

Power Model: A model represented by an equation, 

(7) 

As all these three models are a class of nonlinear regression model, as the derivatives of Yt with respect to unknown 
parameters are functions of either of them, suitable nonlinear estimation procedure was followed for parameter 
estimation (Venugopalan & Shamasundaran, 2003). SAS codes were developed to fit these non-linear regression 
models. 

3. Results and Discussion 

3.1 Component Biomass Distribution 

Stem wood in grafted plants is very low as the tree branches from the ground just above the graft union. Hence 
stem and primary branches were combined for calculating the biomass distribution. The majority of the 
aboveground biomass constituted stem and primary branch wood with dry weight on an average representing, 
49.82% of the total (Table 1). Secondary branch wood and foliage accounted for a further 17.02 and 10.62%, 
respectively. The belowground biomass accounted for the remaining 22.54% (i.e. small, medium and large 
roots). 
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Stem and primary branches accounted for the largest proportion of the total aboveground biomass by weight 
(49.82%). and was fairly similar to those reported earlier (Normand et al., 2007; Normand & Lauri, 2012; Eneji 
et al., 2013). This component was 47.9% in young plants and showed an increasing trend with age and crossed 
50% after 20 years. The proportion of Secondary branch wood showed a declining trend with age and declined 
from 21% in young plants to 15.6% at 45th year of age. One of the reasons for this may be the practice of pruning 
the secondary branches for ease of management. Contrary to this the foliage biomass showed a marginal 
increasing trend up to 20 years and declined slightly beyond this age. The proportion of roots (22%) was found 
to be higher than those reported for tropical forest trees (18%).The general above ground to below ground ration 
reported for tropical forest trees is 0.26 (Cairns et al., 1997) while we found it to be 0.29 in this study. Grafting, 
planting density and differences in site conditions like micro climate, soil and management would account for 
these slight variations in the biomass distribution between the studies. Further our interest was to extract 
maximum possible portion of the roots from soil profiles as our aim was to work out the carbon sequestration 
rather than from other commercial objectives of wood as in case of forestry studies.  

 

Table 1. Component dry weight (Kgs) of harvested mango trees of different age (data in the parenthesis 
represents %) 

Tree Age 
(years) 

Main Stem and 
Primary Branches 

Secondary 
Branches 

Foliage 
Total above Ground 
Biomass (kg) 

Roots (kg) Total (kg) 

3 10.77(47.93) 4.79(21.3) 1.81(8.01) 17.63(78.46) 5.11(22.74) 22.47 

5 34.59(49.40) 13.32(19.02) 6.37(9.09) 54.27(77.50) 15.74(22.47) 70.02 

8 61.32(49.20) 23.05(18.49) 12.21(9.79) 96.63(77.53) 28.02(22.48) 124.63 

10 62.24(49.70) 20.81(16.62) 14.02(11.19) 97.08(77.52) 28.15(22.47) 125.23 

15 96.62(49.70) 29.38(15.11) 24.69(12.70) 150.70(77.52) 43.70(22.48) 194.40 

20 158.25(49.40) 50.4515.75) 39.63(12.37) 248.33(77.52) 72.01(22.48) 320.34 

45 276.14(50.69) 85.06(15.61) 61.09(11.21) 422.25(77.51) 122.45(22.48) 544.70 

85 607.97(52.60) 165.28(14.30) 122.52(10.60) 896.00(77.51) 259.84(22.48) 1155.84 

 

3.2 Relationship between Tree Age and Allometric Parameters 

Table 2 lists means and standard deviations of all the biometric parameters of the eight age groups examined. 
Tree age is used as the independent variable to predict the changes of biometric parameters with time. We 
applied several equations to select an appropriate growth model. Logarithmic and nonlinear exponential 
equations proposed by Peper et al. (2001a, 2001b) were first tested as these equations showed a good prediction 
in other environments. The logarithmic regression model was therefore applied to predict DBGU, tree volume, 
tree height and PBG X NPB from age: 

Y = a ln(X) – b                                   (8) 

The summary of the best predictive growth models is presented in Figures 2a-2d. These relationships showed 
that allometric parameters were significantly related with age of the trees. The tree height was correlated better 
with age of tree (R2 = 0.795) followed by DBGU (R2 = 0.726), tree volume (R2 = 0.644) and PBG × NPB (R2 = 
0.563).  

