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Abstract

Molecular markers are an important tool for plant breeding. Since the 1980s, in response to the technology
development, molecular marker approaches have been further diversified. The establishment of new-generation
sequencing and high-throughput plant phenotyping has greatly decreased the time to genotype large numbers of
individuals. For breeders who are not very familiar with molecular techniques and want to catch up with the
advances in the field, this review offers basic knowledge. Each molecular marker technology has specific
advantages as well as limitations. Molecular marker types, diversity studies, QTL mapping, associative mapping,
marker-assisted backcrossing and genomic selection are explored. Marker application in plant breeding is also
described. In the genome, molecular markers can detect the genetic architecture of a trait, but also identify
candidate genes with an important role in plant breeding programs.
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1. Molecular Markers

A marker is any morphological or molecular characteristic that allows the differentiation of individuals.
Figuratively speaking, in a puzzle (genome of a species) where each piece is “marked” with a number, it is much
easier to locate each one and its neighbors (tagged genome, Figure 1).

%
16
13 1
100n 72 1555
20 J2PHG?2 2 |2
2 3
30 3 L 34
7

3 (4}
a7
45 46 A4
A B

Figure 1. Genome (A) without markers and (B) with molecular markers

Markers could also be compared to “flags” in the genome that make it simpler to locate genes close to or exactly
where these flags stand (Collard, Jahufer, Brouwer, & Pang, 2005). In the beginning, morphological or
phenotypic markers were used (Karakdy, Baloch, Toklu, & Ozkan, 2014), but their polymorphism, i.e.,
variability (Figure 2), was very low, because they depend on trait expression, where diversity is lower.
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(A)

Figure 2. A) Monomorphism, i.e., absence of variability; B) Polymorphism, i.e., presence of variability in maize
grain color

In the 1960s, the biochemical markers were introduced, of which isoenzymes are particularly relevant. These are
enzymes that differ in the amino acid sequence but catalyze the same chemical reaction (Penteado, Garcia, & de
la Veja, 1997). As they depend on the variability observed because of RNA-to-protein translation, polymorphism
was also low.

In the 1980s, the first molecular marker at the DNA level was proposed. Molecular markers are independent of
the phenotype, detect variations at the DNA level, are not affected by environmental influence, have high
heterozygosity, a large number of available markers and Mendelian inheritance. An important concept to
differentiate molecular markers is their dominance or codominance (Figure 3).
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Figure 3. Dominant and codominant molecular markers. Random Amplified Polymorphism (RAPD), Amplified
Fragment Length Polymorphism (AFLP), Simple sequence repeats (SSRs) and Restriction Fragment Length
Polymorphism (RFLP)

A dominant marker cannot differentiate a homozygous from a heterozygous individual (Figure 4). In contrast,
the heterozygote of a codominant marker can be differentiated (Figure 5). Mendelian inheritance is not an
absolute requirement, because sometimes a molecular marker can fall within a transposon that does not have
Mendelian inheritance, and nevertheless, the marker can be functional (Figure 6).
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Figure 4. Example of a dominant marker
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Figure 5. Example of a codominant marker
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Figure 6. Mendelian segregation of a molecular marker

The first molecular marker was Restriction Fragment Length Polymorphism (RFLP, Botstein, White, Skolnick,
& Davis, 1980), which was first developed in human genetics and later applied to plants. This technique
examines the difference in size of restriction fragments of DNA cut by restriction enzymes. Once cut, the
fragmented DNA is run on a gel (electrophoresis) and then analyzed by Southern Blotting, a procedure by which
the DNA is transferred by capillarity from the gel to a nylon or nitrocellulose membrane. Once loaded on the
membrane, this membrane is hybridized with a probe (of genomic DNA or cDNA—complementary DNA) in a
temperature-controlled hybridization chamber. Fragments homologous to this probe will hybridize to the
membrane. The probe is labeled prior to hybridization with radioisotopes or digoxigenin (cold labeling).
Polymorphism results from point mutation, fragment insertion or deletion, restriction site translocation along
with probe hybridization. Because RFLP uses restriction enzymes, pure high-molecular weight DNA is required.
The RFLP locus is the probe combination with the restriction enzyme used (Figures 7, 8 and 9).
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Figure 7. Scheme of the RFLP technique (Sibov et al., 2003). Total genomic DNA is digested by a restriction
enzyme which forms a smear on the stained gel; the DNA is transferred to a membrane by Southern blotting;

hybridization of probes to the DNA on the membrane takes place.
Only bands hybridized to the probes were taken into consideration
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The advantages of this technique are that whole-genome coverage is possible (variations in DNA sequences from 4
to 8 bp are detectable) and that it is codominant and has high repeatability and consistency. The limitations are
intensive steps in labor, lack of probe library available and laboratory structure.
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Figure 8. RFLP analysis with the same probe and different enzymes generates differences in the observed
fragments
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Figure 9. RFLP from the same maize DNAs (P1: parental DNA 1; P2: Parental DNA 2; F1: First filial generation,
heterozygote) with the same probe (Umc1546) and different restriction enzymes (EcoRI, BamHI, Hindlll and
EcoRV). Sibov et al. (2003). Each probe + enzyme combination is a locus

