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Abstract 

The organochlorine pesticide endosulfan is an insecticide and acaricide used on a variety of crops around the 
world. Its adverse effects on public health and aquatic biota have been widely documented in several studies, 
which are closely related to their primary route of exposure, by eating food contaminated with this compound. 
Therefore, it is necessary to concentrate the information in order to analyze and understand its impact on public 
health. The present objective is to review the characteristics of endosulfan, its isomers and their presence in 
aquatic organisms of commercial importance in the Gulf of Mexico and the Caribbean. The aquatic organisms 
involved were molluscs, crustaceans and fish. The highest concentrations of endosulfan have been detected in 
oysters, Crassostrea virginica, with a maximum value of 99.48±16.21 ng g-1. Although the use of this insecticide 
for pest control worldwide is prohibited, research conducted in the Gulf of México and Caribbean Sea indicate 
that it is still used, which will affect future public health and consumers.  
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1. Introduction 

The organochlorine pesticide endosulfan (3-oxide 6, 9-methano-2, 4, 3-benzodioxatiepina-6, 7, 8, 9, 10, 
10-hexachloro-1, 5, 5a, 6, 9, 9-hexahydro) is considered a persistent organic pollutant (POP) due to its chemical 
characteristics and effects on public health and the environment (UNEP, 2009a). This pesticide is a high-risk 
pollutant to the environment, particularly in coastal aquatic environments due to its different transport routes 
including runoff and atmospheric deposition (Albert & Benítez, 1996; Albert, 2014).  

In 1950, the German companies Hoechst AG and FMC Corporation first introduced this pesticide to be used on 
crops such as cereals, coffee, tea, fruits, vegetables, tobacco and cotton (Maier-Bode, 1968). In general, the 
trends for the total global endosulfan used and the total global emissions have increased continuously ever since 
the first year of application of it. Currently, total emissions are around 150 kilotons (Y. F. Li & D. C. Li, 2004; Li 
& Macdonald, 2005). Despite its widespread use in many countries, at least in 60 it is prohibited due to its high 
toxicity that affects public health and aquatic organisms, and due to its persistence in the environment (PANAP, 
2009; Bauer et al., 2013; Negro et al., 2013; Aly & Khafagy, 2014; Schmidt et al., 2014). 

The composition of the technical grade of endosulfan corresponds to a diastereomeric mixture of two 
biologically active isomers, alpha (α) and beta (β), with an approximate ratio of 2:1 to 7:3, in addition to 
impurities and degradation products (INIA, 1999; INE, 2011; UNEP, 2011). The appearance of this compound, 
as a solid, corresponds to cream or brown-colored crystals or flakes, whose existence does not occur naturally in 
the environment (ATSDR, 2000, 2001, 2013). As a technical grade product, it must contain at least 94% 
endosulfan according to the United Nations for Food and Agriculture (FAO Specification 89/TC/S), which 
stipulates that the alpha-isomer content is between 64 and 67% and the beta-isomer is between 29 to 32%. The 
alpha-isomer is asymmetric and is composed of two axial seat forms, while the beta-isomer has a symmetric 
shape. The beta-isomer is easily converted into endosulfan-alpha, while this is not possible for the alpha-isomer 
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(INIA, 1999; INE, 2011).  

Due to the high negative impact of endosulfan and its isomers on public health and the environment, several 
investigations have been conducted with the objective of replacing this organochlorine in both Latin America 
and Europe (IPEN, 2005; Bejarano et al., 2008, 2009; Haffmans et al., 2008; UNEP, 2008). Thus, it is important 
to know the concentration levels of endosulfan and its isomers in commercially important aquatic organisms in 
the Gulf of Mexico and the Caribbean, and the possible risk to public health.  

2. Primary Crops and Pests Controlled by Endosulfan 

Endosulfan is an insecticide and acaricide used to control plant pests (Li & Macdonald, 2005; UNEP, 2009a). It 
is a broad spectrum compound applied in different countries to a variety of edible and non-edible crops (Table 
1). 

 

Table 1. Tropical crops and pests of economic importance controlled by the application of endosulfan 

Family Crop 
Pest 

Scientific name Common name 

Ribiaceae Coffee Hypothenemus hampei Ferrari Coffee berry borer 

Solanaceae Tomato 

Mexican green 
tomato 

Trialeurodes vaporariorum (Westwood) 

Aphis 

Manduca quinquemaculata (Haworth) 

Helicoverpa zea (Boddie), Heliothis virescens (Fabricius) 

Trichoplusia ni (Hübner) 

Whitefly 

Aphids 

Hornworm 

Fruit and sprout worms 

Looper 

Eggplant Myzus persicae (Sulzer) 

Phyllotreta, Epitrix 

Helicoverpa zea, H. virescens 

Aphids 

Fleahopper 

Fruit and sprout worms fruit and 
sprouts 

Hot pepper Anthonomus eugenni Cano 

Epitrix, Chaetocnema 

Trialeurodes vaporariorum 

Acyrthosiphon pisum (Harris) 

Hot pepper borer 

Fleahopper 

Whitefly 

Green aphid 

Tobacco Bemisia tabaci (Gennadius) 

