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Abstract 

This study was carried out in Cherfech Tunisia, at the experimental station of the National Research Institute of 
Rural Engineering, Water and Forests (INRGREF) during the growing season 2015. The main objectives are 
quantifying and valuing the Water consumption (WC) and Water Use Efficiency of quinoa (Chenopodium quinoa 
Willd.), under saline water irrigation at different concentrations (T0 = 1.2 dS m-1, T1 = 9.2 dS m-1 and T2 = 18 dS 
m-1). The TDM decreased from 6.7 to 13.4% due to the increase in the salt concentration of the irrigation water 
from 9.2 to 18 dS m-1. A reduction of 9.8 to 12.6% was marked for treatments T1 and T2. Also, the WUE 
PR-anthesis has registered a decrease of 8 and 12.5% respectively for T1 (WUEPR = 10.3 kg m-3) and T2 (WUEPR 
= 9.8 kg m-3) compared with the control T0 (WUEPR =11.2 kg m-3). However, irrigation water salinity showed no 
effect on the WUE post-anthesis T0 and T1 (WUEPS = 3 kg m-3). Nevertheless, a decrease about 15% was 
recorded in the T2 (WUEPS = 2.5 kg m-3). At harvest, the highest, WUETDM (5.43 kg m-3) was recorded under T0. 
However, the lowest WUETDM (5 kg m-3) was marked under T2; a decline of 7.9% was marked. Besides, the 
uppermost WUEGY (2.09 kg m-3) was recorded under T0. However, the smallest amount of WUEGY (1.1 kg m-3) 
was recorded under T2. A lessen of 47.4% was manifested on WUEGY due to the height reduction on yield in the 
T2.  

Keywords: irrigation saline water, water use, water use efficiency, quinoa 

1. Introduction 

Quinoa is a pseudo cereal native to the Andian regions of South America (Matiacevich et al., 2006); it can be 
used in a similar way as wheat and rice (Gómez-Caravaca et al., 2012). Quinoa has been cultivated in many 
countries like Tunisia, Morocco, Algeria, USA, Canada, India, England, Denmark, Greece and Italy (Bhargava 
et al., 2006; Pulvento et al., 2010) below different climatic situation. It is distinct by a high tolerance to drought 
and salinity (Gomez-Pando et al., 2010, Razzaghi et al., 2011a, Adolf et al., 2013). Quinoa is able to tolerate 
high salinity levels as in sea water (Hariadi et al., 2011; Adolf et al., 2013).  

Wilson et al., (2002) affirmed that there isn’t any effect in plant height, leaf area and fresh weight, till 11 dSm-1. 
They observed an increase in leaf area and dry weight grown at 11 dSm-1 compared to those grown at 3 dSm-1. 

Jacobsen et al. (2005) observed that quinoa biomass production, seed yield and harvest index were higher under 
moderately saline conditions (10-20 dSm-1) than that under non-saline conditions.  

Numerous researchers have studied the effect of salinity on quinoa germination and plant growth (Koyro & Eisa, 
2008; Hariadi et al., 2011; Ruiz-Carrasco et al., 2011), on physiological and morphological characteristics 
(Cocozza et al., 2012; Pulvento et al., 2012; Adolf et al., 2012). However, there is a few of research in relation to 
the effect of salinity on water use efficiency before and after quinoa grain filling. 
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plants per sample. After separation of the various parts, the quantity of fresh material was determined 
immediately. The dry biomass was calculated after drying at 80 °C to a constant weight.  
2.5 Formulations 

2.5.1 Evapotranspiration Under Greenhouse (ET0) 

Evapotranspiration greenhouse ET0G was considered with the method (Bellouch et al, 2007): 

ET0G = RG·(0.67·KP)/L                                (1) 

where, RG: Global Radiation (Joule/cm2); 0.67: the active energy for evapotranspiration relative to the total 
received (about 67%); Kp: wall transmission coefficient (single wall 70%); L: 251 (Joule/cm2) is the latent heat 
of water vaporization. 

2.5.2 Estimation of Crop Evapotranspiration (ETC) 

The Estimation of water requirements ETC was carried out using the following relationship: 

ETC = KC·ET0G                                  (2) 

For the ETC calculation, we used the KC values adopted by FAO (Doorenbos & Pruitt, 1986; Allen et al., 1998):  

KC ini = 0.52 (where vegetation is less than 10%); KC med = 1 (where vegetation reaches its maximum 
development of more than 80%); KC end = 0.70 (the stage of maturation where the crop loses its leaves). Where 
ET0G is the potential evapotranspiration under greenhouse.  

2.5.3 Estimation of Water Consumption (WC) 

The soil moisture was monitored on eighteen experimental units and the WC was determined over the entire 
quinoa cycle. The TDR method was used. We have installed 9 probes at different depths (20; 40 and 60 cm) for 
the T0 and 18 salinity-proof probes for the T1 and T2. The initial water stock was measured by the TDR up to 60 
cm for the various experimental units.  

