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Abstract 
Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods 
require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on 
extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the 
acquired thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a 
limitation for some agricultural fields and micro-climates. Surface energy balance methods that use surface 
radiometric temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under 
sparse vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the 
aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent 
heat flux. Thus, this study presents different published algorithms that characterize the crop or field surface 
aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa 
continuously has the potential to improve the irrigation water management decision making. The aerodynamic 
temperature approach was initially developed with good results as a function of surface radiometric temperature, 
air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion 
of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly 
improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived 
from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has 
transferability potential to different regions, crops, and irrigation methods than the conditions encountered in the 
method development. 

Keywords: irrigation management, actual crop water use, remote sensing, evapotranspiration, energy balance  

1. Introduction 
Increasing world population and climate change demand a global sustainable food and fiber production under 
well managed irrigation practices. Thus, the need to become more efficient at managing water resources in 
agricultural settings and at different spatial scales. In this context, remote sensing (RS) systems along with actual 
crop water use or evapotranspiration (ETa, mm d-1) algorithms can be implemented to improve irrigation 
management decisions (Chávez et al., 2012, Gowda et al., 2008). One such ETa estimation method is based on 
the energy balance (EB) approach that provides instantaneous estimates of latent heat flux (LE, W m-2), at the 
time of satellite platform overpass, and which is converted to hourly and daily actual evapotranspiration using 
different time-steps scaling methods (Chavez et al., 2008). The simplified EB approach is defined by the 
equation “Rn = G + H + LE,” where Rn is net radiation, G is the soil heat flux, and H is sensible heat flux. All EB 
terms are expressed in W m-2 units in this study. Appendix A lists the calcuations needed to estimate Rn and G for 
the typical EB approach used in this study. The estimation of LE is performed by solving the EB equation for LE 
after estimating Rn, G, and H. Rn and G are estimated with acceptable accuracy (~95% and 85%, respectively). 
There are several RS algorithms available (Gowda et al., 2008) to estimate these variables. However, most RS 
and EB based ETa algorithms differ in the way the sensible heat flux is estimated. In most of these models, H is 
estimated using the radiometric surface temperature (Ts), derived from satellites’ thermal bands or ground-based 
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radiometry. Sensible heat fluxes are in general over estimated when Ts is used in Equation 1 rather than the 
appropriate surface aerodynamic temperature (To). Equation 1 below describes the bulk surface resistance-based 
H calculation. The over estimation of H often occurs because Ts is typically larger than To.  

H = ρa·Cpa·(To – Ta)/rah                                (1) 

where, ρa is air density, (kg m-3), Cpa is specific heat of dry air 1005 (J kg-1 K-1), Ta is air temperature (K) at 
screen height (2-3 m). The surface aerodynamic temperature (To, K) is defined as the within and between canopy 
temperature that produces the necessary temperature gradient for the generation of sensible heat fluxes. For 
homogeneous canopies To can be said to originate at the height equal to the zero plane displacement (d, m) plus 
the roughness length for heat transfer (Zoh, m). In Equation 1, rah is the surface aerodynamic resistance, (sec m-1) 
to heat transfer from a height equal to “d+Zoh” to Zm. Where Zm is the wind speed measurement height, m.  

Wenbin et al. (2004) indicated that for homogeneous and isothermal surfaces the definition of aerodynamic and 
thermodynamic (canopy or surface radiometric) temperatures are equivalent, but over heterogeneous (and/or 
sparse, or stressed) surfaces there are important differences between To and Ts. This difference leads to errors in 
the estimation of H which in turn leads to errors in the calculation of LE and therefore in mapping ETa. In order 
to account for the differences between To and Ts, studies have been carried out to parameterize H. For instance, 
earlier studies by Kustas et al. (1989), and Kustas and Norman (1996) increased the surface aerodynamic 
resistance by adding an extra term that adjusts the surface roughness length for heat transfer. This term expresses 
the extra resistance that the heat flow encounters above the vegetation canopy in relation to the momentum flux. 
Chehbouni et al. (1996), introduced a β parameter as function of leaf area index (LAI, m2 m-2) in an exponential 
relationship, in the H equation, to adjust for the differences between To and Ts.  

Since those early studies, further research has been carried out to model and apply the surface aerodynamic 
temperature approach; in particular, using input data from different RS platforms. Therefore, this article 
summarizes different surface aerodynamic temperature modeling studies and applies selected To models to 
different crops, regions, and irrigation conditions to assess their transferability. 

2. Method 
This section introduces several surface aerodynamic temperature models that used different remote sensing 
platforms (sensors and spatial scales). Then, selected To models are applied to: a) a cotton field near Bushland, 
Texas; b) a maize field located near Rocky Ford, Colorado; and to c) a maize field in Fort Collins, Colorado. 

