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Abstract 
Lake eutrophication has increased in pace in recent decades and has caused serious environmental problems 
However, the development trends have not been fully determined as it is difficult to recognize complex effects 
emanating from both climate and human mechanisms. China has many lakes in different trophic stages, which 
represent three developing stages from forest- to agriculture-, and then to urban-lake, typically in Lakes Lugu, 
Taibai, and Taihu. To determine long-term water quality trends, the three lakes were chosen for statistic analysis 
on dominant effects on the diatom-inferred nutrient changes, and to undertake dynamic modelling regarding 
climate-controlled nutrient changes. The results indicate the significant turning points of water quality in Lakes 
Lugu, Taibai and Taihu occurring in the 1990s, 1950s and 1940s respectively, which were effected from human 
activities by increases in tourism, farming and urbanization respectively. Water quality changes in Lakes Lugu, 
Taibai and Taihu captured 68.4%, 54.9%, and 86.0% of the temperature variations before the turning points. The 
anthropogenic impacts explained 84.0%, 96.4% and 96.0% of the water quality variations after the turning points, 
where the sharp change of water quality by human activity has played an accelerated effect on the gentle change 
of temperature. Compared with the 4 phases of water quality development in Pyhäjärvi Lake (SW Finland), 
Lakes Lugu and Taibai have experienced the 1st and 2nd phases, and Taihu has experienced from the 2nd to 3rd 
phases during the last 150 years. Phase 4 has not occurred in the three lakes, but it is a key period during the 
eutropication we need to pay attentions.  

Keywords: lake water quality, long-term trends, climate change, human impact, three Chinese lakes, referenced 
Finish lake, statistic analysis, dynamic model 

1. Introduction 
In natural systems, eutrophication is a nutrient-enhanced process in a timescale of several hundred years (Kalff, 
2002). However, the process can be dramatically accelerated by intensive human disturbances, which will 
endanger the structures and functions of lake ecosystems (Carpenter et al., 1995; Howarth et al., 2000; Qin, Xu, 
& Dong, 2011). Nowadays, many lakes in China have been eutrophicated or reveal euthrophic trends due to 
excessively development and using lake and catchment resources (e.g. Dong et al., 2008; Liu et al., 2007; Wu, 
Huang, Zeng, Schleser, & Battarbee, 2007). Changes in lake water quality influenced by human activity have 
been recognized as a progressive process from the original forest-type lake with primary vegetation types to the 
agriculture-type lake strongly influenced by tillage practices, and finally to the urban-type lake characterized by 
industrialization and urbanization (e.g. Fritz, 1989; Rasmussen, 2005; Yu, Xue, Lai, Gui, & Liu, 2007). To 
analyze the processes of lake water quality within different developmental stages, such as changes in 
forest-agricultural-urban lakes, can provide a more comprehensive perspective to understand lake development 
but there have been few study in China (Yang et al., 2010).  

There are 683 lakes with an area greater than 10 km2 in China (Ma et al., 2011). In these different trophic level 
lakes, some can be typically represented by the three types from forest lake to agriculture lake, and then to urban 
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lake. Lugu Lake is a remote and isolated area in southwestern China with a low-level economy and weak human 
activity, and the forest covers 68.9% of the catchment area (Dong et al., 2008). The water was measured in an 
oligotrophic stage and the water quality is very good (Zhang, 2014). Tillage practice has become the major 
economic activity in eastern China, such as in the catchment of Taibai Lake. 71.4% of the area is farming land 
(Liu et al., 2007), which represents an agriculture-lake type. Northern Taihu Lake catchment, located in the east 
of China is a densely populated and highly economically developed area. It covers 36,500 km2 in the catchment, 
only 0.38% of the national territory area, but holds 4.2% of the total population and contributes 11% of the Gross 
Domestic Product in China (Xie, Yu, & Zhang, 2001). Thus, it is a typical urban-lake type. In comparison to the 
three Chinese lakes mentioned above, the water quality of Pyhäjärvi Lake in SW Finland not only had 
experienced changes from oligotrophic condition to eutrohication, but also experienced water quality recovering 
(Ventelä et al., 2015). Therefore the history of water quality changes in Pyhäjärvi Lake can provide a reference 
for comparing the developments of Chinese lakes’ water quality. Considering Chinese lakes in different trophic 
stages are differentially influenced by climatic and anthropogenic impacts, three Chinese lakes (Lakes Lugu, 
Taibai and Taihu) were chosen to study the forest-agricultural-urban lakes in eutrophication processes.  