Heliothis virescens 

Estigmene acrea (Drury) 

Alabama argillacea (Hübner) 

Myzus persicae 

Whitefly 

Tobacco sprout borer 

Hairy worm 

Looper 

Aphids 

Fabaceae Alfalfa Therioaphis maculata (Buckton) 

Acyrthosiphon pisum 

Melanopus, Sphenarium, Brachystola 

Hypera brunneipennis (Boheman) 

Spotted aphid 

Aphid 

Grasshoppers 

Egyptian weevil 

Green beans Acrythosiphon pisum 

Trichoplusia ni 

Empoasca 

Green aphid 

Looper 

Leafhoppers 

Beans Apion godmani Wagner 

Trialeurodes vaporariorum 

Empoasca 

Bean weevil 

Whitefly 

Leafhoppers 

Soy Anticarsia gemmatalis Hübner 

Bemisia tabaci, B. argentifolii Bellows & Perring 

Schistocerca piceifrons piceifrons Walker 

Nezara viridula (L.) 

Euschistus servus (Say) 

Soy or velvet caterpillar  

Whitefly 

Locust 

Green bug 

Brown bug or Brown cochuela 

Malvaceae Cotton Anthonomus grandis 

Heliothis virensis 

Boll weevil 

Acorn worm 

  Trichoplusia ni Looper 
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  Bemisia tabaci, T. vaporariorum 

Aphis gossypii (Glover) 

Whitefly 

Cotton aphid 

Apiaceae Celery Lygus Lygus bug 

Brassicaceae Broccoli Trichoplusia ni Looper 

Cabbage Pieris rapae (L.), Pontia protodice (Boisduval & Leconte), 
Leptophobia aripa (Boisduval) 

Plutella xylostella (L.) 

Brevicoryne brassicae (L.) 

Murgantia histrionica (Hahn) 

Trichoplusia ni 

White cabbage butterfly 

Diamondback moth 

Cabbage aphid 

Harlequin Cabbage Bug 

Looper 

Cauliflower Epitrix, Phyllotreta 

Spodoptera exigua (Hübner) 

Trichoplusia ni 

Fleahopper 

Armyworm 

Looper 

Poaceae Sugarcane Aeneolamia postica (Walker) Fennah, Prosapia bicincta (Say), 
P. simulans (Walker) 

Eoreuma loftini (Dyar), Diatraea considerata Heinrich, D. 
grandiosella Dyar 

Sipha flava (Forbes) 

Leptodyctia tabida (Herrich-Schaeffer) 

Spittlebug 

Stem worm borer 

Yellow aphid 

Lace bug 

Corn Spodoptera frugiperda (J.E. Smith), Rhopalosiphum maidis 
(Fitch) 

Schizaphis graminum (Rondani) 

Sesamia calamistis Hampson, S. inferens (Walker) 

Diatraea grandiosella, D. lineolata (Walker) 

Helicoverpa zea 

Bud aphid 

Foliage aphid 

Pink borer 

Stem worm borer 

Corn worm 

Wheat Diuraphis noxia Kurdjumov 

Rhopalosiphum maidis 

Schizaphis graminum 

Sitobion avenae Fabricius 

Sesamia calamistis 

Russian wheat aphid 

Aphid bud 

Foliage aphid 

Grain aphid 

Pink borer 

Rice Orseolia oryzae Wood-Mason 

Euetheola bidentata Burmeister 

Rupela albinella Becker & Solis 

Gill fly 

Hispid or rice louse 

Stem worm 

Barley Rhopalosiphum maidis 

Sitobion avenae 

Aphid bud 

Grain aphid 

Pasture Aeneolamia postica, Prosapia simulans 

Macrodactylus 

Dalbulus elimatus (Ball) 

Sphenorium, Melanoplus 

Whitefly 

Puffin 

Leafhopper 

Grasshoppers 

Asteraceae Lettuce Trichoplusia ni 

Epicaerus cognatus Sharp 

Aphididae 

Epitrix 

Leptinotarsa decemlineata (Say) 

Looper 

Potato weevil 

Aphids 

Fleahopper 

Catarina potato 

Cucurbitaceae Zucchini 

Melon 

Aphis gossypii 

Trichoplusia ni 

Diaphania nitidalis (Stoll), D. hyalinata (L.) 

Melittia satyrinfornis Hübner 

Bemisia tabaci, Trialeurodes 

Melon aphid 

Looper 

Fruit borer 

Guide borer 

Whitefly 

Cucumber 

Watermelon 

Trichoplusia ni 

Aleyrodidae 

Aphis gossypii 

Looper 

Whitefly 

Cotton aphid 

Bromeliaceae Pineapple Thecla basilides (Harris) Pineapple borer 
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  Dysmicoccus brevipes (Cockerell) Mealy louse 

Anacardiaceae Mango Anastrepha ludens (Loew) Fruit fly 

Sources: Nieto (2001), EPA (2002), Bejarano et al. (2008, 2009), Weber et al. (2010), UNEP (2009b, 2011), 
ATSDR (2013), TecnoAgro (2013), Pro-Agro (2014a, 2014b). 