In 1990, after the discovery of the Polymerase Chain Reaction (PCR, Mullis, & Faloona, 1987) and the Random
Amplified Polymorphic DNA (RAPD; Williams, Kubelik, Livak, Rafalki, & Tingey, 1990), the marker system
was launched. With only a single short random primer, the system amplifies anonymous DNA sequences (10
bases with > 50% G + C). The primer hybridizes around in different parts of the genome. The method can
quickly detect polymorphisms, but is not very informative, for being dominant. Furthermore, the poor
reproducibility and co-migration are drawbacks: it is not known whether the same band is the same fragment of
the genome. Results can only be proven by band elution and sequencing. The gel is read by taking the molecular
weight of each bandinto consideration (Figures 10 and 11).
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Figure 10. Representation of RAPD primer annealing a in homologous parts of the genome
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Figure 11. RAPD in 18 inbred maize lines with OPB-09 (TGGGGGACTC). M is the molecular marker in pb

In 1993, the Sequence-Characterized Amplified Region (SCAR) marker (Paran & Michelmore, 1993) was
launched. This single-locus marker is derived from eluted, cloned and sequenced RAPD or Amplified Fragment
Length Polymorphism (AFLP) fragments. These markers are more stable due to specific primers, but are still
dominant and analyze band presence/absence.

In 1995, the technique of Amplified Fragment Length Polymorphism (AFLP) (Vos et al., 1995) was announced.
It first cleaves genomic DNA with two (a frequent cutting and a rare cutting) restriction enzymes and ligates
specific adapters (20 - 30 bp) to the ends of the cleaved fragments. Ligated DNA samples are amplified by PCR.
In a first step, the so-called pre-amplification, one in every 04 bases (A, T, C, G) is edited, generating 1:16
amplified fragments (Figure 12). Thereafter, 1: 4096 fragments are generated by selective amplification (primer
with three selective bases). In this step, a rare-cut restriction enzyme is used (Figure 13). Amplified Fragment
Length Polymorphism is dominant, in other words, it does not distinguish heterozygotes.
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Figure 12. A) and B) Selective pre-amplification generating a subpopulation of complementary fragments with
complementary bases to those used for the selective primers

Of the cleaved fragments, large fragments obtained from rare-enzyme cutting are concentrated at both
extremities (4-5 bp fragments). Intermediate fragments generated by rare and frequent cuttings with optimal
resolution are found in the middle of the gel, while small fragments generated by frequent enzyme cuttings are
observed at the bottom of the gel (Figure 14).
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Figure 13. Schematic representation of the AFLP steps
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Figure 14. AFLP gel for soybean parental genotypes (Mi: Misuzudaizu and Mo: Moshidou) and the F2
population. Xia et al. (2007)

Microsatellites or Simple Sequence Repeats (SSRs) are short sequences (1-6 bases) repeated in “tandem”
(Hamada, Petrino, & Kakunaga, 1982; Tautz & Renz, 1984), widely found in the genome of different species
(from prokaryotes to eukaryotes). They are present in coding and non-coding regions. They also occur in
organelles such as chloroplasts and mitochondria. Owing to natural mechanisms of mutation, the variability is
considerable (Oliveira, Padua, Zucchi, Vencovsky, & Vieira, 2006), resulting in variation in the number of copies
of the basic repeat unit (Schlétterer & Tautz, 1992). The most common motif in plants is that of dinucleotides,
especially of AT repeats (Kalia, Rai, Kalia, Singh, & Dhawan, 2011). Microsatellites are codominant markers
and quite informative, as heterozygous individuals can be detected. Although the regions of the microsatellites
are highly variable, the flanking sequences are conserved, on which the primer pairs for marker amplification are
designed (a forward and a reverse primer, Figures 15 and 16).
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Figure 15. Microsatellite markers (CA)n. Each variation in the motif generates a different allele
at the same locus
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Figure 16. A and B are genotypes of maize parents of the F1 hybrid (H). Microsatellite PHI0O37 was amplified
and run on a 4% MetaPhor agarose gel, stained with ethidium bromide

The microsatellites can be derived from a database, by identifying microsatellite-containing sequences.
Alternatively, microsatellite-enriched libraries can be produced. In these, genomic DNA is completely
fragmented by a restriction enzyme (example Rsal). Then, adapters are ligated to these DNA sequences,
followed by hybridization with repeat-rich primers such as the biotin containing (GT),. These primers will
hybridize in genome regions where there is a complementary repeat, in this case, (CA),. Next, the mixture is
exposed to streptavidin which has an affinity for biotin. The fragments are separated with streptavidin-coated
magnetic beads (Streptavidin MagneSphere® Paramagnetic Particles, Promega) so that the fragments with (CA),
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repeats are separated from the rest of the sample. Next, PCR amplification is performed with primers
complementary to the adapters. These amplified fragments are cloned into a plasmid and Escherichia coli are
transformed with plasmids (pGEM-T vector) that carry enriched sequences. These will be sequenced for
microsatellite confirmation and to design the primers on conserved flanking sequences.