2.1 Maize and Soybean To Modeling—Rainfed Agriculture Case 

Mahrt and Vickers (2004), for grass, modeled To in terms of Ts, incoming shortwave solar radiation (Rs, W m-2), 
a vegetation index (or leaf area index, LAI), horizontal wind speed (U, m s-1) and soil water content. Similarly, 
Chávez et al. (2005) modelled To (°C) as a multi-linear regression function of Ts, Ta, LAI, and U, for dryland 
maize and soybean crops located near Ames, Iowa, USA. Equation 2 below shows the resulting multiple linear 
regression To model, where surface reflectance and temperature images were obtained using 
multispectral/thermal cameras mounted on an aircraft (1-3 m pixel spatial resolutions). These images were used 
to determine LAI and Ts, respectively. The validity of Equation 2 is for a range of LAI between 0.3 and 5.0 m2 
m-2.  

To = 0.534·Ts + 0.39·Ta + 0.224·LAI − 0.192·U + 1.67                   (2) 

Equation 2 above resulted with the following mean bias error (MBE) and root mean square error (RMSE) of 0.2 
and 0.9 °C, respectively, when evaluated with To derived from inverting Equation 1 and using sensible heat 
fluxes measured with a network of Eddy Covariance (EC) EB systems. Further, when using To from Equation 2 
in Equation 1 and solving the EB equation for the latent heat flux, LE was estimated with a relatively small error 
(MBE±RMSE) of -9.2±39.4 W m-2 or -2.7±11.7% (relative or normalized error), when evaluated with LE from 
EC EB towers. 

2.2 Cotton To Modelling—Dryland Agriculture Case 

In a study over rainfed cotton subjected to a highly advective environment, in the Texas High Plains, near 
Bushland, Texas, USA, Chávez et al. (2010) modelled To (°C) using “inverted” To from 15-minute measured ETa, 
Rn, and G data. These variables were measured at a precision monolithic weighing lysimeter field (210 m long × 
200 m wide), and by solving the EB equation for H as a residual and by inverting Equation 1 and solving it for 
To. The form of the resulting To equation is shown below as Equation 3, with variables and corresponding units 
as previously defined. In Texas, the rainfed cotton was water stressed and LAI only varied from 0.2 to 1.3 m2 m-2. 
In this study, Ts was measured with a fixed Exergen infra-red thermometer, and crop height and LAI were 
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radiometers, and with sensible heat fluxes measured with two sets of Large Aperture Scintillometers (LAS) that 
provided To values (from inverted measured H values). Rambikur and Chávez (2014) presented a LAS 
evaluation study in which it was shown that sensible heat fluxes derived from LAS systems were comparable to 
H values obtained with EC systems. In the Costa-Filho et al. (2021) study, To was modelled for different ranges 
of maize LAI values including the following variables: fractional vegetation cover (fc), Ts, Ta, and considering 
the wind direction (angle) interaction with the crop rows’ orientation (angle) through the so-called ‘turbulence 
mixing-row resistance’ (rp, s m-1). Wind direction has a significant effect on determining the wind profile within 
and above canopy relative to air flow direction and the crop row layout. As wind speed interacts with the crop 
row orientation (wind from different directions), there will be different angles of attack that will result in 
different aerodynamic resistances and wind penetration within the crop (i.e., variable zero-plane displacement 
height and roughness length); which results in different turbulent mixing of heat and vapor transport from the 
surface to the atmosphere above affecting H and LE fluxes. Below, Equations 5-8 present Costa-Filho et al. 
(2021) modelled To equations for maize grown in a high plain and semi-arid region. 

To = -8.742·fc + 0.571·Ta + 0.529·Ts + 0.806·rp + 3.295   for 0.85 ≤ LAI ≤ 1.50        (5) 

To = -9.168·fc + 0.485·Ta + 0.575·Ts − 0.160·rp + 6.491   for 1.5 < LAI ≤ 2.50         (6) 

To = 4.708·fc + 0.350·Ta + 0.580·Ts + 0.086·rp   for 2.50 < LAI ≤ 3.50            (7) 

To = -1.912·fc + 0.443·Ta + 0.509·Ts + 0.115·rp + 5.014   for 3.50 < LAI ≤ 5.00        (8) 

The Costa-Filho et al. (2021) To resulting modelling errors (MBE±RMSE) were -0.14±0.50 °C for the optimized 
models (Equations 5-8). Overall, results seemed to indicate that the optimized To model improved the estimation 
of maize H fluxes (error -6±19 W m-2, or -4.9±16.3%); which resulted in an improvement of the estimation of 
latent heat fluxes (error -6±35 W m-2, or -1.8±9.7%). It seems that incorporating the interactions between the 
crop row layout and wind direction, in the modelling of To, better describes the dynamic turbulent mixing for the 
generation of H. 

2.5 Application of To Models 

Selected To models were applied to crops and conditions different from those used in their development. The To 
application was performed to assess the transferability of the models to different settings. 

2.5.1 Applying the Chávez et al. (2005) Rainfed Maize To Model to Sprinkler Irrigated Cotton  

Field data were collected in 2008 at the United States Department of Agriculture (USDA) Agricultural Research 
Service (ARS) Conservation and Production Research Laboratory (CPRL), located near Bushland, Texas, USA. 
The geographic coordinates of the USDA ARS CPRL are 35°11′ North and 102°6′ West, with an elevation of 
1,170 m above mean sea level (amsl). The study area is subject to very dry air and strong winds (advection). 
Annual averages for air temperature, air water vapor pressure deficit, and horizontal wind speed are 14 °C, 0.3 
kPa, and 4.9 m s-1, respectively, according to Chávez et al. (2009). 

