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Abstract 
Epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic flavonoids in green tea has been shown to 
possess strong antioxidant activities. Oxidative stress causes the defect of retinal pigment epithelial (RPE) cells 
that contribute to several retinal diseases. Several studies have shown that increasing the body’s defenses against 
oxidative stress with specific antioxidants and mineral supplements could preserve the vision. Therefore, the 
purpose of this study was to determine the protective role of EGCG against exogenous reactive oxygen species 
hydrogen peroxide (H2O2)-induced cell death in ARPE-19 cells, human retinal pigment epithelial cell line. 
ARPE-19 cells were pretreated with EGCG in the presence/absence of H2O2. The protective effects of EGCG and 
the underlined mechanisms against H2O2 were evaluated. The present study demonstrated that 400 µM H2O2 
significantly decreased cell viability, increased the accumulation of intracellular reactive oxygen species (ROS) 
and increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive 
cells and chromatin condensed nuclei. In addition, H2O2 induced p53 nuclear translocation, up-regulated Bax and 
down-regulated Bcl-2 expression thereby increased Bax/Bcl-2 ratio. These toxic effects of H2O2 were reversed by 
100 µM EGCG pretreatment. These studies suggest that EGCG protects H2O2-induced cell death in ARPE-19 cells 
by its antioxidant property and attenuation of p53 nuclear translocation. 
Keywords: epigallocatechin-3-gallate (EGCG), oxidative stress, p53, apoptosis, ARPE-19 cells 
1. Introduction 
Epigallocatechin-3-gallate (EGCG), the most abundant (40-60%) component of polyphenolic flavonoids in green 
tea, has been shown to possess a strong and active antioxidant, according to its two triphenolic groups in its 
molecular structure (Singh, Akhtar, & Haqqi, 2010; Weinreb, Mandel, Amit, & Youdim, 2004). EGCG has been 
shown to protect H2O2-induced oxidative stress in various types of cell such as PC12 cells (Koh et al., 2003), 
G93A motorneuron cells (Koh et al., 2004), auditory neurons (Xie, Liu, Zhu, Wu, & Ge, 2004) and INS-1 
insulinoma cells (Kim et al., 2010) through different anti-apoptotic mechanisms.  
It is well established that free hydroxyl radicals generated from excess H2O2 leading cell apoptosis since H2O2 is a 
potent DNA damage inducer (Jornot, Petersen, & Junod, 1998). For intrinsic apoptosis pathway, Bcl-2 family 
proteins are particularly important as they are potent regulators involving in the mitochondria-initiated intrinsic 
apoptosis (Brunelle & Letai, 2009; Sharpe, Arnoult, & Youle, 2004). This family consists of both pro- and 
anti-apoptotic members that perform the opposing effects on mitochondria, including the anti-apoptotic protein 
Bcl-2 and the pro-apoptotic protein Bax (Brunelle & Letai, 2009). Therefore, the ratio of Bax to Bcl-2 serves as a 
rheostat to determine the susceptibility of cells to apoptosis. 
The p53 tumor suppressor protein mediates as a major role in a complex signaling pathway evolved in cellular 
stresses induced onset of apoptosis. Under certain stress conditions, p53 is phosphorylated and is shown to 
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translocate from cytosol and accumulate within the nucleus where it enhances the expression of target apoptotic 
genes, particularly Bax by binding on the promoter of gene (Samuels-Lev et al., 2001). Consequently, Bax forms a 
homodimer and releases cytochrome c from the mitochondria resulting in caspase-9 activation, which 
subsequently activates the effectors, caspase-3 and caspase-7, which are responsible for the dismantling of an 
apoptotic cell (Haupt, Berger, Goldberg, & Haupt, 2003). 
