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Abstract 
Nematodes cause great damage to soybean crops in Paraguay. Studies have investigated correlations between 
phytonematodes and soil chemical and physical properties, but little is known about correlations with the 
nutritional status of soybean crops. This study aimed to assess correlations between Pratylenchus, Meloidogyne, 
soil chemical properties, soil texture, and the nutritional status of soybean. The experiment was carried out in 
Paraguay in areas of commercial soybean cultivation infested with nematodes, totaling 83 collection sites. 
Analyses of nematodes in soil and root samples, chemical characterization of soil acidity, fertility, and texture, 
and chemical characterization of soybean leaves were performed, totaling 36 variables. Data were subjected to 
principal component analysis. Soil Al3+ favored the development of Pratylenchus populations. Organic carbon 
negatively influenced Meloidogyne. K+ and Mg2+ negatively affected Pratylenchus and Meloidogyne, 
respectively. Pratylenchus and Meloidogyne correlated negatively with clay contents. In sandy soils, there was a 
negative correlation between Pratylenchus and sand content. Pratylenchus and Meloidogyne led to an increase in 
foliar Ca and a decrease in foliar P. Soil fertility management can be used as part of the integrated management 
of Pratylenchus and Meloidogyne. It is worth mentioning that, in field studies, the complexity of biotic and 
abiotic factors in the crop system may contribute to diverging results, making it difficult to establish a single 
response pattern, especially when some factors affect others.  
Keywords: root-knot nematode, lesion nematode, soil fertility, leaf chemistry 

1. Introduction 
The yield of soybean is influenced by interactions between several factors, including plant genotype, climate 
conditions, biotic stress (diseases and pests), and soil chemical and physical properties (Hansel et al., 2021). 
Plant-parasitic nematodes are important biotic factors in soybean production, causing losses of up to 5.3 billion 
dollars in Brazil (Syngenta et al., 2022). Among the nematodes able to infect soybean, some of the most 
damaging species are members of the genera Pratylenchus and Meloidogyne, which have a wide range of hosts 
and occur in virtually all cropping areas (Favoreto et al., 2019). The lesion nematode, Pratylenchus brachyurus, 
is a migrating endoparasite that penetrates and moves within host roots, rupturing cortical tissues and producing 
symptoms of necrosis (Favoreto et al., 2019). Meloidogyne, commonly known as root-knot nematode, is the 
genus of greatest economic importance worldwide (Ferraz & Brown, 2016). These sedentary endoparasites 
induce abnormal root growth and deformation, leading to the formation of nodules known as galls (Jones et al., 
2013). Both parasites impair water and nutrient absorption by host roots, causing stunted growth and, in some 
cases, even plant death (Favoreto et al., 2019).  

Knowledge of soil physical and chemical properties allows to understand the dynamics of nutrient release and 
uptake, water permeability, and retention capacity. Assessment of nutrient levels in soybean leaf tissues serves to 
gain insight into the crop’s productive potential (Oliveira Junior et al., 2020). Previous studies investigated 
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associations of Pratylenchus and Meloidogyne with soil physical (Galbieri et al., 2016; Noronha et al., 2020; Leiva 
et al., 2020; Dias-Arieira et al., 2021) and chemical properties (Guzmán, 2008; Leiva et al., 2020; Noronha et al., 
2020; Dias-Arieira et al., 2021). Pratylenchus is reported to correlate positively with sandy (Leiva et al., 2020; 
Dias-Arieira et al., 2021) and clay sandy soils (Gallardo et al., 2015). Findings regarding organic matter and soil 
pH are not conclusive, with reports of negative (Leiva et al., 2020; Dias-Arieira et al., 2021) and positive 
correlations between Pratylenchus and organic matter (Franchini et al., 2018; Noronha et al., 2020) as well as 
negative (Osseni et al., 1997) and positive correlations between the nematode and soil pH (Noronha et al., 2020). 
Meloidogyne is consistently associated with sandy soils (Guzmán et al., 2008; Galbieri et al., 2016; Noronha et al., 
2020). The species M. incognita, M. javanica, M. arenaria, and M. hapla show a negative correlation with soil 
organic matter (Guzmán et al., 2008). Research suggests that nematode genus is not significantly correlated with 
soil pH (Guzmán et al., 2008). Furthermore, soil pH does not seem to interfere with nematode development or 
penetration in host roots (Melakeberhan et al., 2004), although a recent study found a positive relationship 
(Noronha et al., 2020). 