A comprehensive understanding of lake water quality changes must rely on long-term monitoring (Degobbis et 
al., 2000; Sayer, Davidson, Jones, & Langdon, 2010). However, it is almost impossible to find records longer 
than 50 year records in China, and this is so for the three lakes. For this reason, a paleolimnological approach 
using diatom fossils was introduced in this study, which has proved useful for analyzing changes of lake water 
quality history (e.g. Harris & Vollenweider, 1982; Levine et al., 2012; Luoto & Ojala, 2014; Smol & Douglas, 
1996), because among paleolimnological multi-proxies the diatom fossil is a practical and workable indicator in 
reconstructing the past lake water quality (e.g. Anderson, 1993; Chen, Yang, Dong, & Liu, 2011; Dong et al., 
2008; Hall, Leavitt, Smol, & Zirnhelt, 1997). However, the reconstruction based on diatom analysis can hardly 
distinguish anthropogenic impact from natural influence and is unable to estimate the contributions of different 
factors. For this reason, a nutrient dynamic model was constructed in the present study to simulate lake nutrient 
changes under natural conditions, by setting climate boundaries and initial human-influence conditions.  

In this paper, based on the four-lake water quality changes analyzed by diatom-inferred nutrient reconstructions, 
we used Principal Component Analysis (PCA) to diagnose the major change signals of lake water quality 
controlled by both climate and human activity. Meanwhile, a lake nutrient dynamic model was constructed to 
simulate nutrient changes under the climate conditions. By comparing the two-approach results, we attempted to 
distinguish the impacts of climate only and overlaying human activity. Finally, to compare with Pyhäjärvi Lake 
trends, we figured out respective stages of the three Chinese lakes, and analyzed the potential trends of their 
water quality. 

2. Study Site 
In this study, three lakes of Lugu, Taibai and Taihu (Figure 1) were chosen respectively as typical cases of forest-, 
agriculture- and urban-type lakes according to the developing stages and the strengths of human activities in the 
catchments. 

(1) Lugu Lake (27.27° E, 100.78° N, 2690.75 m a.s.l) is located in the upper reach of the Yangtze River, in 
Yunnan Province, southwest China. The water surface area is 48.25 km2 within 246.26 km2 of the catchment area. 
The average water depth is 40.3 m with a maximum of 93.5 m, and the water volume is 1.953×109 m3 (Wang & 
Dou, 1998). The multi-year mean of the total annual precipitation is about 920 mm, and the mean annual 
temperature is 12.7 °C with a minimum of -10.3 °C and a maximum of 31.4 °C (Wang & Dou, 1998). This lake 
is supplied mainly by surface runoff from the catchment. As a deep-water lake, the seasonal stratification is 
significant and the thermocline generally develops at a depth of 14.4 m (Wang & Dou, 1998). The lake 
catchment is an under-populated region, and the forest land, farming land and residential land occupies about 
68.9%, 11.77% and 1.56%, respectively of the catchment area (Cai, 2014). Lugu Lake is considered to be an 
oligotrophic lake with a mean TP concentration of 11.7 μg/L (Chen et al., 2014).  