Cotton was grown in a 4.7 ha research field (southeast lysimeter field) 210 m wide (East–West) and 225 m long 
(North-South). The field contained a precision weighing lysimeter in the center (Figure 2). The lysimeter 
measurements are 3.9 m wide × 3.9 m long × 2.3 m deep and it was used to directly measure cotton ETa for the 
evaluation of the ETa estimated with the To approach. The lysimeter contained a monolithic Pullman clay loam 
soil core and it was sprinkler irrigated by a Linear Move sprinkler irrigation system. 
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LAI), then the estimation of ETa may not be that accurate. Further, the radiometric calibration of the PlanetScope 
reflectance images may not have been accurate and consistent. On this topic, regarding the quality of the Planet 
microsatellite images, Frazier and Hemingway (2021) stated the following “...the variation in radiometric and 
geometric quality compared to traditional platforms (i.e., Landsat, MODIS, etc.) means the images are not 
always ‘analysis ready’ upon download.,,” Meaning that further calibration is needed due to the lack of 
consistent good radiometric/geometric calibration. Earlier Latte and Lejeune (2020) highlighted the need of 
PlanetScope imagery normalization (calibration) to Sentinel-2 high quality imagery radiometric level due to 
frequent inconsistencies of PlanetScope microsatellites’ radiometric quality. In fact, Planet Inc., started offering 
harmonized or normalized (to Sentinel2) images in March of 2022. 

Thus, this study assessed the accuracy in the estimation of daily actual crop evapotranspiration rates through the 
use of the surface aerodynamic temperature approach in the energy balance method. Several aerodynamic 
temperature models have been calibrated for specific crops and environmental conditions. Those calibrated To 
models have resulted in accurate ETa estimates for the locations where the models were developed for. 
Nevertheless, there seems that the surface aerodynamic temperature approach may be transferable to different 
climatic regions and crop types resulting in acceptable ETa estimates. However, local calibration may be required 
to improve ETa estimation results. Further, the aerodynamic temperature model is more accurate when applied 
using remote sensing input data collected with similar sensors/instruments as those used in the development of 
the To model. In the application cases presented in this study, the aerodynamic temperature model applied using 
multispectral and thermal data from proximal remote sensing devices (handheld and fixed sensors) produced 
more accurate ETa rates than when using input data from microsatellites that may have experienced inconsistent 
imagery pixel radiometric calibration. This result highlights the need to evaluate the quality of satellite images 
using properly calibrated ground-based radiometers, and if needed develop local calibrations for each satellite 
overpass/scene. Still, the combination of daily microsatellite multispectral images and ground-based thermal data 
is promising for daily mapping of ETa.  

Even though the use of To models is promising, for the easier mapping of ETa, further studies are needed to turn 
the approach operational and applicable at larger spatial (regional) scales on a daily basis. For instance, 
determining the effects of RS input data of different pixel sizes and radiometry (e.g., Landsat 8 and 9, Sentinel2, 
MODIS, PlanetDove harmonized) on ETa is needed, as well as incorporating the different crop structures and 
their interaction with wind directional angle of attack, for a wide range of crop types and plating densities and 
spacing. 
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Appendix A 
Net Radiation and Soil Heat Flux Modeling 
Net radiation (W/m2) is modeled based on Equation A1 below.  

Rn = (1 − α)·Rs + εa σ Ta
4 − εs σ Ts

4                         (A1) 

where, α is surface albedo, Rs is incoming shortwave radiation (W/m2), εa is atmospheric thermal emissivity, εs is 
surface thermal emissivity, Ta is air temperature (K) and Ts is radiometric surface temperatures (K), while σ is 
the Stefan-Boltzmann constant (5.67 × 10-8 W/m2/K4). 

Surface albedo is estimated using the Brest and Goward (1987) approach. 

α = 0.512·RED + 0.418·NIR                               (A2) 

where, RED and NIR are surface reflectance values in the Red and Near Infra−Red bands of the electromagnetic 
spectrum.  

Air or atmospheric emissivity is calculated using the Brutsaert (1975) approach.  

εa = 1.24·(ea/Ta)
1/7                                   (A3) 

where, ea is the actual vapor pressure (mb) and Ta is air temperature in K.  

Surface thermal emissivity is calculated using Brunsell and Gillies (2002).  

εs = 0.98·fc + 0.92·(1 − fc)                                (A4) 

where, fc is the fractional vegetation cover.  

Soil heat flux (W/m2) is estimated using Bastiaanssen et al. (1998) approach.  

G/Rn = (Ts/α)·(0.0038 α + 0.0074 α2)·(1 − 0.98 NDVI4)                  (A5) 

where, NDVI is the Normilized Difference Vegetation Index. 
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