Microsatellites have codominant inheritance, high abundance in eukaryotic genomes, multi-allelicity, low cost
and potential for amplification of multiplex systems, while execution is easy, transferable and automatable. The
development of specific primer pairs through the construction of microsatellite-enriched genomic libraries may
be less advantageous, as the library must be cloned and sequenced (Figure 17), which can be costly and
laborious.
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Figure 17. Electropherogram of a repeat of a microsatellite (AG)y4

hal) | Jl \

The Inter-Simple Sequence Repeat (ISSR) is a dominant marker with low development cost, a high
polymorphism rate and high reproducibility (Chen et al., 2017). Due to the lower polymorphism, such marekers
are less effective than AFLP (Costa et al., 2016). They have the advantage that they can be designed without
previous sequence knowledge and can be detected on agarose or polyacrylamide gels.

Target Region Amplification Polymorphism (TRAP) is a PCR-based technique. It uses candidate genes
(ESTs-Expressed sequence Tags) and increases the possibility of the genetic variability (Hu & Vick, 2003). It
employs two 18-base primers: the forward is a fixed primer, designed from an EST sequence of interest. Its
characteristic is to have 18 nucleotides and an optimal, minimum and maximum Tm (melting temperature) set at
53, 50 and 55 °C, respectively. The reverse primer is a arbitrary, with the following characteristics: selective
nucleotides at the 3’ end, 4-6 AT or GC nucleotides in the central region, 10-11 nucleotides as filler sequences at
the 5’ end. The polymorphism of TRAP is given by having a fixed primer with several arbitrary primer
combinations. Visualization on a DNA sequencer is by fluorescent labeling of arbitrary primers or by silver
staining, resulting in an AFLP-like band pattern.

Single-nucleotide polymorphism (SNPs, Hwang et al., 2016) or single-base polymorphism occurs in more than 1%
of the population. SNPs are mutations propagated over generations. They are abundant in the genome,
codominant and biallelic. They can be by transversion (purine to pyrimidine)—A by C or T, G by C or T—or by
transition (purine by purine; pyrimidine by pyrimidine)—A by G, C by T (Figure 18). They can occur in
expressed and non-expressed regions; they are stable from an evolutionary point of view and genome frequency
and distribution is high. In the human genome, the average distribution is 1 SNP every 300 bp of sequence
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(Nelson et al., 2004); in maize, there is 1 SNP every 48 bp (non-coding regions, Batley et al., 2003), with a total
0f 21,502 SNPs, and 1 SNP per 3.3 kb and a total of 25,274 SNPs in Arabidopsis (Drenkard et al., 2000).

Transition Transversion
Indiv. 1: ACTTGATTCAT Indiv. 1: ACTTGATTCAT
Indiv. 2: ACTTGATTCAT Indiv. 2: ACTTGATTCAT
Indiv. 3: ACTTGGTTCAT Indiv. 3: ACTTGTTTCAT
Indiv. 4: ACTTGATTCAT Indiv. 4: ACTTGATTCAT
Deletion Insertion
Indiv. 1: ACTTGATTCAT Indiv. 1: ACTTGA -TTCAT
Indiv. 2: ACTTGATTCAT Indiv. 2: ACTTGA -TTCAT
Indiv. 3: ACTTG =TTCAT Indiv. 3: ACTTGACTTCAT
Indiv. 4: ACTTGATTCAT Indiv. 4: ACTTGA -TTCAT

Figure 18. Different kinds of base alteration in SNPs

The SNPs can be identified in two ways: in silico—by data analysis of sequences available in databases; in
vitro—a new data sequence is generated. The in silico approach uses software to identify SNPs in a sequence
bank, since manually it would be impossible to identify SNPs in many sequences. Several programs are available
such as Phred, PolyBayes, SNPserver, etc. The advantages of using SNPs are the abundance in the genome,
detection of different alleles for genes of interest (bi-allelic), high accuracy, high reproducibility and a high level
of automation. The rise in use of SNPs follows the emergence and evolution of next generation genotyping
platforms (NGS).

The SNP variants form blocks called haplotypes (Figures 19 and 20). Haplotypes are sequences in a cluster that
represent the same allele of a gene. In this case, two or more SNPs segregate together (Rafalsky, 2002). In other
words, they have the same nucleotide at the polymorphic site. Mathematical methods are used to minimize false
reconstruction of haplotypes caused by sequencing errors.

C [ATT]10 A G G
C [ATT]10 A G G
TCGG[ATT)s G A C
TCGC[ATT)s c A C
T [ATT]12 A A G
CCGG[ATT]1s A A &
CCGG[ATT]1s A A G
C [ATT]1s A A G

Figure 19. Example of haplotype with SNPs in linkage disequilibrium (LD)

In this way, together these SNPs will be characterizing a linkage disequilibrium (LD), which is simply the lack
of independent segregation between the alleles at two or more loci. In general, LD depends on the history of
recombination between polymorphisms. Factors such as genetic drift, selection between populations, migration
(gene flow) and reduction in population size (“bottleneck™) can modify the LD between markers and related
traits (Figures 21). The SNP tag is the smallest set of haplotypes that can differentiate individuals (Figure 22).
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CIATT) A G Haplotype 01 (25%)

TIATT)1s[5AC  Haplotype 02 (25%)

TIATT):4ABG Haplotype 03 (12.5%)

C[ATT):{AAG Haplotype 04 (37.5%)

Figure 20. Example of different haplotypes. Assume that the G allele increases the growth rate

(G Haplotype 01 (25%)

(C  Haplotype 02 (25%)

(5 Haplotype 03 (12.5%)

(G Haplotype 04 (37.5%)