 

 

 

 

 

 

 

 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 8, No. 8; 2016 

205 

Table 2. Means and standard deviations of the biometric parameters of the different age trees examined in 
grafted mangos 

Age 
DBGU (cm)  Tree volume (m-3)  Tree height (m) PBG × NPB ABG (kg)  Below ground biomass (kg)

Mean SD  Mean SD  Mean SD Mean SD Mean SD  Mean SD 

3 6.63 1.96  20.55 8.22  1.67 0.38 11.31 6.06 17.63 13.58  5.11 3.94 

5 11.87 1.18  47.97 12.23  2.60 0.57 20.80 8.13 54.27 10.67  15.74 3.09 

8 14.73 0.72  62.17 14.84  2.83 0.62 35.22 14.84 96.63 8.95  28.02 14.20 

10 15.67 3.58  77.45 27.79  3.23 0.76 25.04 10.04 97.08 45.95  28.15 13.32 

15 23.43 12.13  191.87 126.37  4.38 1.48 44.16 22.6 150.70 84.04  43.70 24.37 

20 24.73 6.26  227.48 60.49  4.83 0.78 63.72 9.46 248.33 47.50  72.01 13.78 

45 64.74 11.97  753.55 309.21  8.25 1.44 115.58 71.39 422.25 243.81  122.45 70.71 

85 105.73 8.10  1072.11 169.08  11.44 1.29 252.70 46.33 896.00 138.59  259.84 40.19 

 

 

Figure 2a. Age of tree and diameter below graft union (DBGU) 

 

 

Figure 2b. Age of tree and tree volume 
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Figure 2c. Age of tree and tree height 

 

 

Figure 2d. Age of tree and primary branch girth (PBG) × number of primary branches (NPB) 

 

3.3 Biomass Expansion Factor (BEF) 

The BEF of mango is presented in Table 3. BEFs are needed as a complement of growth models that do not 
include biomass predictions. In spite of the fact that the BEFs vary with the phase of stand development, 
constant BEFs are applied in forestry and agro-forestry studies (Löwe et al., 2000; Lehtonen et al., 2007). But to 
reduce the uncertainty associated with the use of BEFs for biomass estimation, we estimated the BEF of different 
age groups as the ratio of the biomass to the volume, resulting in a dimensional variable and expressed in Mg m-3. 
The BEF varied with age. Initially the BEF was very high followed by a decreasing phase and finally a steady 
phase. The BEF increased from 0.904 (Mg m-3) in third year, increased gradually to 1.63 (Mg m-3) at 8th year. 
Then the BEF started declining gradually and reached 1.12 (Mg m-3) at age 20. The BEF by and large attained 
stability beyond 20 years and attained 0.45 (Mg m-3) at 85th year. Similar observations were made by several 
authors (e.g. Brown, 2002; Jalkanen et al., 2005; Lehtonen et al., 2007; Tobin & Nieuwenhuis, 2007) in other 
species. These reports support the findings concerning resource allocation during the growth process: 
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3.5 Biomass Estimation 

Use of height-diameter relationships is very common in most allometric equations and in dicotyledonous tree 
species these are quite similar and have a slope very close to unity and may differ most among larger trees. This 
is true with mangos grown from seeds but not so in case of commercially grown grafted trees for fruit purpose. 

A basic scatter plot examination was conducted while analysing the data. The field and laboratory data and all 
calculations were verified again and retained only those correct data remained in the data set. We opted for use of 
three forms of models viz., power model (Y = aXb), logistic model (Y = a/(1 + be-0.042x)) and Gompertz model (Y 
= a × exp(be-x)) for allometric equations. Where, Y = biomass of tree and a and b are scaling factors (Table 4). As 
already mentioned the dimensions used were DBGU, Tree height, Tree volume and PBG × NPB.  

 

Table 4. Allometric equations for estimation of grafted mango above ground biomass 

S.No. Variables Model R2 values 

1. Power Model: 

(1) AGB vs DBGU Y= 2.93X1.22 0.902 

(2) AGB vs TREE VOLUME Y = 1.86X0.85 0.855 

(3) AGB vs TREE HEIGHT Y = 9.54X1.8 0.864 

(4) AGB vs PBG × NPB Y =2.886X1.039 0.971 

2. Logistic Model: 

(1) AGB vs DBGU Y = 1159.61/(1 + 24.22e-0.042) 0.879 

(2) AGB vs TREE VOLUME Y = 850.47/(1 + 13.66e-0.004) 0.838 

(3) AGB vs TREE HEIGHT Y = 1394.252/(1 + 54.05e-0.376) 0.865 

(4) AGB vs PPG × NPB Y = 869.977/(1 + 19.853e-0.027) 0.942 

3. Gompertz Model: 

(1) AGB vs DBGU Y= 1777.42 × exp(-3.955 e-0.017) 0.89 

(2) AGB vs TREE VOLUME Y = 1028.03 × exp(-3.054 e-0.002) 0.846 

(3) AGB vs TREE HEIGHT Not suitable fit - 

(4) AGB vs PPG × NPB Y =995.91 × exp(-3.63 e-0.013) 0.964 

 

The equations generally fitted the data well, and in most cases more than 50% of the observed variation in 
biomass was explained by PBG × NPB. All equations were statistically significant (p < 0.05) for both scaling 
parameters, a and b. Based on the R2 values the best fit model for estimation of above ground biomass of grafted 
mango trees is a power model using PBG × NPB as the best dimension: 

Y = 2.886X1.039, R2 = 0.971                                (9) 

A plot between estimated AGB and predicted AGB using this equation is presented in Figure 4. There is a good 
agreement between the observed and the predicted biomass using this equation.  
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