Retinal pigment epithelium (RPE) is a single layer of cuboidal cells that forms the outer blood-retinal barrier. It is 
essential as nutritional or metabolic support for photoreceptor, phagocytosis and degradation of shed 
photoreceptor outer segments (Strauss, 2005). RPE is particularly susceptible to oxidative stress by reactive 
oxygen species (ROS), such as superoxide anion, hydroxyl radical, singlet oxygen, and H2O2, due to its locations 
and functions (Liang & Godley, 2003). Dysfunction of RPE contributes to retinal diseases such as retinitis 
pigmentosa (RP) (Strauss, 2005) and age-related macular degeneration (AMD) (Zarbin, 2004) leading to visual 
impairment. H2O2 has been widely used as the oxidative stress-induced apoptosis model in RPE (Godley, Jin, Guo, 
& Hurst, 2002; Jin, Hurst, & Godley, 2001), and has been shown to mediate apoptosis through p53 dependent 
pathway in several circumstances cells such as human fibroblasts (Youn et al., 2007), glioma cells (Datta, Babbar, 
Srivastava, Sinha, & Chattopadhyay, 2002) and RPE cells (Jin et al., 2001). The present study, therefore, aimed to 
investigate the protective effects of EGCG against H2O2-induced apoptosis in ARPE-19 cells focusing on the 
lineage of p53 dependent pathway. The results help enlighten the underlined protective mechanism of EGCG 
against oxidative stress-induced RPE apoptotic cell death. 
2. Materials and Methods 
2.1 Chemicals 
The mouse monoclonal anti-α-tubulin FITC-conjugated secondary antibody and TO-PRO-3 were obtained from 
Zymed Laboratories Invitrogen (South San Francisco, CA). The rabbit polyclonal anti-Bcl-2, the rabbit 
polyclonal anti-Bax and the mouse monoclonal anti-p53 and rabbit polyclonal anti-phospho-p53 (at serine 15) 
were purchased from Santa Cruz Biotech (Santa Cruz, CA). HRP-conjugated anti-rabbit, anti-mouse antibodies 
and ECL Plus Western Blotting reagent were purchased from Amersham Biosciences (Piscantaway, NJ). 
Ac-DEVD-CHO [caspase-3 inhibitor (aldehyde); Ac-Asp-Glu-Val-Asp-CHO] was purchased from Alexis 
Biochemicals (San Diego, CA, USA). All other chemicals used in this study were obtained from Sigma (St. 
Louis, MO).  
2.2 Cell Culture and Treatment with EGCG, H2O2, and Caspase 3 Inhibitor 
ARPE-19 cells (ATCC, Manassas, VA) have been well characterized and possess differentiated properties similar 
to primary human RPE (Dunn, Aotaki-Keen, Putkey, & Hjelmeland, 1996). Cells were grown in DMEM/F12 
(Gibco, Grand Island, NY) containing 10% Fetal Bovine Serum, 2% L-glutamine and 100 U/mL penicillin, and 
100 μg/mL streptomycin at 37ºC in a humidified atmosphere containing 5% CO2. Cells were divided into normal 
control, EGCG, H2O2, pretreated with EGCG prior H2O2 exposure and Ac-DEVD-CHO caspase-3 inhibitor 
groups. Cells in the control group were incubated under the normal growth conditions. ARPE-19 cells were 
incubated with H2O2 (100, 200, 300, 400 and 500 μM) for dose selection then cells were exposed to the selected 
dose with different periods (0.5, 1, 2, 4 and 6 h). For the EGCG groups, the cells were pre-incubated for 2 h with 
different final concentrations of EGCG (1, 10, 25, 50 and 100 µM) followed by a 6 h incubation with 400 μM 
H2O2. For the Ac-DEVD-CHO caspase-3 inhibitor group, cells were pre-incubated for 1 h with 250 μM 
Ac-DEVD-CHO, and then incubated for an additional 6 h with 400 μM H2O2. 