(2) Taibai Lake (29.13° E, 115.8° N, 16 m a.s.l) is located in the middle reach of the Yangtze River, Hubei 
Province, eastern China. The water surface area is 25.1 km2 within 960 km2 of the catchment area. The average 
water depth is 3.2 m with a maximum of 3.9 m, and the water volume is about 8×107 m3 (Wang & Dou, 1998). 
The multi-year mean of the total annual precipitation is about 1,272.5 mm, and the mean annual temperature is 
16.7 °C with a minimum of -13.8 °C and the maximum of 39.8 °C (Wang & Dou, 1998). Water supply derives 
primarily from surface runoff (Wang & Dou, 1998). The lake catchment is a typical agriculture area, and the 
forest land, farming land and residential land occupies about 16.55%, 71.4% and 4.37%, respectively, of the total 
area (Liu et al., 2007). According to the investigation in 2002 AD, the mean TP concentration is about 125.5 
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al., 2006), Taihu (Dong et al., 2008), and Pyhäjärvi (Weckström et al., 2015). We therefore used the diatom 
assemblage variations in lake sediments to reflect nutrient changes during historical periods. In this paper, the 
method of Principle Component Analysis (PCA) was applied to extract the principal component (PC) of diatom 
assemblages. PCA is an approach aimed at extracting a few PCs to replace numerous original variables by using 
the dimension reduction method, and should reflect original information as much as possible. Therefore, the PC 
can capture the major signals of diatom assemblage variations, which was used as a lake nutrient proxy in this 
study.  

The PCA was performed in C2 program Version 1.5 (Juggins, 2003), when only diatoms with abundances >2% 
were included in the dataset. Before running the PCA, we constructed a data matrix. The columns of the matrix 
were the abundances (%) of different diatom species, and the rows corresponded to the top-down samples from 
the lake sediment cores. In the dataset, the sample numbers of Lakes Lugu, Taibai, Taihu and Pyhäjärvi were 16, 
24, 28 and 103 respectively, and the species numbers were 50, 46, 35 and 48 respectively. 

4.2 Lake Climate-Nutrient Dynamic Model 

Although diatom assemblages and the extracted signals from lake sediments can reflect the combined effect of 
climatic and anthropogenic impacts on water quality changes, and also can infer the potential main-control 
forces, it can hardly distinguish climatic influence from anthropogenic impacts. Nutrients are important for water 
quality changes (Kalff, 2002), among which total phosphorus (TP) is one of the most important component to 
evaluate lake nutrient levels (Vollenweider, 1968). This is also the case with most Chinese lakes (Wang & Dou, 
1998). Therefore, a lake climate-nutrient dynamic model was constructed to simulate TP changes controlled by 
natural conditions such as precipitation, evaporation, runoff, regional hydrology and the geomorphology, and so 
on.  

Lake nutrient accumulation and discharge are significantly affected by lake morphology and hydrology, and the 
nutrient equilibrium is greatly influenced by water exchange speed (Vollenweider, 1968). Based on the analysis 
for the morphological characteristics and hydrological data from 30 lakes in Europe and North America, 
Vollenweider (1968) proposed a relationship of lake nutrient concentration (Cl), catchment nutrient concentration 
(Cr) and hydraulic residence time (τ). Larsen and Mercier (1976) then improved Vollenweider’s mode and 
proposed the relationship described as: 

Cl = Cr/(1 + τ-1/2)                                     (1) 

Hydraulic residence time is defined as the time length lake water needs to change once, and it can be expressed 
as: 

τ ≡ V/Q                                         (2) 

Where V is the lake volume, Q is the net inflow. By introducing the concept of hydrologic budget (P+R-E-Q=0), 
Equation (2) can be expressed as: 

τ = V/(P + R - E)                                    (3) 

Wherein P, R, E represent lake surface precipitation, catchment-derived runoff and lake surface evaporation.  

Water phosphorus load (Pl) is the function of discharge (Q) and concentration (Cl): Pl = ClQPl can be calculated 
according to the formula below: 

Pl = CrQ/(1 + τ-1/2)                                   (4) 

In this paper, Equation (4) was used to calculate TP content with lake morphology and hydrology as boundary 
conditions, and was applied to estimate changes of lake water quality. For comparison purpose, the TP load was 
divided by the lake volume to convert to TP concentration. Model validation has been done by a control test 
published in Yu, Liao, and Li (2013) and Guo, Yu, and Qin (2015). 