Figure 21. The C allele in the last position serves as a tag for the G allele. We say that these two positions (of the
G and C allele) are in linkage disequilibrium (LD)

Haplotyge pattern

Py P, Py P

]
]
[

5
S

o o

SNP
loci §

wn

~

Py P, Py P

"OmmE0 O
*HOR0O O

“w n n
ey e

. ] ] ][] |m [ |m
H mnmn | | |
([ ] | [m] [m] | |W]

m || . ] ]]]]
000000000000 ~

r

Figure 22. S1 and S12 SNPs can form a set of SNP tags. This is the smallest set of SNP tag in this example

A new concept called genotyping-by-sequencing (GBS) was conceived (Elshire et al., 2011) at the Buckler lab,
Cornell University, where the detection of sequence differences (SNPs) in a large segregating population was
combined with scoring thus allowing a quick and direct study of its target diversity to the mapping of a trait of
interest. Lower costs in NGS have made GBS accessible for application in different plant species. The popularity
of SNPs is still on the rise with NGS platforms. Be it by GBS or Beadchips (Illumina), SNPs are nowadays the
most popular markers in plant breeding.

The Diversity Arrays Technology (DArT; Jaccoud, Peng, Feinstein, & Kilian, 2001) is based on the comparison
of genome representations, does not require previous sequences (genome), nor depend on gels, can be developed
for genomes of any size and is relatively inexpensive. The technology is based on methods of complexity
reduction by Restriction Enzymes (ER), digestion, adapters, PCR (Figures 23), construction of a Genomic
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Library and then microarrays. To this end, the technology requires the development of diversity panels for a
given species, fluorescence marking, hybridization and image analysis (Figure 24). It must be mentioned that the
DART technology is in the hands of a single company in Australia (DART PTy,
https://www.diversityarrays.com/). These markers can be used for: germplasm characterization, marker-assisted
selection (MAS), identification of target genes, construction of genetic maps, QTL mapping (Quantitative Trait
Loci) and GWAS (genome-wide association studies).
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Figure 23. Development stages of diversity panels and DART marker genotyping
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2. Application of Molecular Markers

2.1 Genetic Diversity Analysis using Molecular Markers

After genotyping, the first step is to elaborate the data matrix where each band absence is read as “0” and each
presence as “1”. In the case of dominant markers, a genetic similarity coefficient is applied to the matrix, e.g.,
the Jaccard coefficient that excludes the double absence in its formula, resulting in a triangular similarity matrix.
When working with distant species it is better to use the Dice coefficient, which assigns double weight to
similarities (a) between species. These similarity coefficients can be calculated by the NTSYS-PC program,
version 2.0j (Rolf, 1997). In the case of codominant markers such as microsatellites, it is used to apply a genetic
distance coefficient such as Rogers Modified Distance (Goodman & Stuber, 1983). The latter can be calculated
using the TFPGA program, version 1.3 (Miller, 1997). After establishing the similarity (S) or distance (D; D =S
— 1) matrix, a clustering coefficient is applied to obtain a spatial representation of individuals called a
dendrogram (Figure 25). One can also use the distance and/or similarity matrix to perform multivariate analysis,
e.g., Principal Coordinate Analysis (Figure 26).
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Figure 25. Analysis of diversity in common bean with 2,501 DART markers
(Brifiez et al., 2012; Reproducibility: 99.9%)
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Figure 26. Principal Coordinate Analysis of 18 maize inbred lines with 262 polymorphic RAPD bands

To calculate the informativeness of each molecular marker, the following formula for the polymorphic
information content (PIC, Equantion 1) is used:

n -1 n
PIC = 1- i:1f? - Z?:l j:i+12f?fj M
Where: n is the number of alleles and f; and f; are the frequencies of the "™ and /™ alleles, respectively (Botstein et
al., 1980).

The sample variance of the genetic distances is also calculated by Bootstrap analysis, with at least 500
re-samplings with repetitions (Tivang, Nienhuis, & Smith, 1994). By this analysis, each branch of the
dendrogram is statistically represented in percentage.

In addition to these analyses, Bayesian statistics that use likelihood can be included. The STRUCTURE program
(Pritchard et al., 2000) generates clusters based on transient Hardy-Weinberg disequilibrium (HW) and LD
caused by genetic mixing between populations. The appropriate first step is to calculate the likelihood of the data
for a range of K values (number of groups) by creating posterior probabilities of K, called X and written: X|K.
For each dataset, the first step is to identify the most likely K. Two methodologies can be used for this purpose:
Pritchard and Wen (2004) (Figure 27) and Evano, Regnaut, and Goudet (2005) (Figure 28). After determining
the best K, the genotypes are assigned to the groups (Figure 29).
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Figure 27. Graphical representation of the ideal number of groups (K = 6) inferred from the criterion of Pritchard
and Wens (2004) for 60 rubber trees analyzed with 68 SSRs
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Figure 28. Graphic representation of the ideal number of groups (K = 6) inferred using the methodology of
Evano et al. (2005) for the same dataset of Figure 29 (60 rubber trees analyzed with 68 SSRs)

1.00

Figure 29. Asian (8, red), African (2, yellow), Amazonian (8, green) and IAC (42, blue) rubber trees analyzed
with 68 SSRs

2.2 QTL Mapping

QTLs (Quantitative Trait Loci) are chromosome regions responsible for the expression of quantitative traits, i.e.,
traits with continuous distribution. Some examples are plant height and weight, grain production, oil content, etc.
With the development of molecular markers, QTL mapping thrived, since the technique addresses the
identification of the genome position of the genes responsible for the trait and estimates the genetic effects, such
as additive or dominance effects.