2.3 Cell Viability Measurement by MTT Assay 
ARPE-19 cells (1×105 cells/well) were seeded and grown in 96-well plates for 24 h. At the designated times, cell 
viability was determined using methylthiazolium bromide (MTT) assay. Briefly, 100 µl of MTT solution (5 
mg/ml) was added to each well and incubated for 4 h at 37ºC in the dark. After incubation, 100 µl of 
dimethylsulfoxide (DMSO) was added to each well to lyse the cells. The absorbance of the sample was 
measured at 490 nm on a Versamax microplate reader using SoftMax Pro 4.8 analysis Molecular Devices 
software (Sunnyvale, CA).  
2.4 Intracellular Reactive Oxygen Species (ROS) Measurement 
The levels of the intracellular ROS was measured by the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) method. 
Cells were grown on a 96 well-plate (1×105 cells/well) for 24 h and then incubated with 10 μM DCFH-DA for 1 h 
at 37°C in the dark. After incubation, DCFH-DA was removed and washed. Cells were then performed 
experiments. At different time periods (0.5, 1, 2, 4, 6 h), the fluorescence of 2′,7′-dichlorofluorescein (DCF) was 
detected at 485 nm excitation and 535 nm emission by a fluorescent plate reader (Wallac 1420 Victor, 
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Perkin-Elmer, Foster City, CA).  
2.5 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay 
Nuclear DNA fragmentation of apoptotic cells was determined using the DeadEnd™ Fluorometric TUNEL 
System (Promega, Madison, WI, USA) following the manufacture’s instruction. ARPE-19 cells were grown on 
Lab-Tek chamber slides (Nunc, Thermo Fisher Scientific, NY) until 95-100% confluence and then were 
performed the experiments. Cells were fixed with 4% methanol-free paraformaldehyde for 25 min at 4°C, washed 
with PBS, permeabilized with 0.2% Triton X-100 for 5 min and then washed. Fixed monolayer cell cultures were 
then covered with 100 μl of equilibration buffer for 10 min, followed with 50 μl of TUNEL reaction mixture 
containing equilibration buffer, nucleotide mix and TdT enzyme for 60 min at 37°C. The reaction was terminated 
by in 2X saline sodium citrate for 15 min at RT and then washed. The cells were then counterstained with Hoechst 
33342 for 10 min in the dark, washed in de-ionized water and mounted with anti-fade solution. TUNEL-positive 
cells (green fluorescence) were observed by a fluorescent microscope (Nikon E600). Percentage of 
TUNEL-positive cells was averaged from a total of 500 cells from 3 independent slides. 
2.6 Western Blot Analysis 
Cells were grown in 6 well plates until 95-100% confluence then were performed experiments. Cells were lysed 
in lysis buffer [3 mM MgCl2, 1 mM EGTA, 10 mM Na Orthovanadate, 10 mM Na Pyrophosphate, 50 mM NaF, 
1 mM protease inhibitor (Roche)] for 30 min. The lysate was collected in to a 1.5 ml microfuge tube, centrifuged 
at 12000 g for 15 min. The supernatant was then kept at -80°C until used. Protein concentration was determined 
using BCATM Protein Assay Kit (Pierce, Rockford, IL). Twenty micrograms of protein was mixed with loading 
buffer and run in a 15% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) at 100 V. The proteins were 
then transferred onto a nitrocellulose membrane and blocked with 5% nonfat dry milk in 1X Tris-buffered saline 
(20 mM Tris‐HCl, pH 7.5, 150 mM NaCl containing 0.1% Tween 20) for 2 h. Membranes were incubated with 
primary then secondary antibodies and developed using the Amersham Biosciences chemiluminescent ECL kit 
and Hyperfilm ECL (Piscataway, NJ). Primary antibodies used in this study were rabbit anti-Bcl-2, rabbit 
anti-Bax, rabbit anti-phospho-p53 (at serine 15) and mouse anti α-tubulin. HRP conjugated anti-rabbit and HRP 
conjugated anti-mouse IgG were used as secondary antibodies. The band density was normalized by α-tubulin.  
2.7 Immunocytochemistry 
To investigate the nuclear translocation of p53, immunocytochemistry was performed using anti-p53 antibody as 
a primary antibody. Cells were grown to 95-100% confluence on round coverslips then performed experiments. 
