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Abstract 
The complete analysis of the 16S rRNA gene of some non-sporulating bacterial isolates from the soil led us to a 
reliable taxonomic classification, allowing us to explore its entomopathogenic potential against insect-pest 
Spodoptera frugiperda. Many studies have shown the rapid development of resistance of S. frugiperda in relation 
to the methods that have been used in recent decades. Therefore, new research exploring the potential of new soil 
isolates is important. Thus, a comparative study between the complete and partial taxonomic classification based 
on 16S rRNA gene was realized as the basis for biological studies. Non-sporulating bacterial isolates were used 
in lethality bioassays against S. frugiperda larvae to compare bioassays efficacy using Bacillus thuringiensis 
(Berliner) (Bt) strains and the commercial product Dipel®. The results confirmed the strong resistance of this 
pest-larvae once it developed until the adulthood phase in all bioassays, applying sporulating or non-sporulating 
bacteria. Furthermore, an accurate phylogenetic position of the non-sporulating bacterial isolates become 
possible showing basically three species: Brevibacillus nitrificans, Curtobacterium sp. and Arthrobacter 
echigonensis. Besides the new biotechnological options for those bacterial isolates, according to the results 
further research should be done with new bacterial isolates in order to discover its potential to control S. 
frugiperda, thus assisting Bt in pest control. 

Keywords: 16S rRNA gene, lethality bioassay, Fall armyworm-cartridge larva. 

1. Introduction 
The maize (Zea mays) has become an important worldwide crop representing around 13% of the total 
agricultural area (Didoné, Silva, Ceccon, & Teixeira, 2018). Apart from being one of the most important 
exporters of maize grain, Brazil became self-sufficient in the domestic market for this crop (Trojan, Dalla Pria, & 
Castro, 2018). Maize plants are cultivated in all Brazilian states while the Midwest, Southeast and South regions 
are the ones that stand out in agricultural production. The states of Mato Grosso, Mato Grosso do Sul, Goiás, 
Minas Gerais, Paraná and Rio Grande do Sul contribute to 82% of the total Brazilian production (USDA, 2023). 
The Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) larva is a polyphagic pest that 
preferentially attacks crops of the Poaceae family, and consequently is the main maize pest in North and South 
America (Blanco et al., 2010). The larva in the first instars attack the leaves and during their development start to 
scrape the leaf blade, causing damage at all stages of maize development, infesting ears and feeding directly on 
growing grains (Siebert et al., 2012; Baudron et al., 2019). Fall armyworm or cartridge larva (S. frugiperda) has 
quickly developed resistance to several Bacillus thurigiensis (Bt)-based biological controls due the strong 
selection pressure imposed by the extensive and disseminated use of transgenic plants, that contain Bt genes in 
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their genome, and biopesticides containing Bt proteins (Sisay et al., 2019). The growth of resistance against Bt is 
one of the major challenges that has been faced in recent years in agricultural crops (James, 2015; Yang, Wang, 
& Kerns, 2022). Bt biological control has been used for more than two decades and at least four resistant species 
of pests against maize hybrids have already been found, in this short period of time (Tabashnik, Brévault, & 
Carrière, 2013). One of those pests is the fall armyworm (Storer et al., 2010). The first observed case of S. 
frugiperda resistance to Bt maize was first detected in TC1507 maize fields in Puerto Rico in 2006 (Storer et al., 
2010). Resistance of S. frugiperda in the corn field has been observed in several regions of Brazil (Farias et al., 
2014) and in the United States (Huang et al., 2014). The study of soils becomes an opportunity to pick up new 
microorganisms that can be prospected for biological control against insect-pests since those environments are 
potentially rich in microorganisms’ diversity, mostly bacteria (Wagg, Bender, & Widmer, 2014). The search for 
alternatives to biological control of insect-pests leads to the prospecting of non-sporulating entomopathogenic 
bacteria. The discovery and taxonomic classification of new bacterial isolates from soil, presenting the same or 
similar function as Bt, would have great potential to reduce pests acquired resistance. The 16s rRNA molecular 
marker is spread in all bacterial species and can be used for taxonomic purposes due its conserved and 
hypervariable regions developed during evolution. Applying this widely used marker it is possible to characterize 
a bacterium at the level of genus and species, allowing the prospection of its biotechnological potentials (Menna 
et al., 2006; Alves et al., 2020). Thus, this work aimed to taxonomic characterization and bioprospecting of 
non-sporulating bacterial isolates from soil vewing the entomopathogenic potential against S. frugiperda, 
compared to B. thuringiensis strains. 