The basic principle of linkage mapping is the existence of linkage disequilibrium (LD) between marker alleles
and QTL alleles. What genetic delineations does have LD? From crossing two segregating lines, progenies with
different fractions of the genome of each parent are obtained. Several types of segregating populations are in use,
most commonly backcrosses, the F, generation, pure recombinant inbred lines (RILs) and double-haploid lines
obtained from gametes of F; plants.

With data from segregating populations generated by specific designs and with individuals analyzed using
molecular markers, the next step is the construction of the genetic linkage map. This step encompasses: (a) a
segregation (Chi-square) test to check the segregation pattern, choosing only the markers with a Mendelian
segregation pattern; (b) linkage test, to verify the linkage disequilibrium between marker pairs with Mendelian
segregation, forming a set for each chromosome and (c) ordering of markers based on the distances between
them. To form the linkage groups, a statistical test must be applied to check whether the value of the
recombination frequency differs from 0.5 by the likelihood ratio (LR), or equivalent tests such as the index
known as LOD-score (Logarithm of Odds, Lynch, & Walsh, 1998).

There are many mapping functions that relate distance measurements between the two Jloci on the map to
recombination frequencies, among which the most used for plant genetic mapping are the functions of Haldane
(1919) and Kosambi (1944). While the first assumes a lack of interference, the second assumes a moderate
degree of interference. Interference is caused by the possible occurrence of crossing-over; as the distance
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between the loci increases, the possibility of this event increases, reducing the accuracy of recombination
frequency to estimate the distance (Lynch & Walsh, 1998; Griffiths, Miller, Suzuki, Lewontin, & Gelbart, 2000).

Once segregation is evaluated and linkage groups established by recombination frequencies between marker
pairs, the next phase involves measuring distances and ranking within each linkage group. With the increase in
the number of markers used in the construction of maps and the increase in the number of individuals analyzed,
algorithms and computational programs were developed for the construction of genetic maps, such as
Mapmaker/EXP (Lander et al., 1987; Lincoln, Daly, & Lander, 1992), JoinMap (Stam, 1993) and Onemap
(Margarido, de Souza, & Garcia, 2007).

Figure 30 shows that each point will be at a certain distance from each of the marker. The greater the distance,
the less likely the marker is detecting the effects of that point. The probability of recombination increases with
distance. We calculated the effects detected for each marker for each point and multiplied the value by a function
that is inversely proportional to the distance between the point and the marker.
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Figure 30. QTL detected and its significance threshold
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QTL detection analyses have been advanced towards a higher accuracy of statistical tests and consequently, a
greater reliability of the results. Initially, QTLs were identified by a direct relationship between the genotype of
the markers of individuals in the mapping population, with their phenotypic characteristics. This method is called
Individual Marker Analysis (IMA) and may be based on the maximum likelihood method, or even on linear
regression analyses. In this case, scores are attributed to the markers genotype and a simple regression analysis
(Equation 2) is performed between these scores (independent variable) in relation to the phenotypic value of the
trait (dependent variable). The significant effect of linear regression could identify the existence of an association
between the marker and the trait (Schuster & Cruz, 2004).

Vi=ut Pty @)

where,j=1,2,...n;
v; = phenotypic value of the j genotype;
[ = intercept;

_ (1 if the genotype is Mi/Mi_
N {0 if the genotype is Mi/mi’
J = linear regression coefficient (genetic effect);
g = residue ~ N(O, o).

By IMA, additive and dominance effects can be estimated; however, it is important to consider a certain
redundancy between the “x” variables. For this reason, backward, forward, and stepwise variable selection
methods are used, so that a model is sought until that includes all xj variables that are significant by the t test
(Bearzoti, 2000). In addition, IMA is conservative, i.e., the number of QTLs that influence the character is not
known for sure, aside from not revealing the QTL position, thus underestimating its effect (Ferreira &

Grattapaglia, 1998).

Over time, new methodologies have been proposed to overcome the flaws of IMA. The first advance was in the
sense of analyzing the existence of QTLs in each interval between two markers, instead of at every single marker,
which led to Interval Mapping (Lander & Botstein, 1989). By Interval mapping (IM), the genome is
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systematically scanned in search of QTLs, using information from markers flanking the gap, such as
recombination fraction and genomic position, to estimate the presence and magnitude of QTLs. In this way,
conclusions about the position of the identified QTLs can also be drawn. The significance of this analysis can be
tested by regression analysis (Equation 3) or by the maximum likelihood function. In the second case,
significance is evaluated by its ratio, by LODscore analysis (Schuster & Cruz, 2004).

yp= ot BTt ©)

where, j=1,2, ... n;
v; = phenotypic value of j genotype;
[ = intercept;
. {1 i.f the genotype i.s QQ.

7 (0 if the genotype is Qq’
S* = possible effect of the QTL;
g = residue ~ N(0, o).

