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Abstract  
Seeds with shiny seed coat in common bean (Phaseolus vulgaris L.) are normally rejected by consumers due to 
their difficult cooking, however they can prevent insects and pathogens injuries. Seed coat shininess is known to 
be conditioned by the Asp gene with the dominant form and is also influenced by the J locus. The latter 
influences seed coat color and pattern and has been considered a precursor for proanthocyanidin only in the 
presence of the dominant allele. This work aimed at performing a series of morphological, biochemical and 
genetic analyses for screening seed coat shininess in common bean. We showed Asp and J can be easily 
distinguished. Colorimeter data (L*a*b* system) can somehow provide a quantitative differentiation for seed 
coat shininess based on the L* variable. Palisade epidermis length and seed coat roughness profiles obtained 
through electronic microscopy were good indicators for Asp phenotyping. Water uptake was affected by 
shininess but is probably influenced by more genes, even J, or due physiological responses. A vanillin-HCl test 
showed to be a suitable method for tracing condensed tannins. AFLP markers partially allowed the categorization 
of shininess phenotypic classes. These results could be helpful regarding selection purposes and breeding. 
Therefore, favorable selection to Asp would lead to better resistance to pathogens and insects. J, instead, could 
be selected for nutritional purposes, since proanthocyanidins are important anti-oxidant and anti-carcinogenic 
compounds. 
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1. Introduction 
Common bean (Phaseolus vulgaris L.) consumers identify their preferable commercial class, in part, considering 
color and its distribution pattern on seed coat. Therefore, breeders need to maintain genotype specific 
characteristics for each commercial cultivar. Knowledge about seed coat genetics is a fundamental issue to guide 
strategies for genotype selection (Bassett, 2007). Some studies have been focused in identifying genes associated 
to each color phenotype and determine their biochemical roles (Hosfield, 2000). Genes for seed coat traits are 
essentially involved in the phenylpropanoid pathway. The expression of each gene is reflected on the grains 
visual aspect and therefore on its acceptability to the market.  

One trait observed by common bean consumers is seed coat shininess. In Brazil seeds with shiny seed coat are 
frequently rejected by consumers because cooking time is higher than with cultivars presenting dull or opaque 
seed coat. Despite this disadvantage, seed coat shininess is of great importance to the seed. The seed coat is the 
structure that provides protection to seeds from biotic (insects and pathogens) and abiotic (mechanical injuries, 
light, water or moisture) factors in natural conditions or even during grains storage. Seed coat shininess probably 
increases resistance to these stresses. Local farmers from Central America as well as Brazil, considering these 
potential benefits, also consume varieties with shiny seed coats. Diamant et al. (1989) showed that 18% among 
600 people interviewed preferred shiny varieties in Guatemala.   

Extensive phenotypic and genetic analyses led to the identification of genes that control different patterns (T, Z, 
L, J, Bip and Ana) and colors (P, C, R, J, D, G, B, V and Rk) of the seed coat. Nevertheless, many researchers 
diverged in their analyses due the variability and complexity of seed coat genes (Bassett & McClean, 2000; 
Hosfield, 2000). Furthermore, problems were extended to symbols attribution, being more than one symbol used 
for the same locus many times. Many of these genes exhibit epistatic interactions (McClean et al., 2002), turning 
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difficult their analysis separately.  

Among all genes expressed on the seed coat, at least two have been associated to seed coat shininess: Asper (Asp) 
and Joker (J). Genotypes asp asp present dull seed coat and Asp_ are shiny (Bassett, 1996). Asp is not related to 
seed coat color, controlling only the seed coat shininess (Bassett, 1996). This gene was ignored since its original 
publication (Lamprecht, 1940), because J was considered the gene for seed brilliance (Lamprecht, 1932, 1940). 
In this period, it was also used the symbol Sh (shiny) as being equivalent to J (Lamprecht, 1960).  

Bassett (1996) has performed extensive studies with common bean seed coat, showing some very simple 
differences between Asp and J. The asp allele produces a paler seed coat than j, and asp is more frequent in 
cultivars than j. Additionally, the only visible effect of asp is the opaque seed coat, while j affects not only 
brilliance, but the color pattern of the seed coat. The main effect of j is to produce an immature and irregular 
color over the seed coat. The opposite should be expected with J. Moreover, in jj genotypes, the corona zone 
surrounding the hilum is usually pale or mostly uncolored and the seed coat exhibits a less shiny seed coat 
(Bassett, 1996). 

The understanding of differences between these two genes improved based on their genetic mapping and 
biochemical analyses tracing their effect. Asp is mapped to linkage group B7 in common bean (Freyre et al., 
1998; Miklas et al., 2000; Pérez-Vega et al., 2010). However, it is mapped only as a phenotypic marker. J is 
located on linkage group B10 (Freyre et al., 1998, Galeano et al., 2011). A RAPD marker tightly linked to j has 
been found and converted to a STS (Sequence Tag Site). However, this marker can only be used within the 
Mesoamerican gene pool due to the multiallelism of J (Bassett et al., 2002; McClean et al., 2002; Bassett, 2007). 
Recent advances with the molecular mapping of the phenylpropanoid pathway and the elucidation of 
proanthocyanidin synthesis in common bean may help do define a better marker for this and other genes (Caldas 
& Blair, 2009; Reinprecht et al., 2013; Yadegari et al., 2014).  