 

The extensive use of pesticides in a wide variety of crops has contributed to their release into the environment 
(FAO, 2000). The irrigation systems are an example of the mechanisms of modern agriculture that have 
contributed to a more efficient spreading of fertilizer and pesticides like endosulfan, where the former have 
generated pollution of groundwater with nitrates and nitrites by overuse mode (Galaviz et al., 2010). Meanwhile, 
the pesticides applied using these systems can influence the transport of these compounds, which are in use or 
previously used as the organochlorine, helping to transport to remote areas like the lagoon systems. 

Knowledge about the status of irrigation systems at global and national level is of importance for present and 
future transport of pesticides like endosulfan. Among the most recent works on this subject are those by Valipour 
(2012, 2014a, 2014b, 2014c, 2015). In addition, this author indicated that irrigation systems in any crop should 
be implemented to achieve sustainable agriculture in the future. 

3. Route of Exposure to Endosulfan 

Due to the non-systemic nature of endosulfan, the major route of action occurs through direct skin contact and 
ingestion (Kidd & James, 1991). It is a very toxic chemical for nearly every type of organism (UNEP, 2007). 
Endosulfan and its degradation by products are also highly toxic to aquatic organisms (UNEP, 2011). Exposure 
occurs by absorption through contact, inhalation and ingestion (Nieto, 2001). 

Diet is the primary route of exposure to endosulfan for most organisms resulting from food contaminated by this 
compound (ATSDR, 2013; Singh et al., 2014; Wang et al., 2014). In rats, rapid absorption of it occurs in the 
gastrointestinal tract at levels from 60% to 87%; where 60% of this compound is absorbed within 24 hours 
(UNEP, 2011). 

4. Effect of Endosulfan on Public Health 

Major impact to public health by endosulfan is the nervous system damage due to its affinity to 
gamma-aminobutyric acid receptors (GABA) in the brain, where it acts as a noncompetitive antagonist of GABA, 
blocking or inhibiting neurotransmitter reception. Therefore, the blocking activity means partial repolarization of 
the neuron and a state of uncontrolled excitation (UNEP, 2011). Exposure to high concentrations of this 
compound produces hyperactivity and seizures, regardless of the route of exposure. Symptoms of acute 
poisoning include vomiting, agitation, convulsions, cyanosis, dyspnoea, foaming at the mouth and noisy 
breathing. Severe poisoning can cause death. Furthermore, animal research has shown that prolonged ingestion 
of endosulfan in food mainly affects kidneys (Bejarano et al., 2009; Scremin et al., 2011; UNEP, 2011; ATSDR, 
2013). 

However, there are conflicting reports; endosulfan has no genotoxic or mutagenic effects in vitro or in vivo for 
somatic cells. Neither has it been classified as an endocrine disruptor, or an immunotoxicant, although 
carcinogenic effects have been observed in studies on mice and rats (Nandar et al., 2011). However, the results 
obtained in studies of germ cells in vivo suggest that mutations could be induced specifically in spermatogonia 

UNEP (2011). 

Recent studies also indicate that endosulfan can cause cell death in exposed Sertoli germ cells due to oxidative 
damage, causing further damage to the quality of gametes produced (Rastogi et al., 2014). Such contradictions 
regarding the adverse effects on public health could be related to the limited amount of research performed on 
humans, as a high percentage of such studies are focused on laboratory animals such as mice, rats, dogs, and 
other mammals. 

Besides, the effect of endosulfan as an endocrine disruptor not only in terrestrial and aquatic species, but also in 
public health, because this chemical has an estrogenic effect and causes the proliferation of breast cancer cells 
MCF-7 sensitive to human estrogen, and interferes with male sex hormones such as testosterone (Bejarano et al., 
2009). Endosulfan isomers and its primary metabolite have been on the TEDX list of potential endocrine 
disruptors since 2011, in which is included the evidence that supports the consideration of this chemical as an 
endocrine disruptor (TEDX, 2015). Study results suggest that exposure to endosulfan in young men can delay 
sexual maturity and interfere with the synthesis of sex hormones (Saiyed et al., 2003). 

In the Kerala state of India, helicopters sprayed endosulfan on nut crops for 25 years, leading to adverse effects 
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on human health and calves with congenital deformities since 1979. During the 1990s, an unusual increase in 
health problems was reported in Kasaragod, one district of Kerala. In 2001, more cases of children with 
hydrocephalus, cerebral palsy, blindness, deformed hands, and chronic skin problems were reported (Bejarano et 
al., 2008).  

Study results on the genotoxicity and mutagenicity caused by this chemical have been equivocal and the 
genotoxicity of its metabolites is largely unknown. Studies on the damage to human lymphocyte DNA caused by 
endosulfan isomers has shown that exposure to endosulfan and its metabolites in sublethal doses induces damage 
to DNA and promotes mutation (Bajpayee et al., 2006). The induction of teratogenic effects by endosulfan in 
pregnant rats also was tested, showing the number of fetuses with visceral and skeletal malformations to be 
significantly higher than controls. The malformations obtained were mainly skeletal (ribs), vertebral, and in the 
liver and kidneys (Singh et al., 2007); it was also observed an effect of the developing chick embryos (Mobarak 
& Al-Asmari, 2011). 