A disadvantage of this method is that other QTLs outside the range in question are not considered, which has two
consequences. The first is that all genetic variation, due to these other QTLs, are residuals, which decreases the
precision of the estimates and the power of the test. The second is that if two QTLs are linked in the considered
range, inexistent QTLs, known as phantom QTLs, might be identified. To avoid these effects, Jansen (1993) and
Zeng (1993) independently proposed methods by which QTLs outside the range in question are considered by
the multiple regression method (Bearzoti, 2000).

Then, Zeng (1994) proposed the Compound Interval Mapping (CIM). In this approach, the effects between QTL
from other regions do not influence the analysis between two markers. This occurs using the multiple regression
method (Equation 4), which reduces the residual variance between the loci and thus increases the detection
power of each QTL and the accuracy in estimating its effects (Zeng, 1994; Jansen & Stan, 1994). To minimize
the effects of other QTLs outside the range under analysis, they are included in it as cofactors, previously
determined by stepwise procedure (Zeng, 1994).

With this, a model for each position in the genome can be constructed, testing the significance of the additive
and dominance effects of each model by maximum likelihood and LODscore. Since numerous tests are
performed for each mapping experiment, the significance in each case can be computed by several methods, of
which the permutation test is the most indicated (Churchill & Doerge, 1994).

Vi = ut R N By g 4)
where, j=1,2, ... n;
y; = value c of genotype j;
[ = intercept;
«_ (1 if the genotype of the QTL is QQ,
A {O if the genotype of the QTL is Qq’
p* = effect of the possible QTL;

X = cofactors;
el 2
g; = residue ~ N(0, o°).

The estimation of the genetic effects of QTLs is somewhat problematic. Depending on the genetic and
experimental design and the models used to estimate them, estimates may be biased. The biases are caused by
deficiencies of recombinant gametes, genotype-environment interaction and underestimation of epistasis, mainly
if the mapped populations has a small size. The solutions to this impasse would be to increase the number of
families to at least 300, increase the density of the map and to analyze only extreme phenotypes (Lee, 1995).

With this in mind, Jiang and Zeng (1995) extended the CIM concept to map multiple QTLs detected in different
environments, aiming to study the interaction of pleiotropy between QTLs and genotype-environment interaction.
As a result, a method called Multiple Interval Mapping (MIM) was proposed by Kao, Zeng, and Teasdale (1999),
which incorporates epistasis into the model and considers multiple intervals simultaneously.

The method consists of the selection and comparison of models, based on four components: evaluation, search,
estimation, and prediction. For this purpose, a pre-model is generated for each analysis by multiple regression
and cofactor selection, as in the CIM analysis. However, the number of QTLs and possible interactions between
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them are now considered analysis parameters (Equation 5), which allows eliminating non-significant results.
Thus, the selected model proceeds to the effective QTL analysis with these “new” parameters, defined in real
terms by data analysis. This procedure is repeated several times until all insignificant QTLs are excluded from
the analyses. Thus, this method is more advantageous due to the greater efficiency and accuracy in the search for
QTLs and their interactions.

Vi T H + Zﬁlﬂr 'x;+ Zi;ﬁsC(l,um)ﬁm(x;'x;) + &j (5)
where,j=1,2, ... n;
v; = phenotypic value of the j genotype;
[ = intercept;
[, = marginal effect of the possible QTL,;
x;* = indicator variable of the genotype of the possible QTL,;
b, = epistatic effect between r and s QTLs;
g = residue ~ N(O0, o).

Currently, in view f the advantages, the MIM method has been most widely indicated for the search of new
QTLs, mainly due to its statistical precision with more efficient results, including the use of these QTLs in
marker-assisted studies. However, the most commonly used method is still CIM, which has also met the interests
of researchers adequately in several studies (Maxwell et al., 2007; Sabadin, Souza Jinior, Souza, & Garcia, 2008;
Figures 31 and 32).
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Figure 31. Recombination fraction plot between loci of the 11 linkage groups of common bean identified by
Two-Point analysis. Oblessuc et al. (2012)
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Figure 32. Genetic map for common bean, derived from linkage analyses between genotyped microsatellites in
the population ‘TAC-UNA’ x ‘CAL 143’ (UC). The loci previously mapped in other populations and anchored in
their respective linkage groups for two-point analysis (LOD > 3.0 and r > 0.40) are underlined. (*) loci with
segregation deviation for the Andean parent allele (‘CAL 143°). (**) loci with segregation deviation for the
Mesoamerican parent (‘IAC-UNA’). 5% significance level. Oblessuc et al. (2012)
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2.3 Associative Mapping and Linkage Disequilibrium

Genetic mapping can be performed mainly in two ways (1) using experimental populations (also called a
“biparental” population or population mapping), which is known as QTL mapping or linkage mapping, and (2)
using several genotypes of natural populations or germplasm collections, which is called LD mapping or
associative mapping. Traditionally, QTL mapping approaches have been based on the analysis of populations
derived from biparental crosses segregating for a trait of interest. There are two strategies that can be used in
associative mapping: a) association mapping by already identified candidate genes (Candidate Gene Approach);
b) genome-wide association studies (GWAS), using molecular markers to cover the entire genome to identify
regions that are associated with a phenotype of interest.