Cells were fixed in 4% paraformaldehyde for 5 min, blocked with 1% normal goat serum in 0.05% Triton X-100 
for 30 min, then incubated overnight at 4°C with the diluted primary antibody: anti-p53 (1:500). After washed 
with PBS-Tween, cells were incubated with FITC-conjugated secondary antibody for 1 h at 37°C. Nuclei of cells 
were counterstained with TO-PRO-3. Immunofluorescence was visualized under a confocal laser-scanning 
microscope (FV 1000, Olympus, Tokyo, Japan). Negative controls were cells omitted anti-p53 antibody. 
2.8 Statistical Analysis 
Data was presented as means ± SEM from three or more independent experiments. Significance was accessed by 
one way analysis of variance (ANOVA) followed by a Tukey multiple comparison test in the GraphPad Prism 
program version 5 (GraphPad software, San Diego, CA). Differences with p-values of less than 0.05 were 
considered statistically significant. 
3. Results 
3.1 Effect of H2O2, EGCG, and Caspase 3 Inhibitor on ARPE-19 Cell Viability    
The viability of ARPE-19 cells treated with 100, 200, 300, 400 and 500 µM H2O2 at 6 h were 80.4 ± 3.0%, 65.7 
± 8.0%, 59.8 ± 3.8%, 25.5 ± 4.4% and 20.1 ± 4.1% of the control value, respectively (Figure 1A). Moreover, 
cells treated with 400 µM H2O2 at 0.5, 2, 4, and 6 h showed time-dependent decrease of cell viability (Figure 1B). 
Cell viability was dramatically decreased to 25.5% (< 50%) of the control after treating the cells with 400 µM 
H2O2 at 6 h. Therefore, the 400 µM H2O2 for 6 h incubation was a suitable condition as oxidant-induced 
oxidative stress in subsequent experiments. 
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H2O2-induced ARPE cell death. These findings might support the previous studies about cytoprotective effect of 
EGCG against H2O2-induced oxidative stress in PC12 cells (Koh et al., 2003), G93A motorneuron cells (Koh et al., 
2004), auditory neurons (Xie et al., 2004) and INS-1 insulinoma cells (Kim et al., 2010). In vivo, EGCG had highly 
potent activities in preventing striatal dopamine depletion and substantia nigra dopaminergic neuron loss caused 
by N-methyl-4- phenyl-1,2,3,6 tetrahydropyridine (MPTP) in mice (Levites, Weinreb, Maor, Youdim, & Mandel, 
2001). Furthermore, EGCG exerted the protective effects against amyloid beta (Aβ) toxicity in PC12, SH-SHY5Y 
and mice hippocampus (Levites, Amit, Mandel, & Youdim, 2003). However, the previous study reported that 
EGCG did not protect against H2O2-induced oxidative stress in ARPE-19 cells (Hanneken, Lin, Johnson, & Maher, 
2006), a finding which was not consistent with our study. This disparity may be due to differences in experimental 
procedure; in their studies ARPE-19 cells were exposed to H2O2 for a period of time before adding the EGCG, cell 
density and concentrations of EGCG used in their experiments were lower.  
ROS is known as a second messenger that can activate the transduction pathways leading to apoptosis (Son et al., 
2011). EGCG is regarded as a potent scavenger of free radicals including singlet oxygen, superoxide anions, 
hydroxyl radicals, and peroxy radicals based on stereochemistry, a trihydroxyl group on the B ring and the gallate 
moiety at the 3′ position in the C ring (Nanjo et al., 1996). In this current study, EGCG pretreatment decreased an 
intracellular accumulation of ROS in ARPE-19 cells injured by oxidant stress H2O2 thus the internalized EGCG 
may act as a scavenger of intracellular ROS.  