No observable effects levels (NOEL) were established for endosulfan risk assessment during reproductive 
development and its neurotoxicity. For acute oral exposure in rabbits, 0.7 mg-1 kg-1 d-1, and for breeding rats, 
values for subchronic and chronic oral exposure were 1.2 mg-1 kg-1 day-1 and 0.6 mg kg-1 d-1, respectively. Silva 
and Gammon (2009) concluded that endosulfan toxicity during development or reproduction results in endocrine 
disruption only at doses that cause neurotoxicity (0.5 mg kg-1 d-1 for rat pups). Risks to human health from 
endosulfan exposure were assessed using NOELs to compare acute, subchronic and chronic exposure; resulting 
in 0.7, 1.18 and 0.57 mg-1 kg-1 day-1, respectively. The acute oral NOEL reported by the EPA was found to be 
twice as high as reported values (1.5 mg-1 kg-1 day-1) (Silva & Beauvais, 2010). Silva and Carr (2010) found that 
children from 1-6 years old have a higher risk of exposure to endosulfan in the diet (Silva & Carr, 2010). 

5. Transformation and Transport in the Environment 

The primary metabolite obtained from the degradation of endosulfan is endosulfan sulfate, which has the same 
toxicity of the parent compound (UNEP, 2008). However, the metabolite is even more persistent because it 
degrades slowly compared to more polar metabolites such as endosulfan diol, endosulfan lactone, and 
endosulfan ether (Bejarano et al., 2009; UNEP, 2011, 2013). Endosulfan transforms primarily through two 
channels: the diol route in water and as endosulfan sulfate in soils and sediments (Hose et al., 2003). 

The presence of endosulfan residues has been reported in several countries, in all environmental systems studied, 
including air, rain, snow, fog, lakes, rivers, river sediments, groundwater, well-water, spring-water, city water 
supplies, seawater and marine sediment, shrimp ponds, lagoons, estuary sediment, soil, and tree bark. In addition, 
it is reported in biota like aquatic plants, fish, crocodile eggs and several organisms in such remote areas as the 
Arctic (CE, 2005; Bejarano et al., 2008; Rendon & Bejarano, 2010). Due to its presence in a variety of 
environments, its degree of persistence varies depending on the environmental system and conditions present. 
The persistent characteristics for the major environmental systems (air, soil and water) are described below. 

In air, endosulfan is stable regarding photolysis, but photooxidation occurs to produce endosulfan sulfate (UNEP, 
2011). Therefore, the atmosphere is a major transport route of semi-mobile pesticides such as endosulfan. The 
deposition of this compound is associated with its physicochemical properties, patterns of use and climatic 
conditions, on local, regional and global scales. Therefore, endosulfan and its metabolites can affect human 
health and have adverse ecological effects (Potter et al., 2014). This coincides with what is known about 
endosulfan as a global pesticide, particularly the persistence of α-endosulfan and its ability to travel great 
distances through atmospheric transport (UNEP, 2009a). The persistence and volatility of endosulfan contribute 
to its dissemination in the environment after being applied and its ability to travel great distances, making it the 
organochlorine with the highest concentration in the atmosphere worldwide (Bejarano et al., 2009; UNEP, 2011; 
INE, 2011); providing a dispersal distance of 10-20 kilometers for low to moderate use (Gioia et al., 2005), and 
up to 150 kilometers for regional transportation (Hageman et al., 2006).  

Evaluations of endosulfan wet deposition via precipitation in an area of high agricultural use in South Florida 
and near to the Biscayne and Everglades National Parks, recorded a detection rate of 55-98%, average 
concentrations between 5-87 ng L-1 and a total daily deposition of 200 ng m-2 day-1. The compound showed a 
strong seasonal trend in its concentration, with significantly higher values associated with peak use periods when 
vegetable crops were grown (Potter et al., 2014). Within an area, the simple intensive aerial application of a 
pesticide such as endosulfan results in volatile releases to the atmosphere. In addition to regional characteristics, 
such as calcareous soils, the presence of frequent rainfall, high humidity and temperature help to accelerate the 
process of regional volatilization (Hapeman et al., 2013). 

The levels of total endosulfan (Σ) were analyzed in ambient air in southern Mexico; the highest levels of 
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α-endosulfan occurred at two sites in Tabasco and one in Veracruz, with an average concentration of 367 and 78 
pg m-3, and 83 pg m-3, respectively (Alegría et al., 2005). Mobilization and atmospheric deposition are partly 
responsible for the presence of organochlorine pesticides in coastal areas and its atmospheric transport at a 
regional scale (Alegría et al., 2005). A persistence of 27±11 days in the atmosphere (and 75 ºC for photolysis) 
was noted, with a DT50 > 2.7 days for the alpha isomer and >15 days for the beta isomer (UNEP, 2008, 2009a). 
However, neither endosulfan sulfate nor total endosulfan were reported. A persistence of the total composite for a 
scenario in the United States yielded 1.3 days, while 2 days for Europe was recently indicated; although no 
explanation for these variations has been provided (INE, 2011).  