Associative mapping is an alternative method that can be used to associate a molecular marker to a trait of
interest in natural populations or in a collection of cultivars of a breeding program (Oraguzie, Rikkerink,
Gardiner, & Silva, 2007). The underlying principle of this approach is that LD occurs, since this is necessary for
the association between marker and phenotype, and because the extent of these regions will determine the
resolution of the map. Linkage disequilibrium is also defined as the non-random association of different loci
(Flint-Garcia, Thornsberry, & Buckler, 2003). This imbalance is attributed to the physical connection between
the Joci, which alters the expected frequency of connections, generating non-random recombinations within the
chromosome, which makes it possible to detect the connection between them (Resende, 2008).

A relative measure of LD, called D’ (Equation 6), was proposed by Lewontin (1964), by which the LD of
different Jocus pairs can be compared by taking the maximum theoretical values into consideration, according to
the formula:

> _ DI
D D)?ZLIX (6)
where: D’ is the relative measure of LD; D the basic concept calculated based on haplotype frequencies; and
D, the maximum theoretical value of LD between a possible pair of loci. In contrast to the basic concept of LD,

which can vary between -0.25 and 0.25, D’ can vary between 0 and 1.

Another relative measure of LD is r*. This measure was proposed by Hill & Robertson (1968) and consists of the
square of the correlation coefficient. It measures the degree of association between /oci (covariance), according
to the variation of their alleles. As the measure of D’, 7* depends on the haplotype frequencies and is calculated
as follows (Equation 7):

ot = COXD_ Dy Diy )

VONY)  Iyfdyty, (-1 (1 -fy)

where: ry,” (coefficient of determination, or square of the correlation coefficient) is the relative measure of LD
between any two biallelic X and Y loci, Cov(X,Y) is the covariance between these loci, V(X) and V(Y) are their
respective variances, Dyy’ is the basic concept of LD between X and Y, and Jxxyyare the allele frequencies
referring to X and Y loci (X: fy+ £, = 1), (X) = fxfss Yify T £, = 1; (Y) = fy /.
Similarly to D’, * can vary between 0 and 1. The measures D’ and #* are the most commonly used to calculate
the LD between pairs of biallelic Joci. Although both are not suitable for measuring LD in small samples, with or
without low allele frequencies, each has its advantages. While 7 capitalizes on historically occurring mutation
and recombination events, D’ capitalizes on recombination events only, and is the most adequate measure to
detect them. However, D’ is strongly affected by small samples, so that comparisons between loci with low allele
frequencies with this measure are inappropriate due to the high bias of the LD estimates (Flint-Garcia,
Thornsberry, & Buckler, 2003). Therefore, in the case of association studies, where the sample size is limited by
time and cost issues involved in the genotyping and phenotyping processes, > should be used to verify the extent
of LD.

Several aspects influence the LD observed in a population or species: mutation and recombination rate, mating
system, genetic drift, population structure, kinship degree, selection, epistasis, and chromosomal rearrangements
(Abdurakhmonov & Abdukarimov, 2008). These factors can generate false associations between markers and
phenotypes in associative mapping, so they must be considered in the analyses.

Currently, on account of the advancement of NGS, the GWAS has become the most widely used approach.
Phenotypic and genotypic data of many individuals are assembled in a diversity panel. Genotyping data usually
consists of genome-wide single-nucleotide polymorphisms (SNPs) identified by resequencing, genotyping by
sequencing (GBS) or genotyping based on an array containing SNPs (BeadChips, [llumina). As GWAS uses
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unrelated individuals with greater genetic variability, the number of markers must be high, which is possible due
to the development of high-resolution genome analysis technology with NGS.

Genome-wide association studies identify variations in the genome and associates them with the phenotype of
interest by hypothesis testing, to construct genetic maps. The primary objective of GWAS is to identify
marker-trait associations for one trait at a time and, secondly, to study its genetic architecture. The latter involves
identifying all QTL/genes. The extent and level of this information has also improved with the continued
increase in size of the association panels and the number of molecular markers used for GWAS. The
identification of many false positives that appear after GWAS analysis and false negatives detected by
Bonferroni or false discovery rate (FDR) corrections has been a problem in GWAS. The level of significance
must be carefully considered, since, as thousands of markers are tested, setting the level at 5%, as generally done
in the various tests, could boost the false-positive rate. The population structure or existence of epistasis between
loci can also cause false positives (Cortes, Zhang, & Yu, 2021).

2.4 Marker-assisted selection in Backcrosses

With the advent of molecular markers and the first genetic molecular maps, marker-assisted selection (MAS,
Figure 33) became an attractive idea for breeders. In backcrosses, molecular marker technology can be applied in
several stages. The best parents for a cross can be identified by DNA fingerprinting of germplasm collections;
the divergence between the parents can also be determined, to estimate the effort that will be required to
re-establish the elite parent genotype. In each backcross cycle, the markers can be used to identify lines carrying
the target allele (de Almeida et al., 2021; Paulino et al., 2022), containing the least proportion of the donor
genotype, and to find lines with the least number of segments around the target allele (linkage drag). For
recessive traits, molecular markers may prevent the need for an additional generation of selfing to identify the
target allele (Langridge et al., 2001).

