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systematically scanned in search of QTLs, using information from markers flanking the gap, such as 
recombination fraction and genomic position, to estimate the presence and magnitude of QTLs. In this way, 
conclusions about the position of the identified QTLs can also be drawn. The significance of this analysis can be 
tested by regression analysis (Equation 3) or by the maximum likelihood function. In the second case, 
significance is evaluated by its ratio, by LODscore analysis (Schuster & Cruz, 2004). 

yj = μ + β*xj* + εj                                (3) 

where, j = 1, 2, … n; 

yj = phenotypic value of j genotype; 

μ = intercept; 

x*j ൜1 if the genotype is QQ
0 if the genotype is Qq

; 

β* = possible effect of the QTL; 

εj = residue ~ N(0, σ2).  

A disadvantage of this method is that other QTLs outside the range in question are not considered, which has two 
consequences. The first is that all genetic variation, due to these other QTLs, are residuals, which decreases the 
precision of the estimates and the power of the test. The second is that if two QTLs are linked in the considered 
range, inexistent QTLs, known as phantom QTLs, might be identified. To avoid these effects, Jansen (1993) and 
Zeng (1993) independently proposed methods by which QTLs outside the range in question are considered by 
the multiple regression method (Bearzoti, 2000). 

Then, Zeng (1994) proposed the Compound Interval Mapping (CIM). In this approach, the effects between QTL 
from other regions do not influence the analysis between two markers. This occurs using the multiple regression 
method (Equation 4), which reduces the residual variance between the loci and thus increases the detection 
power of each QTL and the accuracy in estimating its effects (Zeng, 1994; Jansen & Stan, 1994). To minimize 
the effects of other QTLs outside the range under analysis, they are included in it as cofactors, previously 
determined by stepwise procedure (Zeng, 1994). 

With this, a model for each position in the genome can be constructed, testing the significance of the additive 
and dominance effects of each model by maximum likelihood and LODscore. Since numerous tests are 
performed for each mapping experiment, the significance in each case can be computed by several methods, of 
which the permutation test is the most indicated (Churchill & Doerge, 1994). 

yj = μ + β*xj* + ∑ βkxjkk  + εj                              (4) 

where, j = 1, 2, … n; 

yj = value c of genotype j;  

μ = intercept; 

xj* = ൜1 if the genotype of the QTL is QQ
0 if the genotype of the QTL is Qq

; 

β* = effect of the possible QTL; 

xjk = cofactors;  

εj = residue ~ N(0, σ2). 

The estimation of the genetic effects of QTLs is somewhat problematic. Depending on the genetic and 
experimental design and the models used to estimate them, estimates may be biased. The biases are caused by 
deficiencies of recombinant gametes, genotype-environment interaction and underestimation of epistasis, mainly 
if the mapped populations has a small size. The solutions to this impasse would be to increase the number of 
families to at least 300, increase the density of the map and to analyze only extreme phenotypes (Lee, 1995). 

With this in mind, Jiang and Zeng (1995) extended the CIM concept to map multiple QTLs detected in different 
environments, aiming to study the interaction of pleiotropy between QTLs and genotype-environment interaction. 
As a result, a method called Multiple Interval Mapping (MIM) was proposed by Kao, Zeng, and Teasdale (1999), 
which incorporates epistasis into the model and considers multiple intervals simultaneously. 

The method consists of the selection and comparison of models, based on four components: evaluation, search, 
estimation, and prediction. For this purpose, a pre-model is generated for each analysis by multiple regression 
and cofactor selection, as in the CIM analysis. However, the number of QTLs and possible interactions between 
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2.3 Associative Mapping and Linkage Disequilibrium 

Genetic mapping can be performed mainly in two ways (1) using experimental populations (also called a 
“biparental” population or population mapping), which is known as QTL mapping or linkage mapping, and (2) 
using several genotypes of natural populations or germplasm collections, which is called LD mapping or 
associative mapping. Traditionally, QTL mapping approaches have been based on the analysis of populations 
derived from biparental crosses segregating for a trait of interest. There are two strategies that can be used in 
associative mapping: a) association mapping by already identified candidate genes (Candidate Gene Approach); 
b) genome-wide association studies (GWAS), using molecular markers to cover the entire genome to identify 
regions that are associated with a phenotype of interest. 

Associative mapping is an alternative method that can be used to associate a molecular marker to a trait of 
interest in natural populations or in a collection of cultivars of a breeding program (Oraguzie, Rikkerink, 
Gardiner, & Silva, 2007). The underlying principle of this approach is that LD occurs, since this is necessary for 
the association between marker and phenotype, and because the extent of these regions will determine the 
resolution of the map. Linkage disequilibrium is also defined as the non-random association of different loci 
(Flint-Garcia, Thornsberry, & Buckler, 2003). This imbalance is attributed to the physical connection between 
the loci, which alters the expected frequency of connections, generating non-random recombinations within the 
chromosome, which makes it possible to detect the connection between them (Resende, 2008).  

A relative measure of LD, called D’ (Equation 6), was proposed by Lewontin (1964), by which the LD of 
different locus pairs can be compared by taking the maximum theoretical values into consideration, according to 
the formula: 

D’ =
|D|

Dmax
                                       (6) 

where: D’ is the relative measure of LD; D the basic concept calculated based on haplotype frequencies; and 
Dmax the maximum theoretical value of LD between a possible pair of loci. In contrast to the basic concept of LD, 
which can vary between -0.25 and 0.25, D’ can vary between 0 and 1.  