The persistence of endosulfan in soil is high because it is strongly adsorbed and relatively immobile (Nieto, 2001; 
Singh et al., 2014). Table 2 shows the persistence of endosulfan and its isomers in soil. Its semidegradation 
period (DT50) varies depending on whether it occurs under aerobic conditions, the region, (temperate or tropical) 
and the conditions of the land where it was applied. Under aerobic conditions it is estimated that soil and 
sediment are acidic to neutral. The DT50 for total endosulfan (alpha and beta isomers and endosulfan sulfate) 
ranges from 9 months to 6 years (UNEP, 2009). Persistence also is associated with laboratory or field conditions 
under studies are conducted. In the laboratory, DT50 values < 30 days have been reported, indicating that the 
persistence of alpha and beta endosulfan in soil is low. Yet, field investigations have indicated DT50 values for 
endosulfan sulfate and the technical grade compound as being 3-8 months (UNEP, 2011).  

 

Table 2. Persistence (DT50) of endosulfan and its isomers in soil 

Environmental 

System 

Isomers 

Alfa (α) Beta (β) Sulfate Total (∑) Reference 

Soil 

12-39 days 

21 to 22 °C 

108-264 days 

21 to 22 °C 

N.D. 7.4 days 

DT90: 24.6 days 

CE (2005) 

Acidic to neutral soils, 

1-2 months 

Average: 27.5 days 

Acidic to neutral soils, 3 

to 9 months 

Average: 157 days 

N.D. 288 to 2,241 days 

Tropical soils from 

Brazil, 161 to 385 days 

UNEP (2007) 

Average: 27.5 days Average: 157 days 117 to 137 days 9 months to 6 years Bejarano et al. 

(2008) 

α+β, laboratory aerobic degradation, 25-128 days 

α+β in temperate regions, 7, 4 and 92 days 

Aerobic degradation

123-391 days 

28 to 391 days UNEP (2009) 

Neutral pH, 35 days Neutral pH, 150 days N.D Acid pH, 50 days INECC 

(2014) 

12 to 39 days 108 to 264 days 

Field studies: 900 days 

123 to 391 days 

Field studies: 3 to 8 

months 

9 months to 6 years UNEP (2011) 

Note. N.D. = Not defined. 

 

While, alpha endosulfan has an average DT50 of 27.5 days, the beta-isomer an average of 157 days, and 
endosulfan sulfate 117 to 137 days, anaerobic conditions may considerably extend the semidegradación rate in 
soils (UNEP, 2007; Ciglasch et al., 2008). However, there is variability among these degradation rates, such that 
degradation for the α isomers ranges from 12-128 days and for the endosulfan sulfate from 123-391 days (UNEP, 
2011). The latter range is similar to reports indicating that the combined DT50 for the two isomers (α and β) and 
endosulfan sulfate in soil varied in the range of 28-391 days (UNEP, 2008). 

For aquatic environments, only the persistence for total endosulfan has been determined, and that there is a 
strong association with pH (hydrolytic degradation). Low pH conditions (pH 5 and lower, acidic) and 
temperatures near 25 °C promote longer periods of degradation, yielding a DT50 > 200 days. Under neutral pH 
conditions, a DT50 of 10 to 20 days exists, but less than a day to 0.2 days at pH 9 (alkali or basic). Among the 
metabolites obtained during this transformation are endosulfan sulfate, endosulfan diol, endosulfan lactone and 
endosulfan hydroxy acid (Bejarano et al., 2008; UNEP, 2007, 2011). The relationship between pH and the 
persistence of total endosulfan indicates that under anaerobic conditions, with an acid pH, persistence was four 
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For occupational exposure, the National Institute for Occupational Safety and Health recommended a limit of 
100 ng g-1 for endosulfan in air as an average over a period of 10 hours (NIOSH, 2011). An acceptable level of 
exposure of operators to endosulfan (AOEL) is a concentration of 0.0042 mg kg-1 day-1 (CE, 2005). However, 
the Administration of Occupational Safety and Health (OSHA) has not set a legal limit for endosulfan in the air 
for a period of 8 hours (ATSDR, 2013). 

The reference values for α and β endosulfan for the protection of freshwater aquatic life indicate that the acute 
and chronic effects are reported at concentrations between 220,000,000 and 56,000,000 ng L-1, respectively. As 
for marine organisms, acute effects exist at 34,000,000 ng L-1 and chronic effects begin at concentrations of 
8,700,000 ng L-1 (EPA, 2014). A criterion for total endosulfan was established for protection of aquatic life in 
freshwater and seawater, where levels of 60 ng L-1 for acute exposure and 3.0 ng L-1 for chronic exposure were 
established for freshwater. For seawater, the values fluctuated between 90 and 2.0 ng L-1 for the acute and 
chronic exposure, respectively (CCME, 2014). As a result of comparing the various permissible limits stipulated 
by different international agencies, some discrepancies were found in the reference values established and the 
considerations that governed them. Therefore, the permissible limits for endosulfan application represent an 
important way to protect public health and the environment, particularly for food intake by aquatic organisms, 
which have been shown to contain contaminants such as endosulfan (Table 3).  