We also demonstrated that ARPE-19 cells treated with H2O2 underwent apoptotic cell death and the caspase 3 
inhibitor, Ac-DEVD-CHO, attenuated H2O2-induced the decrease of cell viability. These findings were consistent 
with the previous studies that H2O2-induced apoptosis in rat lens epithelial cell (Yao et al., 2003), chicken 
osteocytes (Kikuyama et al., 2002) and in human RPE cells (Cai, Wu, Nelson, Sternberg, & Jones, 1999; Jin et al., 
2001). Pretreating the ARPE-19 cells with EGCG prior to H2O2 showed the significant reduction of the number of 
cells containing condensed nuclei and TUNEL positive cells. These findings demonstrated that EGCG showed a 
protective role in H2O2-induced apoptosis in ARPE-19 cells. Previous studies were reported that EGCG also has 
protective effects against apoptosis induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in 
SH-SY5Y cells (Guo, Bezard, & Zhao, 2005). It has also been reported that certain flavanoids including EGCG 
protected RPE cells from oxidative stress induce cell death (Hanneken et al., 2006) by inducing the expression of 
transcription factor Nrf2 (Nuclear factor-erythroid 2-related factor-2) and phase 2 enzyme heme-oxygenase, 
suggesting that EGCG afforded protection via its antioxidant properties. However, a direct action of EGCG on the 
apoptotic pathway in ARPE-19 cells has not been demonstrated. Therefore, our study determined the 
anti-apoptotic property of EGCG against H2O2-induced ARPE-19 cell death. Previous study reported that H2O2 
caused mitochondrial DNA damage and promoted apoptosis through p53 dependent pathway with increased 
caspase-3 activity, decreased expression of Bcl-2 and increased expression of p53 protein in RPE (Jin et al., 2001). 
In the present study, we showed that treatment of ARPE-19 cells with H2O2 induced the p53 tumor suppressor 
protein migration into the cell nuclei, then followed by cell apoptosis, which supported the previous evidence that 
p53 may play a pivotal role in H2O2 induced apoptosis of ARPE-19. Moreover, pretreatment cells with EGCG 
prior to exposure with H2O2 could prevent p53 nuclear translocation. This finding suggested that EGCG may 
protect the ARPE-19 cell from apoptosis by interfering p53 pathway. Recently, EGCG also protected H9c2 
cardiomyoblasts via the inhibition of p53 (Sheng, Gu, Xie, Zhou, & Guo, 2010). Moreover, oxidized LDL-induced 
apoptosis in endothelial cells by increasing p53 activity, the increase of which was strikingly downregulated by 
EGCG (Choi et al., 2008). EGCG treatment also decreased UVB- induced keratinocyte cytotoxicity and apoptosis 
via inhibition the mRNA expressions of apoptosis-regulatory gene p53 (Luo et al., 2006). 
The tumor suppressor protein p53 is considered to be a major player in the apoptotic response to genotoxins. 
Therefore, we were interested in elucidating the role of EGCG on p53-dependent pathway for the induction of 
apoptosis. The phosphorylation of p-53 plays a critical role in the activation and up-regulation of p53 during 
cellular stress (Haupt et al., 2003). During cell stress, p53 translocates to the nucleus and induces pro-apoptotic 
gene expression and blocks anti-apoptotic gene expression (Miyashita & Reed, 1995). This leads to the disruption 
of the balance between pro- and anti-apoptotic proteins. Members of the Bcl-2 family are the mediators of cell 
survival and apoptosis (Brunelle & Letai, 2009). The interaction between the pro-apoptotic and anti-apoptotic 
Bcl-2 family members can alter the permeability of mitochondrial membrane and release cytochrome c then 
activate caspase cascade (Brunelle & Letai, 2009). To further investigate the downstream involvement of apoptotic 
proteins in p53 signaling pathway, the present study also investigated the expression of Bcl-2 family proteins; one 
was a pro-apoptotic protein, Bax and the other was anti-apoptotic protein, Bcl-2. Our study showed that H2O2 
up-regulated Bax and down-regulated Bcl-2 expression thereby increase in Bax: Bcl-2 ratio which would lead to 
the caspase 3 activation (Jin et al., 2001). These results agreed with the previous studies that H2O2 induced 
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