Biochemical analyses have been provided more clearly for J. The dominant allele J indicates to be essential for 
the synthesis of proanthocyanidins or condensed tannins (Hosfield, 2000; Leakey, 1988). Proanthocyanidins are 
oligomers or polymers originated from condensation of units of flavan-3-ols, as catechins and epicatechins (Xie 
& Dixon, 2005; He et al., 2008; Hummer & Schreier, 2008; Zhao et al., 2010). In common bean, J is probably 
involved with the conversion of dihydroflavonol to leucocyanidin through Dihydroflavonol reductase (Hosfield, 
2000), which further leads to proanthocyanidins synthesis. On the contrary, Beninger et al. (1998) and Beninger 
and Hosfield (1999) showed jj genotypes did not produce proanthocyanidins.  

Asp causes a structural change on palisade epidermis and has no biochemical effect specified. Based on the 
structural effect, asp genotypes tend to present a thinner palisade epidermis layer than Asp. Besides, asp presents 
a rough seed coat surface while Asp exhibits an even surface (Beninger et al., 2000).  

Considering the importance of the genes Asp and J, we performed a series of analyses in order to elucidate 
morphological, biochemical and genetic differences provided by these genes, with the following objectives: (i) 
provide a qualitative and quantitative method to differ shiny from dull seed coats; (ii) verify if variables such as 
palisade epidermis length, water uptake and tannin content could be associated to each gene and phenotype; (iii) 
verify if AFLP markers could differ these classes accordingly; (iv) analyze segregating populations to confirm 
genotyping.  

2. Material and Methods  
2.1 Plant Materials and Crosses  

A set of testcross lines (Figure 1) varying for seed coat color, pattern and shininess from Bassett (1992, 1996, 
1998a, 1998b, 2003) were used as control materials for morphological and biochemical analyses. Line 5-593 
presents almost all loci for seed coat in the dominant homozygous form (Stp T Z l+ Bip P [C r] D J G B V Rk Asp) 
and has shiny seed coat (J Asp). Testcross line j BC3 5-593 (j Asp) has the recessive allele just for the J locus, 
being used as a control. Line asp BC3 5-593 (J asp) is recessive only for the Asp locus.  

Morphological, biochemical and genetic analyses were carried out with the line Puebla-152 (P-152) and the 
cultivar Diamante Negro (DN). We also evaluated the landrace Serro Azul, which comprises the variants Shiny 
Serro Azul (SAB, from the Brazilian Serro Azul Brilhante) and Dull Serro Azul (SAF – Serro Azul Fosco) 
(Figure 1).  

Puebla-152 (P-152) is a Mexican line from Mesoamerican group. This line has shiny black seed coat and was 
originally selected for high nitrogen fixation potential and resistance to root rot (Navarro et al., 2008; 2009). 
Diamante Negro was originated from the cross of CIAT lines XAN 87 x AS 367. Selection was held at 
CNPAF/EMBRAPA, Brazil, under artificial induction of common bacterial blight, being released as a cultivar in 
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1991. DN has high productivity and disease resistance (common bacterial blight and mosaic virus, and 
moderately resistant to anthracnose) (Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA], 2010). Two 
parents, P-152 and DN-6, from the bean germplasm collection at CENA/USP were crossed, generating F1 and 
being advanced to F3:4 generation in 2010.  

 

 
Figure 1. Profile of seed coat, hilum and corona zone for testers for the genes Asper (Asp) and Joker (J) (Bassett, 

1996, 1998, 2003) e for breeding lines and landraces of common bean (Phaseolus vulgaris L.) 

A. Profile of two genotypes contrasting for the J locus. Corona zone is represented on the right side, showing 
that j genotypes present it partially or totally uncolored. B. Asp alleles are distinguished by shiny (Asp) and dull 
(asp) seed coats. C. Reference line 5-593, with genotype J Asp, with intense shiny black seed coat. D. Tester asp 
BC3 5-593, with dull seed coat. This tester means the only allele substitution was made on the Asp locus. E. 
Other tester with genotype J Asp but with brown color. F. Tester j BC3 5-593, reference material for J study. G. 
Other tester with genotype j Asp, but with other color. H. and J. Landrace Serro Azul with variants Brilhante 
(Shiny Serro Azul) – SAB and Fosco (Dull Serro Azul) – SAF. I. Line P-152, with black shiny seed coat (J Asp). 
K. Cultivar Diamante Negro (CNPAF/EMBRAPA) with dull seed coat (J asp). 
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The landrace Serro Azul is traditionally cultivated by small farmers in Cunha county, Sao Paulo state, Brazil, 
under low technology conditions. This landrace is a local source for food and financial incomes. Serro Azul has 
been presenting low productivity and poor nodulation in soil fertility conditions of Cunha region. However, 
considerable improvement has been obtained when optimal fertilization conditions were adopted (Oliveira et al., 
1998; Oliveira & Tsai, 2001). This landrace presents considerable morphological diversity. A source of 2 kg of 
seeds with dull seed coat was collected in Cunha and among all seeds we found only 10 with shiny seed coat. 
Dull seeds were called SAF and shiny seeds SAB. SAB plants were crossed to SAF and also the reciprocal (SAF 
x SAB, SAB x SAF). Crosses were advanced to F3:4. Some results indicated SAB had better nodulation than SAF 
(Oliveira et al., 1998). An indirect survey for antrachnose resistance using detached leaves from grown plants 
showed SAB was resistant to some races of Colletotrichum lindemuthianum while SAF was highly susceptible 
(data not published). Also, some observations indicated high resistance to insects attack by SAB while SAF 
seeds were frequently injured in field and storage conditions (data not published).  