 

Table 3. Regulation of endosulfan exposure dose based on exposure route 

Exposure route Specifying criteria Permissible limits Reference 

Food Assessment of exposure risk Acceptable Daily Intake (ADI) of 6 ng g-1 day-1 

Reference dose for acute oral exposure (RfD): 
15 ng g-1 day-1 

CE (2005) 

 

Total diet studies Acceptable Daily Intake (ADI) of 6 ng g-1 day-1 WHO (2005) 

Acute dietary exposure to endosulfan Adults, 15 ng g-1 day-1 

Children, 1.5 ng g-1 day-1 

EPA (2002b) 

Chronic dietary exposure to endosulfan Adults, 6.0 ng g-1 day-1 

Children, 0.06 ng g-1 day-1 

Public health for endosulfan (α, β) and 
endosulfan sulfate 

Endosulfan sulfate in lakes, rivers, streams plus 
organisms, 62,000 ng L-1 

EPA (2009) 

Public health for endosulfan (α, β) and 
endosulfan sulfate 

A limit of 89,000 ng L-1 was established in body 
organism only. 

Fishery products (fresh, chilled, frozen 
and processed) 

Not legislated Diario Oficial (2011) 

Occupational National Institute of Health and 
Occupational Safety (NIOSH) 

1×105 ng m3 in the air, as an average 10 hours 
day-1 

NIOSH (2011) 

Acceptable level of exposure for 
operators (AOEL) 

4.2 ng g-1 day-1 CE (2005) 

Aquatic life Protection of aquatic life in fresh and 
marine waters 

Freshwater: acute effects, 60 ng L-1 

Chronic effects, 3.0 ng L-1 

Freshwater: acute effects, 90 ng L-1 

Chronic effects, 2.0 ng L-1 

CCME (2014) 

Protection of aquatic life in fresh and 
marine water against endosulfan α and β 

Freshwater acute effects, 220,000,000 ng L-1 

Chronic effects, 56,000,000 ng L-1 

Marine water acute effects, 34,000,000 ng L-1 

Chronic effects, 8,700,000 ng L-1 

EPA (2014) 

Protection of freshwater aquatic life Chronic exposure, 56 ng L-1 EPA (2002) 

 

7. Use of Endosulfan in Mexico 

When identifying patterns of pesticide use along the Gulf of Mexico coast, a total application volume of 
endosulfan was reported as an active ingredient with 41,755 kg for the geographic units analyzed. Areas with the 
highest application volume were those for the Pánuco River with 33,826 kg, followed by Tuxpan, Cazones and 
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Tecolutla rivers with 2,363 kg. Moreover, this pesticide represented 40% of the 41 compounds used in the area 
and ranked second in having a high relative value of environmental risk due to the large volumes used, toxicity 
and persistence (Benítez & Barcenas, 1996).  

In Mexico, there is a lack of public information on the volume of pesticides applied, including endosulfan, which 
is authorized for 41 crops (Bejarano et al., 2008, 2009). An increase in the importation of this compound has 
been reported, from 119 t in 2002 to 731 t in 2006. There also is a total lack of public access to information on 
this chemical, such as where and how much was used, the extent of authorized permissions, their intrinsic 
characteristics as POPs, as well as the environmental dispersion to aquatic ecosystems (Rendón & Bejarano, 
2010). 

Endosulfan, as reported by the Federal Commission for the Protection against Sanitary Risk 
(COFEPRIS-abbreviation by initials of a Mexican institution) in December 2008, had 85 authorized permissions 
for its agricultural use as an active ingredient, while as a formulated product it included 20 crops, such as 
vegetables, gramineous, legumes and fruits (Rendón & Bejarano, 2010). This agrees with reports indicating that 
in Mexico, the use of endosulfan as an insecticide is authorized for more than 20 crops (RAPAM, 2014). Due to 
the extensive use of the compound, nearly 4,000 t were imported for its formulation during the period from 2002 
to 2010, with the primary sources being Germany, India and Israel (Rendón & Bejarano, 2010; RAPAM, 2014). 

COFREPIS, through consultation on the commercial registering of authorized pesticides, indicates that 
endosulfan, as an active ingredient, has 35 records, which correspond to various trade companies, but whose 
validity is undetermined (COFREPIS, 2014). Therefore, it is important to know the historical trends of pesticides 
such as endosulfanin order to estimate dietary intake of various foods and to identify their origins to help ensure 
food safety for consumers (Desalegn et al., 2011).  

The imports of endosulfan into Mexico in 2006 exceeded 640 t, representing the highest volume ever traded. 
Fluctuations in the imported volume of this pesticide over the past 10 years exist, with 303 and 504 t in 2009 and 
2010, respectively (INE, 2011). According to the Tariff Information System via Internet (SIAVI), the same trend 
was evident where 435.55 t were imported in 2012, and by 2013 it had decreased to only 60 t (SIAVI, 2014). 
However, despite the decline in imported endosulfan, according to SIAVI the presence of this compound in food 
products such as aquatic organisms remained alarmingly high. Thus, despite the commitment to eradicating its 
use, endosulfan is still used in Mexico. Also, through the consultation of various sources of information 
(Bejarano et al., 2008, 2009; INE, 2011; RAPAM, 2014; COFEPRIS, 2014), some discrepancy was found in the 
number of authorized records reported for this pesticide, which highlights the need for accurate information on 
how much endosulfan is used and how it is applied. 