Investigations on soil nutrients showed that nitrogen (N) and phosphorus (P) may directly influence nematode 
abundance, due to a decrease in the diversity of plant-parasitic as well as bacteriophagus and fungivorous 
nematode genera when these nutrients are found in lower concentrations (Nisa et al., 2021). However, chemical 
phosphorus fertilizer (P2O5) was reported to increase the number of second-stage juveniles (J2) of M. javanica in 
soil (Hemmati & Saeedizadeh, 2020).  

Despite an extensive number of studies, there is little information available on the relationship between nematodes 
and the nutritional status of soybean. Available studies focus primarily on root-knot nematodes (Carneiro et al., 
2002). This study aimed to assess correlations between nematodes of the genera Pratylenchus and Meloidogyne, 
soil chemical properties, soil texture, and the nutritional status of soybean crops in naturally infested fields in 
Paraguay.  

2. Method 
The study was carried out through collections performed at the major areas of grain production in Paraguay (MAG, 
2014), more specifically in departments located in the northern (Amambay), eastern (Canindeyú and Alto Paraná), 
and southern (Itapúa) agroecological regions of eastern Paraguay. These regions are characterized by diverse 
climates: humid mesothermal climate in the North, humid mesothermal forest climate in the East, and hot humid 
temperate climate in the South. The average annual rainfall in all three regions is 1600 mm (MAG, 2014). Soils 
have sandstone or basalt as parent materials and are classified as Rhodic Kandiudox Oxisol (Latosol) and Rhodic 
Paleudult Ultisol (Nitosol) (Santos et al., 2018). 

Samples were collected from soybean production areas previously identified to be infested with plant-parasitic 
nematodes. A total of 83 collection sites were sampled: 44 in Amambay, 36 in Canindeyú, 2 in Alto Paraná, and 1 
in Itapúa. At each collection site, a sample consisting of at least four subsamples was collected when soybean crops 
were between R1 and R4 stages. A shovel and bucket were used for the collection of soil and root samples for 
nematode analysis. About 1 kg of soil was collected from around the roots of soybean plants at 0-20 cm depth, as 
well as about 30 g of root material, with care to include secondary roots.  

For analysis, soil samples were homogenized and a 200 cm3 aliquot was subjected to nematode extraction (Jenkins, 
1964). Roots were divided into 10 g fragments, ground in a blender, and centrifuged in sucrose solution (Coolen & 
D’Herde, 1972). Subsequently, nematodes were identified at the genus level and quantified in a Peters’ chamber 
under an optical microscope at 10× magnification. 

Sampling for analysis of soil chemical parameters (acidity and fertility) was carried out at the same time and site of 
sample collection for nematode analysis but from between crop rows. Soil samples were collected using open 
tubular manual sampler at 0-20 cm depth. Soil chemical parameters were determined by methods described in Raij 
et al. (1997). Texture analysis was performed using 20 g of soil according to the modified method of Camargo et al. 
(1986).  

The results were used to calculate sum of bases (SB), base saturation (BS), total cation-exchange capacity (TCEC), 
effective cation-exchange capacity (ECEC), and Al saturation (Teixeira et al., 2017). Potential acidity (H + Al) 
was estimated using a pH SMP correlation curve (Steiner et al., 2009).  

Nutrient analysis of soybean: leaves were collected at the same time of sample collection for nematode analysis. 
Each sample consisted of at least 35 newly mature trifoliate leaves without the petiole, corresponding to the third 
and fourth leaves from the apex (Malavolta et al., 1997). Nitrogen was quantified by the semi-micro-Kjeldahl 
method (Kjeldahl, 1883); P by the metavanadate colorimetric method; K+, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, and 
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Table 1. Minimum, mean, and maximum values of chemical properties of sandy and clay soils analyzed in the 
study 

Value pH (CaCl2) Al H + Al OC OM BS Al saturation SB ECEC TCEC 

-- cmolc dm-3 -- g dm-3 ---------------- % ---------------- ---------- cmolc dm-3 -----------