2.2 Color and Shininess Assessments 

2.2.1 Visual Analysis 

CIAT (1976) recommendations for seed coat shininess classification (shiny, intermediate and dull) were observed. 
However, morphological and biochemical aspects were the focus of this research. We evaluated 5-593 (Bassett, 
1998) as the reference material for shiny seed coat (Asp_), asp BC3 5-593 for dull seed coat and j BC3 5-593 for 
the intermediate form. P-152, DN, SAB and SAF were classified accordingly. Progenies F2:3 and F3:4 of crosses 
P-152 x DN and SAF x SAB were evaluated based on parents and categorized according to color and shininess. 
Visual analyses were performed on Petri dishes filled with seeds over a white surface.  

2.2.2 Spectrophotometric Method – Color System L*a*b* 

We tried to distinguish dull and shiny seeds by using the colorimeter Minolta Chroma Meter CR-300, obtaining 
values for three variables: L* (brightness), a* and b* (color components). The Commission Internationale de 
L'Eclairage (CIE) recommended using the color measuring system L*a*b* since it is similar to that human 
ganglion cells see: the amount of green or red as a*; the quantity of blue or yellow as b*; and the amount of 
brightness as L*. The L* component is on the z axis, where 100 is the perfect white and 0 is black. Positive 
values of a* turn red and negatives green. Positive b* values turn yellow and negatives blue. We used L* as a 
measure for brightness of the seed coat. Samples of about 30 to 40 seeds were placed in a small plate (13 cm2) 
covering the entire bottom and then four measures were taken for each sample. Parents SAB, SAF, P-152, DN 
and crosses were all evaluated.  

2.3 Microscopy Analyses of the Seed Coat 

2.3.1 Scanning Electron Microscopy (SEM) 

Plants of each line were grown in greenhouse and seeds were harvested, air-dried and stored in a cold chamber (8 
± 3 ºC) until analysis. We analyzed five seeds for each variety. Each seed was cut with a razor blade and fixed in 
a metal support (stub), sputter coated with gold and observed under a LEO 435 VP (Carl Zeiss, Jena, Germany), 
operating at 20 keV. SEM photos were taken from the opposite side to the hilum of each seed, in two fields of 
view, to highlight the palisade epidermis for length measurements. In total, 10 measurements were taken for each 
field of view. Measurements were performed using Image J software 1.44p and converted to metric system based 
on scales from the microscope.  

2.3.2 Light Microscopy (LM) 

Seeds of each genotype were sampled the same way as for SEM. Seeds were dehydrated with increasing 
concentrations of ethanol and then embedded with HistoResin Mounting Media kit (Leica Heldeberg) following 
manufacturer instructions. Images were observed under a Zeiss Axioskop 2 Microscope coupled with 
AxiosCamMR3 camera and a computer with software Image Pro-Plus, version 3.0.  

2.4 Determination of Total Phenols, Total Tannins and Condensed Tannins From Seed Coats  

Phenolics were determined using a sample of 50 seeds of each parent (P-152, DN, SAB and SAF) and two 
controls (5-593 with genotype J and j BC3 5-593), all in triplicate. Samples were immerged in n-heptane for 96 
hours and rehydrated. Seed coats were manually pelled and dried at 40 °C in Petri dishes. Phenolics were 
extracted with 200 mg fine powdered sample in 10 ml of acetone 70%. Samples were sonicated for 20 minutes 
and then centrifuged at 3000 g for 10 minutes, at 4 °C. Supernatant was removed and placed in other tube to 
proceed with determinations. The extraction procedure for total phenols and total tannins followed indications of 
Makkar et al. (1993). A standard curve was prepared with tannic acid, using Folin reagent and sodium carbonate 
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for reading. Condensed tannins determination followed procedures of Porter et al. (1986) with modifications. To 
the phenolic extracts was added butanol-HCl (95:5), followed by FeNH4S03 2% in HCl 2N and all samples were 
kept at 100 ºC for an hour, after that being cooled. Samples were read at 550 nm in a spectrofothometer and 
condensed tannins were expressed as leucocyanidin equivalents per kg of dry matter.  

2.5 Histochemical Test With Vanillin-HCl 

Three seeds of each parental were sectioned in 5-10 µm slices and colored with vanillin 10% solution in ethanol 
HCl (1:1), according to Broadhurst and Jones (1978). Materials were visualized with light microscope Zeiss 
Axiovert 35. 

2.6 Water Uptake  

Water uptake was determined for each genotype by adapting the procedures of Bushey et al. (2000), using three 
replicates. Samples were kept at 27 ± 1 ºC for eight hours. Every 30 min seeds were paper dried and weighted. 
Water uptake was expressed as the moisture content of seeds for each time point. The experiment was repeated 
three times.  

2.7 Genotyping and Evaluation of Segregating Populations  

Genotypes for each parents and for segregating populations derived (SAF x SAB and P-152 x DN) were all 
evaluated by visual analysis and also by colorimeter measures. Color and shininess groups were defined 
accordingly and genotypes based on loci Asp and J were defined.  