4.3 Total Variance Explained 

To further explain the variations of climatic and anthropogenic impacts on the water quality change, we 
introduced an index of relative variance in this study. For comparison purpose, time series of the PCs, 
temperature and human activity index were normalized and calculated the standard deviations. Finally, we used a 
ratio of standard deviation of temperature (or human activity index) to that of PCs, in order to describe the 
contribution weighting of temperature (or human activity). In this paper, the ratio can reflect the fitting degree 
between two compared series. Namely, the higher ratio indicates better fitting, while lower ratio indicates poor 
fitting. 
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human activity indexes were used to calculate relative variance. The calculation results show that changes of 
PC1s in Lakes Lugu, Taibai, Taihu and Pyhäjärvi captured 68.4%, 54.9%, 86.0% and 56.6% of the temperature 
variations respectively, during the pre-turning point periods of each lake. These indicate that temperature was the 
main force controlling lake water quality changes during these periods. The results also show that the human 
activity indices explained 84.0%, 96.4%, 96.0% and 73.6% of the PC1s (or PC2) change in Lakes Lugu, Taibai, 
Taihu and Pyhäjärvi, respectively, during the post-turning point periods. These suggest that human activity 
strongly influenced lake water quality changes during the recent decades. 

6.3 Trends of Lake Water Quality 

According to the PC1 series during the last 150 years, water quality changes in Pyhäjärvi Lake are shown by a 
four-phase model (Figure 7a): phase 1 is in a stage of oligothrophic condition before the 1930s, phase 2 is in a 
stage of water quality deterioration during the 1930s-1990s, phase 3 represents a stage of accelerated 
deterioration during the 1990s-2000s, and phase 4 is in a stage of water recovering since the 2000s. Comparing 
with Pyhäjärvi Lake, the three Chinese lakes can be inferred to show similar stages. Water quality in Lakes Lugu 
and Taibai has experienced the processes from phases 1 to 2 during the last 150 years (Figures 7b and 7c), and 
Taihu Lake has experienced the process from phases 2 to 3 (Figure 7d). Phase 4, however, has not yet occurred 
in the Chinese lakes. Based on Pyhäjärvi experiences and our trend analysis, we estimated that water quality of 
Taihu Lake, now in phase 3, will likely step into phase 4 when the lake is protected and restored by appropriate 
measures likely in the Pyhäjärvi Lake. The water quality of Lakes Lugu and Taibai, in phase 2 now, will step into 
phase 3 if they are persistently affected by intensive human activities like the 1990s’ situation in the Pyhäjärvi, 
but it will probably step directly into phase 4 if they are treated by effective protecting measures and 
management. 

7. Conclusions 
In this study, through combined paleolimnological and simulated approaches, we attempted to diagnose the lake 
trophic processes and turning points and to estimate the trends of water quality on the reference of Pyhäjärvi 
Lake. The comparisons between the simulated TPs and the PCs as inferred from the diatom assemlages from 
lake sediments showed that during the last 150 years, there were significant turning points in water quality 
changes occurring in the three lakes of China. It occurred in the 1990s in Lugu Lake, resulting primarily from 
catchment tourism development. The turning point of Taibai Lake occurred in the 1950s, causing by agricultural 
reclamation. The turning point of Taihu Lake occurred in the 1940s, mainly due to the urbanization in the lake 
basin. When during the last 150 years, the turning point in Pyhäjärvi Lake occurred in the 1930s, a major result 
also from increasing influence of human activity in the catchment. According to the calculation results of relative 
variance, before the turning points of each lake, temperature played a leading role in water quality changes, 
while during the periods of the post-turning points, human activity was a major force to control water quality 
change in the eutrophication process. 

The change process of water quality in Pyhäjärvi Lake during the last 150 years show four-phase developments 
(phase 1-4). Comparing with Pyhäjärvi Lake, each of the three Chinese lakes also shows some similarities in the 
change process of water quality. Water quality in Lakes Lugu and Taibai has experienced the processes from 
phases 1 to 2 during the last 150 years, and Taihu Lake has experienced the process from phases 2 to 3, while  
phase 4 has not occurred in the three Chinese lakes yet. Based on Pyhäjärvi experiences and our trend analysis, 
we also predicted that the water quality of Taihu Lake will likely step into phase 4 if protection and restoration 
measures for water quality are taken into practice. Water qualities in Lakes Lugu and Taibai will step into phase 
3 if they are persistently affected by intensive human activities, but it will likely step directly into phase 4 if they 
are protected by effective measures and managements. 
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