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By contrast, limited information was known in the proanthocyanidin branch. In 2008, Pang et al., (2008) isolated 
a GT gene, UGT72L1. It was shown to be induced in Medicago truncatula hairy roots in parallel with PA 
biosynthesis, and could specifically transfer sugar units to epicatechin (Pang et al., 2008). Khater et al. (2012) 
also isolated three PA-related GTs, which were strongly expressed at the beginning of the green stage and 
decreased thereafter until reaching very low values after grape veraison. However, the exact substrates, in the 
forms of glycosylated or not, which were finally condensed to PA (Figure 1B) were still unclear. Here, we briefly 
introduced our newly isolated RuGT1, which might also be a proanthocyanidin-related glycosyltransferase in 
blackberry fruits, thus further our standing in the PA biosynthesis pathway. 

2. Method 

2.1 Plant Materials 

The plant material used in the current study was collected from the scientific research base of Sichuan 
Agricultural University. Fruits of blackberry cultivar ‘Arapaho’ at different maturation stage as indicated by 
Chen et al (2012) were used for DNA and RNA isolation. Followed the procedure described by Lodhi et al., 
(1994) and Jones et al., (1997), pure and integrate nucleic acids were obtained and assessed by gel electrophosis 
and UV spectrum scanning. 

2.2 Gene Isolation 

A pair of degenerate primers was designed referring to the GTs genes in the Rosacea family: GT-F: 5’-CCA GCC 
ACA GTG AGT CAC A-3’ and GT-R: GAC GCG TTN TTG TGG TNT TCG. Genomic DNA was first used to 
amplify the candidate GTs in blackberry. Standard PCR reaction conditions were used to amplify the responding 
gene, including 1 × super PCR mastermix (Takara, Dalian, China), 10 μM of each primer and 10 ng DNA or 
cDNA template. The expected amplicons were cut and cloned into pMD19-T vetor (Takara, Dalian, China), 
sequenced in an ABI 3730 sequencing system (Applied Biosysytems, USA). The obtained results were 
confirmed by BlastN or BlastX against nr or pdb database at NCBI to get at least 75% similarities to the released 
corresponding GTs. Finally, primers for quantitative PCR (qPCR) were picked out in primer express 3.0. 

2.3 Real-time qPCR for Expression Analysis 

First strand cDNA was synthesized by using 1μg total RNA and 1μl Revert-aid reverse transcriptase (Fermaters, 
USA) following the protocol of the supplier. qPCR primers qGT-F: 5’-GGA GCT GAA GAA AAG ACT CCA 
GAA-3’ and QGT-R: 5’-ACT GGC CGG ACC AGA TGT AG-3’ were picked out in primer express 3.0 avoiding 
cross homology to other sequences in the blackberry EST library (Lewers et al., 2008). Expression analysis of 
the RuGT was done by real-time qPCR, using SYBR green method on a CFX96 real-time cycler (BIO-RAD). 
Each PCR reaction (20μl) contained 0.3 μM primer (each), 1 μl cDNA (diluted 1:5), and 1 × Takara 
SYBR Premix. The thermal cycling conditions were 95℃ 30s followed by 95℃ for 5s, 60℃ for 30s for 40 
cycles, followed by a melt cycle from 50℃ to 96℃. With all cDNAs used, the primer set gave single PCR 
products, which were verified by determining the melting curves for the products at the end of each run. The 
efficiency of the primers was tested in preliminary experiments with dilutions of the cDNA and amplified both 
the gene of interest and internal control beta-actin gene (Forward 5’-TGA CAA TGG GAC TGG AAT GGT-3’, 
Reverse 5’- GCC CTG GGA GCA TCA TCA-3’). Samples were considered positive if they had a cycle 
threshold (Ct) value < 40 and characteristic amplification plots. All samples were measured triplicate. Every run 
included the β-actin gene as an internal control for each sample. Gene expression differences were presented as 
2–ΔΔCT (ΔCT=CT target-CT actin) (Schmittgen and Livak., 2008). 

3. Results 

RuGT1 fragment was amplified via PCR based on the conserved domain of Rosacea GTs amino acids. It was 
796 bp in length, containing an 84 bp intron, encoding 238 amino acids. Further screening of other blackberry 
cDNA libraries (Lewers et al., 2008) did not came up with any EST sequences with significant similarities. Blast 
analysis revealed the relationship between RuGT1 and other GTs as well as biochemically characterized plant 
glycosyltransferases. RuGT1 was most similar to the UDP-Glucose: flavonol 3-glycosyltransferase from Rosa 
hybrida cultivar (max identity 82%). Similarities to glycosyltransferases from Vitis vinifera (Accession No. xp 
002271236), Aralia cordata (BAD06514.1), and Medicago truncatula (XP 003610163) were also found, all of 
which transfer either UDP-Glc or UDP-Gal to anthocyanidins or flavonols. Conserved domain search (Figure 2) 
showed that the RuGT1 was a typical glycosyltransferase GTB type superfamily member, with signature amino 
acids. 
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