2.8 Validation of Phenotypic Classes by AFLP Markers  

A series of AFLP analyses was performed in order to validate phenotypic classes established on the basis of 
visual and colorimeter analyses. Plants of each material were grown in greenhouse and fresh new leaves were 
collected, frozen and grounded in liquid nitrogen. DNA was extracted according to Doyle and Doyle (1990), 
with modifications. Samples for the parents and bulks of progenies F2:3 of the same phenotypic class were 
composed. The DNA of three progenies of each class was bulked and next prepared for fingerprinting. AFLP 
procedures were performed according to Vos et al. (1995), with modifications. Digestions were performed with 
200 ng of DNA with EcoRI and MseI, and samples were ligated to specific adaptors. Pre-amplifications were 
performed with EcoRI-A and MseI-A primers and for selective amplifications 50 EcoRI-N/MseI-N (N = one, two 
or three selective bases) 50 primer combinations were used. Amplified samples were separated in 
polyacrylamide gels 6% under constant 40 W. Silver staining was performed according to Creste et al. (2001).  
2.9 Statistical Analyses  

Colorimeter data (L*a*b* system measures) were analyzed through Shapiro-Wilk test (p < 0.05) in Statistix 8 
(Analytical Software, Tallahassee) for normality test. Frequency distribution classes of the data were generated 
and L*a*b* significances were evaluated through F-test and compared with Tukey (p < 0.05). Grouping of 
variables and association to phenotype (color and brightness) was also evaluated by principal component 
analysis (PCA), using CANOCO for Windows version 4.5 (Biometris, Plant Research International, The 
Netherlands). Interaction between brightness and colors was analyzed in a two-factor statistic design with F test 
(p < 0.05) and means were compared with Tukey (p < 0.05). Seed water uptake and cell length (SEM, LM) were 
compared with F-test followed by Tukey (p < 0.05) comparison. All analyses were performed with Statistix and 
PAST (Hammer et al., 2001). Segregation data were submitted to a chi-square test with the hypothesis that Asp 
controls seed coat shininess in the progenies derived from SAF x SAB and P-152 x DN. Genetic similarity 
analyses of AFLP profiles for the parents were performed with Bionumerics version 6.1, using Jaccard´s 
similarity index. Clustering analysis was performed based on UPGMA (Unweighted Pair-Group with Arithmetic 
Averages).  

3. Results  
3.1 Asp and J Genotyping 

In first place, we visually compared our parent materials to the testers for seed coat genes, so we could define 
their genotypes. Comparisons with Bassett testers for J and Asp allowed the genotyping of the parents 
Puebla-152 (Mexican line with black and shiny seed coat), Diamante Negro (CNPAF/EMBRAPA, with black 
and dull seed coat) and the landrace Serro Azul (variants Serro Azul Brilhante and Serro Azul Fosco, respectively, 
with shiny and dull seed coat) for these loci. P-152 and SAB have shiny seed coat and regular color distribution 
with no change in corona zone, presenting J Asp genotype. DN and SAF have dull seed coats but a slight shiny 
aspect and therefore were classified as J asp (Figure 1).  
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3.2 Color and Shininess Assessments 

After visual scoring, color and brightness measurements were taken to determine whether or nor there were 
differences between the genotypic classes. Seeds were categorized according to color and seed coat shininess, 
since color properties interfere with many variables studied such as L*a*b* measures and tannin content. 
Genotypes P-152 and DN are black but differ for brightness. P-152 has shiny seed coat while DN is dull. SAB is 
brown and shiny while SAF is gray and dull. F2:3 and F3:4 progenies of each cross segregated for shininess and 
also colors, as shown later in segregation analysis. P-152 x DN cross generated only black progenies but 
segregating for shininess (SBL – Shiny Black and DBL – Dull Black). SAF x SAB differed both in colors and 
shininess, being grouped in shiny or dull brown (SB or DB) or shiny or dull gray (SG or DG), based on visual 
analysis (Figures 1 and 2).  

 

Figure 2. L*a*b* measures obtained by colorimeter Minolta Chroma Meter CR-300 for common bean landrace 
Serro Azul, with variants Serro Azul Brilhante (SAB) and Serro Azul Fosco (SAF), the line Puebla-152 (P-152) 

and the cultivar Diamante Negro (DN) 

Components a* and b* are for colors and the L* component was attributed to shininess. L*a*b* measures for the 
parents SAB and SAF and P-152 and DN (A and B) and for progenies F2:3  and progenies F3:4 of the cross P-152 
x DN (C and D). Measures for progenies F2:3 and F3:4 of the cross SAF x SAB were separated by colors and 
shininess (E, F, G and H). We detected differences (p < 0.05) for the L* component when a* and b* color 
components did not differ. *: indicates differences at p < 0.05. **: significance at p < 0.01. 
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Figure 3. Principal Component Analysis (PCA) for L*a*b* measurements of seed coats of progenies derived 

from crosses of common bean genotypes contrasting for seed coat shininess  

Components a* and b* are for colors and the L* component was attributed to shininess. A, B, C and D show 
L*a*b* measures for progenies F2:3 and F3:4 of the crosses SAF x SAB and P-152 x DN using random samples of 
the progenies. E and F show the complete PCA profile, considering all F3:4 progenies of these crosses. 