8. Presence in Aquatic Organisms 

8.1 Bivalve Molluscs 

The oyster Crassostrea virginica (Gmelin) is one of the molluscs most commonly used as a bioindicator in the 
Gulf of México. The species has been used as an important indicator of various persistent organic compounds, 
among them endosulfan, not only for its ecological significance, but also for its economical importance. 
However, investigations on levels of organochlorine pesticides such as endosulfan are widely scattered and 
scarce in some regions of Mexico.  

The ecological risk of Σendosulfan in C. virginica and filtered water samples in Términos Lagoon was at a 
concentration of 0.45 pg L-1, causing toxic effects such as immobility in embryos of this oyster, and a value 
range of 0-37 pg L-1 for the water (Carvalho et al., 2009b). Given the economic, ecological and social 
importance of oysters, C. virginica is a vulnerable benthic organism in the lagoon systems in the Gulf of México 
due to the presence of chemical contaminants such as organochlorine pesticides (Lango et al., 2013b). 

In the Gulf of México, C. virginica is the characteristic bivalve mollusc in lagoon systems. It has been 
extensively studied for the presence of pesticides including endosulfan and its isomers. Given that this species 
filter-feeds and is benthic, it is an organism with a potential for bioaccumulation of chemical contaminants from 
lakes that are directly influenced by agricultural activities in the areas surrounding these lakes. Table 4 shows the 
concentrations of endosulfan and its isomers chronologically (by report) and by organismal group. 
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Table 4. Concentration of endosulfan and its isomers (ng g-1) in aquatic organisms of commercial importance in 
the Gulf of Mexico 

Coastal lagoon Groups and species 
Isomers 

α β Sulfate ∑ Reference 

Bivalves 

P. Viejo 

Tampama 

Alvarado 

Machona 

Carmen 

E. Tamulte 

P. Rico 

Términos (BA) 

Términos (PV) 

Crassostrea virginica (Gmelin) -- 0.06 

N.D. 

N.D. 

N.D. 

0.06 

0.06 

N.D. 

0.4 

N.D. 

-- -- Rosales (1979) 

Alvarado 

Carmen 

Machona 

C. virginica 1.22±0.76 

N.D. 

0.83±0.38 

17.65±7.76 

14.93±6.26 

8.78±4.52 

N.D. 

N.D. 

N.D. 

-- Botello et al. 

(1994) 

Palizada River 

and  

Términos 

C. virginica 

 

Brachidontes recurvus 

-- -- -- 9.84 (BT) 

111 

8.23 

Gold et al. 

(1995) 

Alvarado 

Carmen 

Machona 

C. virginica 1.22 

0.83 

N.D. 

17.65 

14.93 

8.78 

N.D. 

N.D. 

N.D. 

-- Díaz and Rueda

(1996) 

Términos, 

Campeche 

C. virginica 

C.rhizophorae Guilding 

0.010-0.080 0.084-0.013 0.560-0.670 0.604-0.670 Carvalho et al. 

(2009a) 

Madre 

Mandinga 

Mecoacán 

C. virginica 13.97±0.30 

37.27±0.00 

14.89 ±1.16 

N.D. 

99.48±16.21 

N.D. 

-- -- Lango-Reynoso

et al. (2013a) 

Alvarado C. virginica 

Rangia cuneata (G.B. Sowerby I) 

Rangia flexuosa (Conrad) 

Polymesoda caroliniana (Bosc) 

1.27, d 

9.10 (max), d 

0.64, r 

N.D., r 

N.D. 

4.92 (max), r 

0.66, r 

N.D, r 

0.22, r 

22.4 (max), r 

4.83, r 

1.35, r 

-- Palmerín et al. 

(2014) 

Crustaceans 

Palizada River and  

Términos 

Litopenaeus setiferus (L.) -- -- -- 0.94 Gold et al. 

(1995) 

Fish 

Chetumal Bay Ariopsis assimilis (Günther) -- R: 5±8 

B: 4±5 

N: 3±6 

PVe: 1±3 

PCa: 0.3±1 

-- -- Vidal et al. 

(2003) 

Chetumal Bay A. assimilis -- 26.57 (max) -- -- Noreña et al. 

(2004) 

Candelaria-Panlau 

East Candelaria, 

Términos 

Arius melanopus Günther 

Cichlasoma spp. 

A. melanopus 

Both species 

10.83±16.45 

99 

22.38 

21.68±35.77 

2.86±7.56 

35.8 

N.D 

5.11±13.53 

31.24±74.44 

49.7 

N.D 

7.10±18.78 

-- 

 

 

 

Díaz et al. 

(2005) 

Chetumal Bay A. assimilis -- -- -- 21.5 (m) Álvarez (2009) 
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     40.0 (max) 

13.0 (min) 

 

Términos, 

Campeche 

Lepisosteus tropicus Gill <0.002 <0.003 0.026 0.026 Carvalho et al. 