As well, in each test unit, soil samples were collected every 20 cm to 60 cm deep, and TDR measurements every 
20 cm were also carried out to establish the calibration equation. 

Water consumption (WC) is estimated with soil water balance equation as follows (Hillel, 1998): 

WC = P + I + U (+/-) R – DW – DS                         (3) 

where, P: effective rainfall (mm); I: irrigation (mm); U: the upward capillary flow into the root zone (mm); R: 
the runoff (mm); Dw: was the downward drainage out the root zone (mm); DS: the change of soil water stored in 
soil layer of 0-60 cm (mm).  

The upward and downward flow was estimated using Darcy’s law (Kar et al., 2007; De Medeiros et al., 2005). 
Results indicated that the two items were insignificant at the experimental site.  

Runoff was also insignificant during the growing season. Soil water content was measured each month with 
gravimetrically method. Soil water content data were collected for every 20 cm interval in soil depth. Some 
measurements were added before and after irrigation. 

2.5.4 Estimation of the Water Use Efficiency 

WUE of total dry matter (WUETDM) and WUE of grain yields (WUEGY) were calculated using the following 
equations:  

WUETDM (kg m-3) = TDM/WC                            (4) 

WUEGY (kg m-3) = GY/WC                             (5) 

where, WUE is the water use efficiency (kg m-3), TDM is the total dry biomass (g m-2), GY is the grain yields 
(kg) and WC is the total water consumption over the whole growing season (mm).  

2.6 Statistical Analysis 

The results were subjected to variance analysis of one factor by General Linear Model (GLM). This analysis was 
performed using SPSS 20.0 software. The ensemble was completed by multiple comparisons of means with 
Student Newman Keuls test (S-N-K).  

3. Results 

3.1 Impact of Salinity on the Total Dry Biomass (TDM) 

The impact of treatment (T0, T1 and T2) on Total Dry Biomass (TDM) of Quinoa was given in Figure 2. 
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The WUETDM and the WUEGY for the three treatments (T1, T2 and T3) were presented in Table 1. 

 

Table 1. The WUETDM and the WUEGY under the three treatments (T1, T2 and T3) at harvest 

Treatments  WC TDM GY WUETDM (kg m-3) WUEGY (kg m-3) 

T0 478.1 2598.5 a 999.7 a 5.43 a 2.09 a 

T1 459.1 2423.1 b 703.7 b 5.27 ab 1.53 b 

T2 449.9 2251.3 c 498.2 c 5 b 1.11 c 

LSD (5%)   107.3 98 0.27 0.3 

Note. WC: Water consumption, TDM: Total dry biomass, GY: Grain yield, LSD: Least Significant Difference 
(5%). 

 

Statistical analysis (Table 1) shows that at the grain filling, the WUETDM and WUEGY were significantly (P < 0.05) 
affected by the irrigation water salinity (T0 = 1.2 dS m-1, T1 = 9.2 dS m-1 and T2 = 18 dS m-1). However, no 
significant difference (P > 0.05) was observed between T1 and T2 with respect to WUETDM.  

In consequence, the highest WUETDM were recorded under the two treatmentsT0 and T1 (5.43 kg m-3 and 5.27 kg 
m-3), respectively. Nevertheless, the lowest was marked beneath T2 (5 kg m-3). 

However, for WUEGY ANOVA analysis showed significant difference at 5% between the three treatments (T0, T1 
and T2). The maximum WUEGY was noted in T0 (2.09 kg m-3) followed by the T1 (1.53 kg m-3) and the minimum 
WUEGY (1.11 kg m-3) was observed in T2 (18 dS m-1) with high salinity. 

4. Discussion 

The impact of salinity (T0 = 1.2 dS m-1, T1 = 9.2 dS m-1 and T2 = 18 dS m-1) on the daily WC, the TDM, the 
correlation connecting water use and total dry biomass before and after anthesis were investigated. 

The Figure 2 showed that the saline water had a negative influence on the quinoa total dry biomass, a decrease 
was recorded compared to the T0 (control) in the order of 6.8 and 13.4% respectively for T1 and T2. In fact, El 
Youssfi (2013) studied the performance of three varieties of quinoa in irrigation with three concentrations of 
NaCl (S1 = 0.92 dS m-1, S2 = 3 dS m-1 and S3 = 6 dS m-1) and found that the two treatments (S2 and S3) influence 
the production of dry biomass. Similarly, Hirich et al. (2014b) showed that the total dry biomass of quinoa 
decreased significantly with higher salinity and that the maximum amount of total dry biomass were found at 
control level (1 dS m-1).  