 

Measures of the L*a*b* system validated those classes (Figures 2 and 3). L* and a* fitted normal distribution 
but b* did not in both crosses (SAF x SAB – L*: p = 0.68; a*: p = 0.69; b*: p = 0.00; DN x P-152 – L*: p = 0.09; 
a* = p = 0.50; b*: p = 0.00), according to Shapiro-Wilk test. We could not detect difference between SAB (L* = 
37.7; a* = 12.8; b* = 15.0) and SAF (L* = 37,4; a* = 9,7; b* = 30,6) in the shininess L* component, since a* 
and b* were significantly different and so L* interacted with those. Also the parents P-152 and DN did not differ 
for L* and a*, except for b*.  
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Nevertheless, among the progenies of both crosses (SAF x SAB and DN x P-152) we detected differences in the 
L* component (Figure 2). Progenies F2:3 and F3:4 of P-152 x DN with dull seed coats presented lower L* value 
than the shiny. The same was observed for the four classes (BS, BD, GS, GD) of the progenies of SAF x SAB. 
L* values were lower in BD and GD. But comparisons for shininess could only be done when color component 
a* and b* did not interfere.  

PCA analyses showed two components which explained at least 90% of the total variance (Figure 3). However, 
PCA only showed clear difference in brightness for the F3:4 progenies. An interaction analysis (two-factor design) 
showed a significant interaction (F = 4.38, p < 0.05) between color and shininess, showing a* and b* interact 
with L*. This makes difficult to distinguish shiny from dull seed coats and requires prior color differentiation. 
Therefore, only those materials with similar color (a* and b* not different between samples) can be 
distinguished based on L*.  

3.3 Microscopy Analyses 

Previous studies have shown similar results as we are here, but this analysis was extended to more bean lines. As 
previously shown by Beninger et al. (2000), we verified that the line asp BC3 5-593 presents a rough textured 
seed coat when compared to line 5-593. Moreover, our work introduces the SEM profile of j BC3-593 (Figure 4), 
not previously reported for this type of study. This tester shows just a slight roughness on the seed coat surface, 
almost imperceptible if compared to asp BC3 5-593. SAB and P-152 have an even surface, typical of shiny seed 
coats. SAF and DN are noticeable rough textured, as expected (Figure 4).  

Palisade epidermis length measures were similar to Beninger et al. (2000), which have first measured it as a 
method to compare seed coats with differences in brilliance. The tester j BC3 5-593 presented no difference (p < 
0,11) to 5-593 in length, but asp BC3 5-593 had lower length (p < 0.02). SAF presented lower value than SAB (p 
< 0.02). Non-significant difference was detected between P-152 and DN. They do not hold the same origin but 
were the parents of the study population (Table 1).  

3.4 Water Uptake  

Some reports have shown that seed coat shininess interferes with water uptake. Water uptake differed among the 
genotypes. However, the origin of each material had to be considered when evaluating this parameter. Different 
selection methods have taken genotypes to have divergent phenols or proteins concentrations, those who may 
interfere significantly with water imbibition. Overall, 5-593, j BC3 5-593 and asp BC3 5-593 showed a similar 
tendency of water uptake (Figure 5A). Even so, 5-593 had lower absorption rate than asp BC3 5-593. 
Interestingly, asp BC3 5-593 and j BC3 5-593 showed no difference (Figure 5A).   

SAF had much higher water absorption than SAB (Figure 5A). Since these variants have the same origin, their 
comparison is appropriate. DN and P-152 had different results but P-152 absorbed water faster than DN, even 
the former being the shiny one. However, P-152 and DN have different origins, so comparisons are limited.  

 

Table 1. Palisade epidermis length for genotypes contrasting for seed coat shininess (loci Asp and J) 

Cultivar Genotype Palisade epidermis length (µm) 

5-593 J Asp 38,8 ±3,2 a 

asp BC3 5-593 J asp 33,2 ±2.2 b 

j BC3 5-593 j Asp 35,2 ±2,6 a 

Serro Azul Brilhante J Asp 40,8 ±2,0 a 

Serro Azul Fosco J asp 37,0 ±2,4 b 

Puebla-152 J Asp 45,7 ±4,5 a 

Diamante Negro J asp 42,3 ±3,4 ab 
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Figure 4. Surface and cross section of the seed coat of different common bean genotypes contrasting for seed 

coat shininess  

PE: palisade epidermis, H: hypodermis, PT: parenchymatous tissue. A. Line 5-593 (J Asp) shows a regular and 
even surface and palisade epidermis is longer than testers. B. Tester asp BC3 5-593 (J asp), with rough textured 
surface. C. Tester j BC3 5-593 (j Asp), somehow regular surface. D. Serro Azul Brilhante (SAB) (J Asp) and F. 
Puebla-152 (J Asp) also present regular and even surface while E. Serro Azul Fosco (SAF) and G. Diamante 
Negro (DN) have rough textured and irregular surfaces. Scale bars indicate length of 10µm on the first column. 
On the second column, bars representing 20 µm and on the third column 100 µm. 
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Figure 5. Water uptake profile, total phenols, total tannins, condensed tannins and vanillin-HCl test 

A. Water uptake for genotypes 5-593 (J Asp), j BC3 5-593 (j Asp), asp BC3 5-593 (J asp), Serro Azul Brilhante 
(SAB), Serro Azul Fosco (SAF), Puebla-152 (P-152) and Diamante Negro (DN). B. Total phenolics and total 
tannins for genotypes. C. Condensed tannin amount for genotypes. D. Cross sections of seed coats colored with 
Vanillin-HCl for the genotypes contrasting for J locus. PE: palisade epidermis, H: hypodermis, PT: 
parenchymatous tissue. Bars represent 30 µm. 

 

3.5 Phenols, Condensed Tannins and Histochemical Test  

High levels of total phenols, tannins and condensed tannins were detected in SAB, SAF, P-152 and DN, 
compared to 5-593 and jBC3 5-593 (Figures 5B and C). We detected higher amounts of condensed tannins in the 
shiny 5-593 than in j BC3 5-593 (Figure 5C). The same was observed for the shiny parents SAB and P-152 
compared to the dull SAF and DN.  