Sandy soils 

Min 4.05 0.00 0.22 7.20 1.24 8.43 0.00 0.72 1.42 3.40 

Mean 5.26 0.07 3.55 13.98 2.41 46.18 4.40 2.69 2.76 6.24 

Max 6.97 0.70 7.82 28.56 4.92 96.64 49.30 6.48 6.48 8.54 

Clay soils 

Min 4.60 0.00 0.22 17.52 3.02 41.88 0.00 4.73 4.99 11.29 

Mean 5.49 0.02 4.30 29.89 5.15 70.55 0.28 10.61 10.63 14.92 

Max 7.18 0.26 7.77 55.44 9.56 98.47 5.21 17.80 17.80 21.92 

Value P S K Ca Mg B Cu Fe Mn Zn Clay 

--- mg dm-3 --- -------- cmolc dm-3 -------- ------------------------- mg dm-3 ------------------------- -- g kg-1 --

Sandy soils 

Min 7.63 1.59 0.11 0.30 0.21 0.27 0.36 26.85 4.26 0.24 44 

Mean 29.19 3.29 0.23 1.82 0.65 0.44 1.00 199.68 48.24 1.62 82 

Max 107.4 5.56 0.42 5.53 0.99 0.72 2.33 517.20 160.44 4.17 110 

Clay soils 

Min 5.27 1.87 0.16 3.20 0.96 0.43 2.28 16.87 64.15 2.03 371 

Mean 18.91 12.34 0.70 8.01 1.90 0.79 12.64 57.37 206.78 8.24 550 

Max 54.90 44.53 1.41 14.56 4.21 1.71 38.16 154.80 419.40 24.84 673 

Note. OC, organic carbon; OM, organic matter; SB, sum of bases; BS, base saturation; ECEC, effective 
cation-exchange capacity; TCEC, total cation-exchange capacity. 

 
3.1 PCA of Pratylenchus, Meloidogyne, Texture, and Soil Chemical Properties 

PCA of Pratylenchus population and soil chemical attributes revealed that, in sandy soils, there was a weak 
positive correlation between Pratylenchus and pH SMP as well as a weak negative correlation between the 
nematode and OC, TCEC, and H + Al (Figure 2a). In clay soils, there was a strong positive correlation between 
Pratylenchus and Al3+ and a weak correlation with H + Al and Al saturation, as well as a weak negative 
correlation between the nematode and pH SMP and pH CaCl2 (Figure 2b). 

In sandy soils, a weak negative correlation was observed between Meloidogyne and TCEC and OC (Figure 2c). 
Similarly, in clay soils, there was a negative but strong correlation between Meloidogyne and OC, as well as a 
weak negative correlation of the nematode with TCEC, ECEC, and SB (Figure 2d). 
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values in all soils, TCEC and Mg2+, which did not have high values, and BO3
3-, which ranged from medium to very 

high in sandy soils. In clay soils, on the other hand, fertility variables were found to be high. We observed high or 
very high OC and ECEC levels. TCEC, pH CaCl2, Ca2+, and Mg2+ ranged from medium to high. In clay soils, all 
micronutrients were identified at high or very high levels (Table 1). 

The positive correlation between Pratylenchus and soil pH and the negative correlation between the nematode 
and OC in sandy soils (Figure 2a) disagree with previous research (Franchini et al., 2014). However, one study 
also observed a negative relationship between OC and the lesion nematode (Dias-Arieira et al., 2021), suggesting 
a possible suppressive effect of organic compounds on phytonematodes, in addition to a beneficial effect of OC 
on the growth of nematode-antagonistic microorganisms. In clay soils, the positive relationship of Pratylenchus 
with Al3+, H + Al, and Al saturation, as well as the negative relationship between the nematode and pH CaCl2 
and pH SMP (Figure 2a), can be attributed to the fact that Pratylenchus populations are generally associated with 
poor, acidic soils. These findings corroborate those of previous studies showing the correlation between soil H + 
Al and P. brachyurus in soybean roots (Franchini et al., 2014) and the negative correlation between nematodes 
and soil pH (Duddigan et al., 2021).  