Another relative measure of LD is r2. This measure was proposed by Hill & Robertson (1968) and consists of the 
square of the correlation coefficient. It measures the degree of association between loci (covariance), according 
to the variation of their alleles. As the measure of D’, r2 depends on the haplotype frequencies and is calculated 
as follows (Equation 7): 

rXY
2 = 

Cov(X,Y)

V(X)·V(Y)
= 

DXY
2

fX·fx·fY·fy
= 

DXY
2

fX(1	- fX)·fY(1 - fY)
                           (7) 

where: rXY
2 (coefficient of determination, or square of the correlation coefficient) is the relative measure of LD 

between any two biallelic X and Y loci, Cov(X,Y) is the covariance between these loci, V(X) and V(Y) are their 
respective variances, DXY

2 is the basic concept of LD between X and Y, and fX,x,Y,y are the allele frequencies 
referring to X and Y loci (X: fX + fx = 1), V(X) = fX·fx; Y: fY + fy = 1; V(Y) = fY·fy.  

Similarly to D’, r2 can vary between 0 and 1. The measures D’ and r2 are the most commonly used to calculate 
the LD between pairs of biallelic loci. Although both are not suitable for measuring LD in small samples, with or 
without low allele frequencies, each has its advantages. While r2 capitalizes on historically occurring mutation 
and recombination events, D’ capitalizes on recombination events only, and is the most adequate measure to 
detect them. However, D’ is strongly affected by small samples, so that comparisons between loci with low allele 
frequencies with this measure are inappropriate due to the high bias of the LD estimates (Flint-Garcia, 
Thornsberry, & Buckler, 2003). Therefore, in the case of association studies, where the sample size is limited by 
time and cost issues involved in the genotyping and phenotyping processes, r2 should be used to verify the extent 
of LD.  

Several aspects influence the LD observed in a population or species: mutation and recombination rate, mating 
system, genetic drift, population structure, kinship degree, selection, epistasis, and chromosomal rearrangements 
(Abdurakhmonov & Abdukarimov, 2008). These factors can generate false associations between markers and 
phenotypes in associative mapping, so they must be considered in the analyses. 

Currently, on account of the advancement of NGS, the GWAS has become the most widely used approach. 
Phenotypic and genotypic data of many individuals are assembled in a diversity panel. Genotyping data usually 
consists of genome-wide single-nucleotide polymorphisms (SNPs) identified by resequencing, genotyping by 
sequencing (GBS) or genotyping based on an array containing SNPs (BeadChips, Illumina). As GWAS uses 
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unrelated individuals with greater genetic variability, the number of markers must be high, which is possible due 
to the development of high-resolution genome analysis technology with NGS. 

Genome-wide association studies identify variations in the genome and associates them with the phenotype of 
interest by hypothesis testing, to construct genetic maps. The primary objective of GWAS is to identify 
marker-trait associations for one trait at a time and, secondly, to study its genetic architecture. The latter involves 
identifying all QTL/genes. The extent and level of this information has also improved with the continued 
increase in size of the association panels and the number of molecular markers used for GWAS. The 
identification of many false positives that appear after GWAS analysis and false negatives detected by 
Bonferroni or false discovery rate (FDR) corrections has been a problem in GWAS. The level of significance 
must be carefully considered, since, as thousands of markers are tested, setting the level at 5%, as generally done 
in the various tests, could boost the false-positive rate. The population structure or existence of epistasis between 
loci can also cause false positives (Cortes, Zhang, & Yu, 2021). 

2.4 Marker-assisted selection in Backcrosses 

With the advent of molecular markers and the first genetic molecular maps, marker-assisted selection (MAS, 
Figure 33) became an attractive idea for breeders. In backcrosses, molecular marker technology can be applied in 
several stages. The best parents for a cross can be identified by DNA fingerprinting of germplasm collections; 
the divergence between the parents can also be determined, to estimate the effort that will be required to 
re-establish the elite parent genotype. In each backcross cycle, the markers can be used to identify lines carrying 
the target allele (de Almeida et al., 2021; Paulino et al., 2022), containing the least proportion of the donor 
genotype, and to find lines with the least number of segments around the target allele (linkage drag). For 
recessive traits, molecular markers may prevent the need for an additional generation of selfing to identify the 
target allele (Langridge et al., 2001). 

Openshaw, Jarboe, and Beavis (1994) reported that the number of backcross generations in maize lines could be 
reduced from seven to three if the sample size were smaller (N < 100) and less markers were used (N < 80). 
Hospital, Chevalet & Mulsant (1992) concluded that, with the use of MAS, the number of generations could be 
reduced from seven to two. For most crops, more than 90% of the recurrent parent genotype can be recovered 
within two generations, if an adequate number of markers and an adequate number of progenies are used for 
genome selection (Tanksley, Young, Paterson, & Bonier-bale, 1989).  According to Benchimol, de Souza Jr., 
and de Souza (2005), the means of recovery of recurrent genotypes in three backcross generations were 
compatible with those expected in BC4 or BC5, indicating genetic gain due to marker-assisted backcrossing. The 
formula below estimates the percentage of the recurrent genome still in the donor’s genome (Equation 8): 

GR%* = [B + (0.5H)/(B + H + A)] × 100                        (8) 

where: A is the genome of the donor parent, B the genome of the recurrent parent and H the F1 hybrid.  

Marker-assisted backcross efficiency is based on various factors such as population size, distance of markers 
from the target locus and number of background markers used (Hasan et al., 2015). According to Kim et al. 
(2021), line selection based on KASP (Kompetitive allele-specific PCR) markers was successful in BC1F1 and 
BC2F1, with a recovery of 97-99.1% of the recurrent parent genome.  
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