Vanillin HCl test revealed that genotypes J presented strong red color along the seed coat, but weak staining was 
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observed for j BC3 5-593 on the palisade epidermis (Figure 5D).  

3.6 AFLP Categorization 

Genetic similarity was evaluated among all parents of the two crosses. SAB e SAF were close with 93.5% of 
similarity and DN and P-152 had 91% (Figure 6A). Bulk results for categories of colors and shininess (DN x 
P-152: BLS and BLD; SAB x SAB: BS, BD, GS and GD) showed the separation between crosses (Figure 6B 
and C). Overall, shiny bulks for DN x P-152 cross were somehow separated from the dull bulks. The bulks of 
SAF x SAB progenies were separated by color, but were mixed for the seed coat shininess trait. So, no specific 
bands to shiny seed coat were detected.  

 

 
Figure 6. A. Similarity cluster of parents Serro Azul Brilhante (SAB), Serro Azul Fosco (SAF), Puebla-152 

(P-152) and Diamante Negro (DN). B. and C. AFLP profile and clustering of progenies F2:3 from crosses SAF x 
SAB and P-152 x DN, showing different color and shininess classes. SB: Shiny Brown, DB: Dull Brown, SG: 

Shiny Gray, DG: Dull Gray, SBL: Shiny Black; DBL: Dull Black 
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3.7 Segregation Analyses  

Since seed coat shininess is maternally inherited, when SAB was crossed to SAF, all F1 seed presented dull seed 
coat. DN was crossed to P-152, so that all F1 seeds were shiny. F1:2 seeds of the two crosses were all shiny.  

F2:3 progenies segregated at the rate 3 shiny to 1 dull (Table 3). In F3:4 generation, the segregation was of 5:3. 
Table 3 shows the observed and expected proportions of the two crosses between SAB and SAF (SAF x SAB; 
SAB x SAF) and P-152 x DN in generations F2:3 and F3:4. Results showed that a single gene with a dominant 
allele controls shininess in this varieties, which by all analyses performed (previous sections) showed to be Asp. 
J did not segregate, since all parents were J_.  

 

Table 2. Segregation analysis for seed coat shininess in common bean crosses 

Crosses and generations 
Observed phenotype

Expected proportions
Expected phenotype 

χ² p 
Asp (shiny) Asp (dull) Asp (shiny) Asp (dull) 

Dull Serro Azul (SAF) x Shiny Serro Azul (SAB) 

SAF x SAB 

F1:2 121 0 1:0 121.00 0.00 0.000 1.00 

F2:3 84 37 3:1 90.75 30.25 2.008 0.16 

F3:4 356 213 5:3 355.62 213.38 0.002 0.96 

SAB x SAF 

F1:2 163 0 1:0 163.00 0.00 0.00 1.00 

F2:3 122 41 3:1 122.25 40.75 0.001 0.97 

F3:4 479 263 5:3 463.75 278.25 1.337 0.25 

Puebla-152 (P-152) x Diamante Negro (DN) 

F1:2 75 0 1:0 75.00 0.00 0.00 1.00 

F2:3 54 21 3:1 56.25 18.75 0.360 0.55 

F3:4 258 160 5:3 261.25 156.75 0.108 0.74 

 

4. Discussion 
Here we showed a series of analyses aimed at the understanding of differences at the morphological, biochemical 
and molecular level for seed coat shininess in common bean. Our results were consistent with data already 
published, but also revealed new prospects on its evaluation. Furthermore, this was an initial step to resume a 
trait that has been neglected for breeding purposes, but may naturally be important for defense mechanisms of 
the seed or the plant itself. Besides, phenolic compounds accumulated on the seedcoat may represent important 
nutrition facts for human or animal consumption, so that this trait could have its roll to improve it.  

4.1 The L* Variable to Show Differences in Shininess  

Colorimeter data allowed the quantitative differentiation between the shiny and the dull seed coat, but were 
limited by color influence (components a* and b*) (Figures 2 and 3). Seeds must have similar a*b* values so 
that these will not interact with L* for shininess differentiation. Given the huge variety of seeds of common bean 
and considering a germplasm collection, it seems unviable. However, segregating populations can be somehow 
distinguished as we have shown by PCA analysis (Figure 3). Despite that, colorimeter measures show to be 
suitable for color distinguishing (PCA analysis).  

4.2 Visual Scoring and Comparison to Testers to Show Differences Between Asp and J 

J and Asp loci phenotyping can still be easily done based on characteristics previously shown by Bassett (1992, 
1996, 1998a, 1998b, 2007). The phenotypes of the testers reveal clear differences among the alleles for Asp and J 
(Figure 1). Furthermore, we added some new characteristics that should be considered when genotyping seeds 
for those loci as presented on Table 2. Asp gives the real shiny aspect to the seed coat while J only intensifies it. 
On the contrary, asp gives the real dull aspect of the seed coat while j has no effect on brightness intensity. 
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Table 3. Main characteristics associated to Asp and J loci, involved in seed coat shininess in common bean  

Genotype Phenotype Characteristics  

J Asp Shiny seed coat  Intense shininess but depends on the genotype, color and pattern.  

Even seed coat surface as showed by Scanning Electron Microscopy.

J asp Dull seed coat Dull seed coat due to Asp but with a slight shiny aspect, especially on 
hilum border, due to the dominant form of J.  