Given that OC can be used as an estimate of soil organic matter (Motta & Pauletti, 2017), our results for 
Meloidogyne (Figure 2c) agree with those of Guzmán et al. (2008), who observed a negative relationship 
between root-knot nematodes and soil organic matter content. As previously discussed for Pratylenchus, this 
relationship can be explained by the release of toxic compounds during organic matter decomposition and the 
increase in soil biological activity (Graham & Strauss, 2021). These findings allow us to infer that conservation 
practices that increase soil organic matter may contribute to the biological control of nematodes by increasing 
populations of antagonistic microorganisms that are native to the environment. 

Soil acidity and fertility properties showed similar correlations in the PCAs of nematode genera and soil types. 
There were positive correlations between pH CaCl2 and pH SMP, OC and TCEC, ECEC and SB, and Al3+ and Al 
saturation. pH SMP correlated negatively with H + Al. The negative relationship between H + Al and pH SMP 
was expected, given that the estimation of potential acidity is based on the correlation between both values, 
which are negatively related (Steiner et al., 2009). By contrast, ECEC is positively associated with BS, given that 
ECEC is calculated as the sum of soil and aluminum bases (Teixeira et al., 2017). Furthermore, the low Al 
content of the study soils might have potentiated this effect, as argued by Motta and Pauletti (2017). TCEC 
correlates with OC because organic matter promotes an increase in the soil colloidal system, consequently 
increasing TCEC (Malavolta, 2006; García et al., 2018). 

In sandy soils, there was a negative correlation between Pratylenchus and sand content (Figure 3a), and, in clay 
soils, the nematode was negatively associated with clay content (Figure 3b). Previous research reported a 
positive relationship between Pratylenchus and sandy soils (Leiva et al., 2020; Dias-Arieira et al., 2021) and clay 
sandy soils (Gallardo et al., 2015). In fact, studies have shown that sandy soils favor Pratylenchus populations 
because of the presence of macropores, which improve oxygenation and reduce waterlogging (Leiva et al., 2020). 
However, this relationship goes beyond soil physical characteristics, as sandy soils generally have limitations 
regarding organic matter accumulation, porosity, and water retention, factors that may influence nematode 
populations (Galbieri et al., 2016). The contrasting results indicate that sand content is not necessarily the 
determining factor for nematode prevalence and that adequate soil management may help maintain nematode 
population levels below the threshold of economic damage. 

Different from our findings, the literature has numerous reports of positive correlations between root-knot 
nematodes and sandy soils (Guzmán et al., 2008; Galbieri et al., 2016; Noronha et al., 2020). However, as 
previously mentioned, other factors might have exerted a greater effect on nematode population, mitigating the 
influence of soil texture. Thus, texture was considered an imperfect quantitative indicator of nematode 
populations, given that soils of the same texture can vary in structure, porosity, organic matter content, and water 
retention capacity, influencing nematode movement and development as well as soil microbial populations 
(Galbieri et al., 2016).  

Regarding soil macronutrients, Pratylenchus had a weak positive correlation with Mg2+ and a weak negative 
correlation with PO4

3- in sandy soils (Figure 4a). These results disagree with a study demonstrating a strong 
negative relationship between the nematode and Mg2+ in sandy soils (Dias-Arieira et al., 2021). It is known that 
liming (addition of Ca2+ and Mg2+) promotes a linear decrease in nematode populations; that is, high lime rates 
contribute to reducing Pratylenchus populations (Debiasi et al., 2018). This result further supports that various 
factors associated with the crop system may influence nematode populations, not depending exclusively on the 
content of a particular nutrient. 
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A negative correlation between P and nematode population was previously reported (Noronha et al., 2020). Such 
a relationship can be attributed to the benefits of P to the nutritional balance of soybean, contributing to disease 
resistance, increasing vigor and the speed of tissue maturation, and shortening the host susceptibility period 
(Bedendo et al., 2018). In clay soils, a strong negative correlation with K was observed (Figure 4b), as 
previously reported by Leiva et al. (2020). It is known that K+ may hinder the establishment of pathogens in host 
roots, promoting wound healing in plants and decreasing fungi and bacteria penetration (Bedendo et al., 2018). 
The results of this study indicate a possible suppressive effect of the nutrient on lesion nematodes, added to the 
effect of K on soybean growth, development, and resistance to abiotic and biotic stresses (Hansel et al., 2021). 