(2009a) 

Note. N.D.: Not detected; --: Not analized; P. Viejo: Pueblo Viejo; Tampama: Tampamachoco; P. Rico: Puerto 
Rico; BA: Boca Atasta; PV: Palizada Vieja; Max: Maximum; Min: Minimum; r: rain; d: dry; AE: both species; m: 
Mediana; BT: Boca de Laguna Términos; R: Ramonal; B: Bellavista; N: Nictechan; PVe: PuntaVerde; PCa: 
Punta Calera.  

 

8.2 Crustaceans 

Studies on the presence of endosulfan in crustaceans in the Gulf of Mexico are scarce and mainly limited to the 
genus Penaeus. The few studies that exist are mainly focused on determining the presence of endosulfan, 
identifying dispersion of DDT residues and their metabolites in environmental matrices. Therefore, about 90% of 
research along the Mexican coast lacks information about endosulfan residues in environmental systems and 
aquatic biota (Rendón & Bejarano, 2010). 

The ecological risks of Σendosulfan in pink shrimp, Farfantepenaeus duorarum (Burkenroad) and samples of 
filtered water from Términos Lagoon were assessed, yielding toxic effects on shrimp at 0.04 pg L-1 and LC50 
concentrations in water at 8 to 22 pg L-1 (Carvalho et al., 2009b). These results contrast with other studies where 
endosulfan sulfate was found in higher concentrations, followed by alpha and beta isomers, suggesting the 
predominance of degraded forms produced mainly during oxidation of the alfa isomer (Montes et al., 2012). 

Aquatic organisms of commercial importance such as bivalves, crustaceans and fish in the Gulf of México and 
the Caribbean Sea had higher concentrations of beta endosulfan, followed by the alpha isomer and endosulfan 
sulfate, indicating recent use of the pesticide. In previous studies, a lower concentration of the ∑endosulfan was 
reported on crustaceans compared to that from analyzed bivalves; a difference explained by the physiological 
and ecological characteristics of each species. This trend can be explained on the genus Farfantepenaeus, mainly 
because of its position on the water column and capacity for movement, although it has detritophagos habits 
(Table 4).  

8.3 Fish 

Studies on the concentration of endosulfan in fish from the Gulf of Mexico and Caribbean Sea are scarce. The 
potential interaction between the presence of β-endosulfan and parasitization in Mayan catfish Ariopsis assimilis 
(Günther) in the Bay of Chetumal were assessed, and revealed a lack of a positive correlation between the 
presence of the β-isomer and the intensity of parasitic infestation (Vidal et al., 2003). The detected concentrations 
were lower than those reported for the same species (Noreña-Barroso et al., 2004; Álvarez, 2009).  

Higher concentrations of this compound in fish can be explained as a process of biomagnification, given that 
these organisms feed on shrimp, crabs and small fish. The concentrations are also associated with the amount of 
lipids present within consumer tissues, which promotes the accumulation of organochlorine compounds such as 
endosulfan due to their lipophilic affinity. Thus, within fish species of commercial importance in the Gulf and 
Caribbean, only four were found in studies that address this pollutant. Reports indicated that through 
management programs such as Fisheries Management Plans (FMP), which provide insight into the impacts of 
production and development activities in each lagoon system, FMP strategic targets can be met for sustainable 
fisheries (Castañeda et al., 2014). 

Analysis of endosulfan concentrations in the different organism groups show different sources of influence on 
the bioaccumulation of organochlorine pesticides such as endosulfan in aquatic organisms: feeding habits, 
position in the water column (ecological habits) and the incorporation of these pollutants, either through water or 
sediment, which can promote progressive bioaccumulation. 

8.4 Strategies for Endosulfan Reduction Use  

Certainly, endosulfan is an organochloride pesticide that affects the aquatic life in the Gulf of México and 
collaterally has an impact on public health, which is a concern that should be seriously taken in account by many 
actors in the society, especially with the aid of government-funded programs. In this case, the short and 
long-term strategy proposed by Galavis-Villa et al. (2010) to reduce water contamination by nitrate and nitrite 
could be applied to reduce endosulfan contamination in different environments. In the short-term workshops can 
be implemented to teach people not only about the danger of using endosulfan and the implicated risks but 
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inform them of the different/reduction options available, and to train them when using it. As a long-term strategy 
it is important to reduce the use of the pesticide by optimizing timing and rates based on a protective program. 
These strategies to reduce the negative impacts on the environment and public health can be implemented at 
municipality level in developing countries. In other cases or situations, such strategies can be accomplished at 
smaller scales depending on the educational and economical levels of the society under consideration.   

9. Conclusions 

The presence of endosulfan and its isomers indicates the need to increase the number of studies of its effect on 
water quality and pollution of shellfish and fish for human consumption due to the various adverse effects 
reported on public health. Moreover, there are large gaps in information because of the lack of continuity in 
monitoring programs. Therefore, it is necessary to identify the exact sources of emission of these compounds, to 
know how they are mobilized toward coastal lagoons, and to understand their effects on wildlife (plant and 
animal, aquatic and terrestrial) in these ecosystems. Efficient screening mechanisms should also be employed to 
reduce exposure to endosulfan in consumer products such as aquatic organisms. Finally, it is necessary to have 
more strict national laws to ensure that the consumption of aquatic organisms is free of toxic compounds such as 
endosulfan.  
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