Rough textured seed coat surface due to asp.  

j Asp Intermediate shiny† Seed coat shininess intensity is reduced by j effect. Seed coat color is 
irregular and corona presents partial coloring or totally uncolored.  

Regular and even seed coat surface.  

j asp‡ Dull seed coat  Dull and rough textured seed coat is expected.  

† It does not mean that intermediate shiny genotypes have j Asp genotype, because even J Asp genotypes present 
variations in shininess intensity. 

‡ That genotype was not studied, but was inferred.  

 

4.3 Palisade Epidermis Length and Roughness of Seed Coat  

It has been described that dull seed coats present a rough textured surface when compared to the shiny ones 
(Beninger et al., 2000, Lamprecht, 1940). It was clearly shown when cuticle was removed from the seed coat of 
the tester asp BC3 5-593 and the line 5-593 (Beninger et al., 2000). In this study, cuticle was not removed but 
similar pattern was observed (Figure 3). However, the reason for the structural change caused by asp is still 
unclear. In one attempt, seeds were treated with xylol for cuticle removal of the cultivar Shiny Crow (Asp_). 
When not treated with xylol, cuticle was regularly distributed over the seed coat. Treated seeds presented an 
uneven profile, similar to what is naturally observed for dull seed coats. Therefore, Asp could be involved in 
maintaining uniformity of seed coat surface (Bushey et al., 2002).  

Palisade epidermis length was also clearly lower in dull seed coat genotypes than in shiny ones (Table 3, Figure 
4). This may have a role in limiting the amount of anthocyanins accumulated on seed coat. Prior study has shown 
that then asp BC3 was compared to 5-593, the former presented only 55% of delphinidin-3-glycoside, 58% of 
petunidin-3-glycoside and 55% of malvidine-glycoside, the three main kinds of anthocyanins found by HPLC in 
the seed coat (Beninger et al., 2000). Therefore, palisade epidermis length and seed coat roughness degree (rough 
or even) are good variables for Asp phenotyping. However, they require preparation of materials for microscopy.   

4.4 Water Uptake 

Water uptake assays are quicker to perform than microscopy analyses. With the method used here, we found 
Serro Azul Brilhante (shiny seed coat) absorbed low amount of water, the opposite of Serro Azul Fosco (dull 
seed coat) (Figure 5A). The presence of shininess on the seed coat has been associated to low water absorption. 
Using similar methods, Bushey et al. (2000) verified that among five cultivars, Raven (dull seed coat) presented 
the highest percentage of absorption (45%), while Shiny Harblack and Shiny Crow absorbed only around 1%. 
The same work also showed greater loss of anthocyanins in dull (Raven: 93%) than in shiny seeds (Shiny 
Harblack: 51%). Shiny seeds treated with xylol seem to uptake more water than untreated. Regular cuticle 
deposition on the seed coat influences water absorption potential (Bushey et al., 2002), and may be associated to 
Asp.  

These results are consistent with SEM analyses. Higher palisade epidermis thickness and regular cuticle 
deposition on seed coat surface are limiting factors for water entry and distribution. Consequently, imbibition 
and germination are also delayed in shiny seeds, as observed for SAB (data not shown).  

Nevertheless, Puebla-152 and Diamante Negro presented intermediate levels of water imbibitions in the five first 
hours and the values did not differ between those (Figure 5A). This highlights that is not just asp that is involved 
in water absorption, but other loci maybe conditioning it. Besides, SAB and SAF are all landraces with the same 
origin. P-152 and DN, otherwise, were originated from other sources and selected for different purposes. Then, it 
is possible that alleles of one or more genes had been selected, altering the pattern and potential for water 
absorption. It can be reinforced since the tester j BC3 was not different from asp BC3 5-593 (Figure 5A), which 
means it is not just asp that may be involved in water uptake. Besides, water absorption rate could be due the 
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structural organization of the seed coat, not necessarily depending on a specific group of genes but on 
physiological processes. So water uptake seems not to rely only on Asp and cannot be used directly as a 
phenotypic indicator for this trait.  

4.5 Condensed Tannins and Vanillin Test  

All genotypes (SAB, SAF, P-152 and DN) were JJ, so detection of condensed tannins was expected in all 
samples (Figure 5C). However, in j BC3 5-593 condensed tannins were also detected even if in lower amount 
than in 5-593. This could be explained first by the lack of specificity of the method (Hummer & Schreier, 2008), 
since a lot of chemical compounds can interfere with their detection, as kaempherol (Beninger & Hosfield, 1999). 
Otherwise, in the bean cultivar Prim (jj), widely consumed in Chile, proanthocyanidins were not detected even 
with Thin Layer Cromatography (TLC). Samples applied in silica gel plates were colored with vanillin and were 
not stained in red as would be expected for the method (Beninger & Hosfield, 1999).  

Then, here we applied vanillin test and further observation in optic microscope to verify if this method was more 
suitable. Interestingly, weak staining was observed on the palisade epidermis of j BC3 5-593 (Figure 5D), unlike 
for the others J (5-593, SAB, SAF, P-152, DN), which were all strongly red stained. These observations suggest 
histochemical tests and TLC are suitable for a qualitative evaluation of the presence of condensed tannins.  