In sandy and clay soils, the correlations of Meloidogyne with Ca2+ (Figure 6c) and with S (Figure 6d) were in 
accordance with the results of Dias-Arieira et al. (2021), who described a weak positive correlation with Ca2+ 
and a weak negative correlation with S. There is evidence that S deposition may alter the composition of 
nematode communities (Zhang et al., 2021), explaining the observed negative correlations.  

Pratylenchus had a negative correlation with the micronutrient BO3
3- in sandy soils and a positive correlation 

with Fe2+ in clay soils (Figures 7a and 7b). In sandy soils, B levels were medium to very high, indicating a 
negative effect of the nutrient on Pratylenchus, as observed in previous studies on other genera of plant-parasitic 
nematodes (Couto et al., 2016; El-Batal et al., 2019). B is associated with the synthesis of lignin, a molecule that 
increases the rigidity of plant cell walls, especially in adventitious roots (Malavolta, 2006). As a result, nematode 
penetration, movement, and reproduction are negatively affected. 

The negative correlation of Pratylenchus with micronutrients in clay soils (Figures 7c and 7d) differs from 
literature reports (Dias-Arieira et al., 2021). High Fe2+ levels were shown to increase the severity of soil 
pathogens, including Fusarium and Verticillium (Zambolim et al., 2005). It is possible that pathogens had a high 
use of Fe2+, reducing the availability of the nutrient to plants, thereby negatively affecting phenol and lignin 
synthesis (Malavolta, 2006). 

For Meloidogyne, there was a positive correlation with BO3
3- and Cu2+ in sandy soils (Figure 5c) and a negative 

relationship with Mn2+ in clay soils (Figure 5d). Because of the complexity of soil activities, it is difficult to 
establish the exact role of these elements in plant-nutrient-nematode relationships. Thus, studies under controlled 
conditions should be conducted to elucidate such correlations.  

The results of PCA for Pratylenchus, Meloidogyne, and foliar macronutrients agree with reports showing that 
plants parasitized by nematodes have reduced nutrient absorption and accumulation (Melakeberhan et al., 1988; 
Jones et al., 2013; Ferraz & Brown, 2016). Such an effect is potentiated by the negative correlations between 
nematodes and P (sandy soils), N, K, and S (clay soils) (Figures 6a and 6b).  

Of note, there was a weak positive correlation between nematodes and leaf Ca content. It is hypothesized that this 
was a response of plants to oxidative stress generated by nematode parasitism. Ca is related to the protein 
calmodulin, which, under abiotic water stress (Hansel et al., 2021) and disease-related biotic stress (Bedendo et 
al., 2018), acts by stimulating root growth. Thus, calmodulin synthesis might have been a defense mechanism in 
response to nematode infection. Furthermore, an increase in Ca in soybean shoots was previously reported in 
plants infected with Meloidogyne (Carneiro et al., 2002). 

Few studies have investigated correlations between nematodes and micronutrient absorption and accumulation. 
The results of PCA for Pratylenchus and foliar micronutrients confirm that the nematode can compromise 
micronutrient absorption by plants, possibly affecting several physiological processes. Cu, Mn, and Fe, some of 
the most affected micronutrients, are essential for numerous physiological processes, including electron transport, 
protein and carbohydrate metabolism, nitrogen fixation, and oxidation-reduction reactions (Furlani, 2004; 
Benton, 2012).  

5. Conclusions 
In clay soils, Al levels favored Pratylenchus, whereas OC levels negatively affected Meloidogyne. K negatively 
affected Pratylenchus, and Mg negatively affected Meloidogyne. High levels of soil Mn2+ adversely affected 
Meloidogyne.  

Pratylenchus positively influenced foliar Ca in both types of soils, and Meloidogyne had the same effect in sandy 
soils. Similarly, Pratylenchus increased Fe absorption in clay soils and Meloidogyne increased that of B in sandy 
soils. 

It is worth mentioning that, in field studies, the complexity of biotic and abiotic factors in the crop system may 
contribute to diverging results, making it difficult to establish a single response pattern, especially when some 
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factors affect others. In this research, we chose to group the data according to soil type (sandy and clay); 
however, other intrinsic characteristics of the study sites might have directly affected the results. 
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