Openshaw, Jarboe, and Beavis (1994) reported that the number of backcross generations in maize lines could be
reduced from seven to three if the sample size were smaller (N < 100) and less markers were used (N < 80).
Hospital, Chevalet & Mulsant (1992) concluded that, with the use of MAS, the number of generations could be
reduced from seven to two. For most crops, more than 90% of the recurrent parent genotype can be recovered
within two generations, if an adequate number of markers and an adequate number of progenies are used for
genome selection (Tanksley, Young, Paterson, & Bonier-bale, 1989). According to Benchimol, de Souza Jr.,
and de Souza (2005), the means of recovery of recurrent genotypes in three backcross generations were
compatible with those expected in BC, or BCs, indicating genetic gain due to marker-assisted backcrossing. The
formula below estimates the percentage of the recurrent genome still in the donor’s genome (Equation 8):

GR%* = [B + (0.5H)/(B + H + A)] x 100 ®)
where: A4 is the genome of the donor parent, B the genome of the recurrent parent and A the F, hybrid.

Marker-assisted backcross efficiency is based on various factors such as population size, distance of markers
from the target locus and number of background markers used (Hasan et al., 2015). According to Kim et al.
(2021), line selection based on KASP (Kompetitive allele-specific PCR) markers was successful in BC,F; and
BC,F,, with a recovery of 97-99.1% of the recurrent parent genome.
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Figure 33. Number of articles with the terms QTL (Quantitative trait loci) and marker-assisted selection (MAS)
per year (1984-2005). Xu and Crouch (2008)

2.5 Genome-Wide Selection

Genome-wide selection (GWS), proposed by Meuwissen, Hayes, and Goddard (2001), is an analysis based on
the evaluation of many markers widely distributed throughout the genome, only feasible with the development
and cost reduction of SNP-type markers. Once these markers are available, their effects are estimated based on
phenotypic data from an estimated population. After estimating the effects, the prediction models of genomic
genetic values (GGV) are obtained. Model accuracy is achieved from validation populations and then applied to
selection populations (Crossa et al., 2011).

In breeding, once the genomic genetic values are predicted, they can be used to evaluate the genetic values of
individuals in early selection stages, with the prediction of future phenotypes of individuals genotyped in
preliminary stages of the breeding program. This strategy speeds up selection, considering that in certain
selection cycles, genotypes of interest can be selected without the need for phenotyping (Resende, Lopes, Silva,
& Pires, 2008).

In GWS, a LD between the QTL and the marker is required, and only markers in LD can explain the genetic
variation. As a wide range of markers is used, the probability of finding a QTL in LD with the marker is high.
This technique is superior to MAS because it is highly accurate, can be applied to a larger number of families
within the population, and does not require prior knowledge of the QTL positions on a map (Miqueloni, Sime3o,
& de Assis, 2019). Marker-assisted selection only captures major-effect QTLs, but cannot explain all genetic
variation of the individuals, whereas GWS detects both major and minor-effect QTLs

Three types of population sets are required for the implementation of GWS:

- Estimation population, where many SNPs are tested in a moderate number of individuals already
phenotypically characterized and a prediction equation of genomic values, which uses the markers as input
data, is generated.

- Validation population, smaller than the first, where individuals are phenotypic and genetically
characterized for markers and prediction equations are tested to assess accuracy in this independent sample.

- Selection population, where individuals are genetically characterized and prediction equations estimated
in the first set, used to calculate the prediction methods of genomic values, but considering the accuracy of
the validation set (Figure 34).

79



jas.ccsenet.org Journal of Agricultural Science Vol. 15, No. 3;2023

Estimation population
(EP) Selection population (SP)
~1,000 to 10,000 ~20,000 individuals only
genotyped and genotyped
phenotyped individuals

Validation population
(VP)
Accurancy estimationin
the same individuals of EP
by crossed-validation

Y=1lu+Xm+e
Estimates of marker’s
effects. Predictive
equations obtained

Figure 34. Diagram of genome-wide selection in a breeding program
(Resende et al., 2010)

In cross-validation, the population is divided into k groups of the same size and in each of the groups, k
individuals are removed to form the validation population. In each subgroup, the predicted genetic value and
phenotypic value of the evaluated individuals are correlated (Pereira, 2021). The GWS was first used in plants,
mainly to select quantitative inheritance traits, with low heritability. Genome-wide selection prioritizes the
prediction of genotype performance and not the genetic architecture of quantitative traits.

Due to the large number of effects to be estimated simultaneously from a small number of observations, the
sample size, collinearity of the LD between the markers and the interpretation of the results, adequate statistical
models and methodologies are needed to predict the marker effects (Pereira, 2021). The GBLUP (Genomic Best
Linear Unbiased Prediction) is one of the most commonly used models for GWS, with a single normal
distribution of the markers (Li, Wang, & Bao, 2015).

3. Conclusion

With the advances in NGS a flourishing use of new molecular marker systems is to be expected. However, old
techniques are still in use and the choice will be based on the research objectives and funding of each project.
Single Nucleotide Polymorphisms have been extensively explored in plant breeding. However, they are not
preferable to SSRs with regard to detecting fundamental genetic problems such as gene flow, apparent
outcrossing rates, pleiotropy and/or epistasis. Genome-wide selection is being considered superior to MAS if
quantitative traits are targeted; however, MAS is still being widely applied, mostly in plant breeding companies.
QTL-mapping and genome-wide association studies (GWAS) are being widely used to decode the genetic basis
of polygenic traits.
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