Algosaibi et al. (2015) studied the effect of salt on quinoa development. These authors found that the dry 
biomass decreased slightly with increased salinity. Also, Morales et al. (2011) found that irrigation with a salinity 
of more than 15 dS m-1 of NaCl leads to a reduction of the total fresh matter of quinoa from 100% to 25% and 
even to 5%. Similarly, Talebnejad and Sepaskhah (2015a) observed a decrease in dry weight of the above ground 
part of the plant (198.7, 153.3, 135.1 and 117.7 g column-1) respectively for concentrations of Na cl (10; 20; 30 
and 40 dS m-1), similar, the dry weight of the roots marked a remarkable decrease from 20 dS m-1. Definitely, our 
results are in agreement with numerous researchers. These authors found that the salt stress decreased the 
accumulation of total dry biomass accumulation. 

Also, the saline water causes a reduction in the assimilates flow to meristematic tissues, leading to a decrease in 
fresh and dry leaf and stem and root matter (Hernandez et al., 2000). Salinity reduces crop growth by modifying 
the water and ion balance of tissues (Greenway & Munns, 1980; Ouerghi et al., 1998) and by limiting the 
nutrient uptake necessary for growth (Yeo, 1983; Zhu, 2002).  

Likewise, the results obtained (Figure 3), illustrated that the quinoa water consumption decreased by 4 and 7% 
respectively for T1 and T2 refer to the control T0. Talebnejad and Sepaskhah (2015) reported that the application 
of salt stress affected evapotranspiration. In fact, ETR declined with increasing NaCl concentrations.  

Our results are in conformity with those of Razzaghi et al. (2011b); Ince Kaya et al. (2015); Talebnejad and 
Sepaskhah (2015). They affirmed that the soil salinity reduced the quinoa water consumption.  

As shown by our results (Figure 4), the treatment effect (salt water irrigation) resulted in a reduction in the WUE 
pre-anthesis (from transplanting to anthesis) of 8 and 12.5% respectively for T1 (WUEPR = 10.3 kg m-3) and T2 

(WUEPR = 9.8 kg m-3) compared with the control T0 (WUEPR = 11.2 kg m-3). However, irrigation water quality 
(salinity level) showed no effect on the WUE post-anthesis (from anthesis to harvest) of the two treatments T0 
and T1 (WUEPS = 3 kg m-3). Nevertheless, a decrease about 15% was recorded in the T2 treatment (WUEPS = 2.5 



jas.ccsenet.org Journal of Agricultural Science Vol. 15, No. 5; 2023 

64 

kg m-3). The obtained results in Table 1 proved that WUETDM was significantly affected (P < 0.05) by irrigation 
water salinity (T0, T1, and T2). However, no significant difference (P > 0.05) was observed between T0, and T1. 
The WUETDM gradually decreased when salinity increased. The highest, WUETDM (5.43 kg m-3) was recorded 
under control treatment (T0). However, the lowest WUETDM (5 kg m-3) was obtained under T2 treatment (S = 18 
dS m-1). A decline of 7.9% was marked on WUETDM due to the reduction on TDM and on cumulative water 
consumption from T0 (S = 1.2 dS m-1) to T2 (S = 18 dS m-1). Also, The WUEGY decline when salinity amplified. 
The uppermost WUEGY (2.09 kg m-3) was recorded under control treatment (T0). However, the lowest WUETDM 
(1.1 kg m-3) was obtained under T2 treatment. A decrease of 47.4% was marked on WUEGY due to the height 
reduction on yield in the T2 treatment. Talebnejad and Sepaskhah (2015a) found a decrease in the WUE (0.38, 
0.31, 0.27 and 0.15 kg m-3) respectively for high concentrations of NaCl (10; 20; 30 and 40 dS m-1). Gowing et al. 
(2009) showed that the WUE of wheat reduced with height salinity. However, Razzaghi et al. (2012) showed that 
salt stress significantly improved water productivity (2.66, 2.70, 3.12, 3.46 and 3.46 g l-1), respectively for NaCl 
concentrations of (0; 10; 20; 30; and 40 dS m-1). Ince Kaya et al. (2015) for the same concentrations of NaCl, 
declared that there was a small enhance in the water use efficiency of quinoa.  

5. Conclusions  

The results indicated that the salinity reduced significantly the water use, total dry biomass, grain yield and WUE. 
However, this distress was irregular between the treatments. The cumulative water consumption decreased 
gradually, with increasing salt concentrations of water as of 9.2 to 18 ds m-1. Also, the WUE pre-anthesis has 
decreased respectively for T1 and T2 related to T0. However, irrigation water salinity showed no effect on the 
WUE at post-anthesis for the two treatments T0 and T1. Nevertheless, a decrease was recorded in the T2. At 
harvest, the highest WUETDM was recorded under T0. However, the lowest WUETDM was obtained under T2. As 
well, the upper most WUEGY was recorded under T0. Though, the lowest WUEGY was obtained under T2.  
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