Despite the amount of condensed tannins was higher in shiny cultivars (5-593, SAB, P-152) (Figure 5C), as 
detected by acid butanol method, it is not possible to associate shininess to those compounds, given that Asp 
maybe involved in structural organization on the seed coat (Beninger et al., 2000). It is possible that other genes 
interacting to J are involved in condensed tannin accumulation on the seed coat. Recent works have suggested an 
oligogenic model for inheritance for such phenols (Caldas & Blair, 2009; Díaz et al., 2010). Moreover, epistatic 
and additive effects for colour genes have been shown (Yuste-Lisbona et al., 2014). However, these models still 
need to be better studied.  

4.6 Segregation Analysis and AFLP Categorization  

Segregation analyses showed that shininess is controlled by a single gene in the crosses evaluated (SAF x SAB; 
P-152 x DN) which is Asp (Table 3). J does not vary between parents and therefore in all progenies. Previous 
reports also showed the expected pattern regarding to Asp gene, as a F2 population derived from BTS (‘Black 
Turtle Soup’) x Peru (Koenig & Gepts, 1989); a F5 generation of the cross Dorado x Xan 176 (Miklas et al., 
2000); and 104 RILs in F7 of the cross Xana x Cornell 49242 (Pérez-Vega et al., 2010). 

Since phenotypic classes were well defined, AFLP procedures were performed in bulks of progenies, to detect 
possible markers associated to seed coat shininess. But no specific fragment was detected even if categories for 
the traits shininess and color were considered (DN x P-152: BLS and BLD; SAB x SAB: BS, BD, GS and GD) 
(Figure 6B and C). UPGMA clustering showed separation among progenies of the cross P-152 x DN but not for 
SAF x SAB.  

4.7 Implications of the Results 

Our results showed different ways to phenotype and determine genotypic classes related to seed coat shininess in 
common bean. We discussed different properties conditioned by the genes Asp and J and how they could be 
distinguished by visual, spectrofotometric, microscopic, biochemical and molecular approaches. Moreover, these 
results have important implications on common bean selection and breeding.  

These results suggest that seeds with dull seed coat are not necessarily absent from proanthocyanidins because 
the dominatn allele of J can be present even if the seed is dull (asp asp). This may be undesirable for commercial 
purposes, since proanthocyanidins are involved in seed hardening (Leakey, 1988) or seed coat darkening during 
storage (Junk-Knievell et al., 2008; Elsadr et al., 2011). Besides, some studies suggest that a high percentage of 
condensed tannins in some animal diets negatively affects digestibility of proteins and carbohydrates. This 
reduces weight gain and nutrient absorption efficiency (Li et al., 1996; Barahona et al., 1997; Barros et al., 2012; 
Lorenz et al., 2014). Legume tannins precipitate proteins and form complexes to iron in gastrointestinal lumen, 
reducing the availability of minerals from the grains (Mira et al., 2002). In common bean cultivars selection, if 
one desires to obtain varieties which produce seeds with small amounts or no condensed tannins, it is necessary 
to make selection on the J locus.  

Nevertheless, recent evidences pointed monomers of proanthocyanidins as beneficial for human health as 
anti-carcinogenic, antioxidant and anti-inflammatory (Beninger & Hosfield, 2003; He et al., 2008; Zhao et al., 
2010; Dzomba et al., 2013). In common bean, not only tannins, but another phenolic compound may even help 
in reducing inflamnation caused by certain diseases such as colitis (Zhang et al., 2014). Based on recent models 
of quantitative inheritance of condensed tannins (Caldas & Blair, 2009), selection could be directed towards low 
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levels of tannins to compensate for health and commercial benefits.  

Another topic of huge concern is cooking time, which is often a reason for rejecting shiny cultivars, since they 
usually take longer to cook properly (Elia et al., 1997). Considering the shiny line P-152 of the present study, 
that absorbed water considerably fast, and the landrace SAB, that almost did not absorbed water, it is likely that 
selection of some other traits is also beneficial for cooking time. Then, not necessarily shiny cultivars are hard to 
cook. Some current examples can be mentioned with the Brazilian cultivars Ouro and Vermelho, which are shiny 
and easily cooked. These ones, then, would be similar to P-152. This highlights once more the importance of 
considering an oligogenic model to explain such variation, so that not only the shiny seed coat may be related to 
cooking time.  

With all those explanation we could not forget the essentiality of the seed coat shininess since it can be a way for 
the seed or the plant to protect itself against insects and pathogens. Insects and pathogen resistance seem to be 
important traits associated to Asp but further work is necessary to explore the genetic and biochemical 
mechanisms involved.  

Therefore, one selecting for pathogens and insects resistance should be looking at the Asp locus while other one, 
interested in digestive properties, could be dealing more with the J locus. Breeders should consider effects of 
both genes for taking decisions on what to select.  

5. Conclusion 
We showed several methods that can be used to phenotype and genotype for seed coat shininess in common bean. 
Visual scoring by comparison to testers previously developed for seed coat genes Asp and J can easily help to 
define the genotype of one cultivar. The L* variable is able to distinguish shiny from dull seed coats, but no 
variation in color should be present. Palisade epidermis layer is a very good indicator of variability introduced by 
Asp, as other works had previously suggested. Water uptake is a fast method to such analyses, but other 
mechanisms beyond of genetics may explain its variation, which make difficult a direct association to seed coat 
shininess. Condensed tannins are more appropriate to phenotype and genotype for the J locus. The vanillin-HCl 
test showed to be a good method to qualitatively trace for the presence of condensed tannins. Such methods are 
suitable to phenotype and genotype populations of common bean and, therefore, select whether or not the shiny 
seed coat should be present.  
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