2. Methods 
2.1 Isolation and Maintenance of Non-sporulating Bacteria 

Non-sporulating bacteria named LGA-V0513, LGA-V056, LGA-V20C, LGA-V20F, LGA-V0522, LGA-V05D, 
LGA-EV05, LGA-EV08, LGA-V20B and LGA-V20G were isolated from soil cultivated with sugarcane 
(Saccharum spp.) (Omori et al., 2016), located in Nova Europa/SP, Brazil (21°49′35.17″ and 48°36′41.06″), and 
maintained at the Laboratory of Applied Genetics (Faculdade de Ciências Agrárias e Veterinárias (FCAV), 
Jaboticabal/SP, Brazil). Nova Europa has an annual median temperature of 29.3 °C and precipitation of 1,341.4 
mm. Bacterial cells were grown in Tryptone-Yeast (TY) medium (Tryptone 5.0 g/L; Yeast extract 3.0 g/L; NaCl 
0.87 g/L), pH 7.0 for 48 hours (h). After TY broth, the bacterial isolates were maintained in Petri dishes and in 
-80 °C stocks. Non-sporulating isolates were previously and partially characterized by Almeida (2017) (Figure 
1).  
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macromolecules happened by organic extraction with one volume of Chloroform:Isoamyl Alcohol [24:1 (v/v)] 
and DNA precipitation with 2 volumes of Ethanol. Excess of ethanol evaporated in a Concentrator Plus 
(Eppendorf) in the D-AL mode. The DNA was resuspended in 100 μL of TE (10:1) (Tris-HCl 10 mM, EDTA 1 
mM) pH 8.0, overnight at 4 °C. The quality of genomic DNA was expressed by electrophoretic characterization 
[0.8% Agarose (w/v)] and DNA quantification in a Nanodrop 1000 Spectrophotometer device 
(ThermoScientific-Uniscience). DNA samples were stored at -20 °C until utilization. The complete 1.5 Kb 
amplicons for 16S rRNA gene to determine the molecular signature of each isolate was obtained through PCR. 
Universal oligonucleotide primers fD1 (8-27) <5′-AGA GTT TGA TCC TGG CTC AG-3′> and rD1 (1525-1541) 
<5′-AAG GAG GTG ATC CAG CC-3′> (Weisburg et al., 1991), described for the target regions of Escherichia 
coli K12, were used for amplification in a reaction of 20 µL containing: template DNA (40.0 ng); 7.5 pmol of 
each universal primer; 1.75 mM MgCl2; 0.2 mM Deoxyribonucleotide Triphosphates (dNTPs); 10X Buffer (2.0 
µl); 1U of Taq DNA Polymerase enzyme (Invitrogen). The amplification program followed 94 °C/5 minutes 
(min); 35 cycles at 94 °C/30 sec (s), 56 °C/40 s, 72 °C/90 s; 72 °C/7 min, performed in a PTC-100™ 
Programmable Thermal Controller thermocycler (MJ Research, Inc.). The size and purity of the generated 
amplicons were verified by electrophoresis [1.5% agarose (w/v)].  

2.4 Sequencing of 16S rRNA Amplicons 

The amplicons produced by PCR had their DNA sequences determined to identify the bacterial affiliation. For 
the DNA sequencing reactions, in addition to the external primers (fD1 and rD1), 16S rRNA internal region was 
targeted by primers designed by L. M. Cruz and described by Menna et al. (2006): 362f (339-362) <5′-CTC CTA 
CGG GAG GCA GCA GTG GGG-3′>, 786f (764-786) <5′-CGA AAG CGT GGG GAG CAA ACA GG-3′> and 
1203f (1179-1203) <5′-GAG GTG GGG ATG ACG TCA AGT CCT C-3′>. The sequencing reactions were 
standardized to a final volume of 10 μL [(0.5 pmol of primer; 1X sequencing buffer; 1.0 µL BigDye enzyme 
(Thermo Fisher Scientific); 7 ng of bacterial total DNA (for primers fD1 and rD1) or 7 ng of 16S rRNA amplicon 
(for primers 362f, 786f and 1203f)]. The amplification program followed 96 °C/2 min; 40 cycles at 96 °C/10 s, 
52 °C/20 s, 60 °C/4 min. Each sequencing reaction was precipitated with 80 μL of 75% (v/v) isopropanol and 
subjected to successive washings in cold 70% (v/v) ethanol. The samples were dried in a laminar flow for 1 h, 
resuspended with 9.0 μL of Hi-Di Formamide (4311320-ABI Prism) and denatured at 95 °C for 5 min. Amplicon 
sequencing was performed in the ABI 3100 Automated Sequencer model capillary sequencer (PerkinElmer) in 
FCAV facility.  

2.5 Analysis of Molecular Signature of Bacterial Isolates Through Bioinformatics 

The 16S rRNA gene was concatenated at approximately 1.5 Kb by the Phred/Phrap/Consed software package 
(Gordon, Abajian, & Green, 1998). After assembling of the 16S rRNA contigs, the sequences were submitted to 
nucleotide similarity query against the nucleotide database (non-redundant) of GenBank (National Center for 
Biotechnology Information-NCBI), using the nucleotide tool BLAST (BLASTn-Identity = 99%) (Altschul et al., 
1990). For sequence alignment the MAFFT v7.215 program was used (Katoh, 2002). The search for the best 
nucleotide replacement matrix was performed by the Phangorn package (Schliep, 2011) in R (R Development 
Core Team, 2011). The alignment matrix and the nucleotide substitution matrix were used by IQTREE program 
(Trifinopoulos, Nguyen, Von Haeseler, & Minh, 2016) for construction of the phylogenetic tree based on 
Maximum Likelihood (ML). Bootstrap and SH-aLRT branch tests applied the ML nucleotide frequency 
optimization, Ultrafast bootstrap analysis and 1,000 replicates options. The taxonomic classification of 
non-sporulating bacterial isolates LGA-V0513, LGA-V056, LGA-V20C, LGA-V20F, LGA-V0522 were 
processed by Alves et al. (2020). 

2.6 Creation and Maintenance of S. frugiperda  

The population of S. frugiperda was obtained through EMBRAPA Maize & Sorghum (Sete Lagoas/MG, Brazil). 
The larvae were kept on an artificial diet (Greene, Leppla, & Dickerson 1976) in 70 mL plastic containers, where 
one larva per pot was individualized, until the pupal stage. Pupae were removed and placed in 1 L containers 
with filter paper at the bottom. After hatching, the adults were placed in cylindrical PVC cages (30.0 cm high × 
28 cm in diameter), internally lined with white bond paper and covered with nylon tissue to prevent them from 
escaping. Adults were fed with 10% (w/v) liquid honey solution. Every two days, eggs were collected and placed 
in 1 L containers with artificial diet on the bottom.  

2.7 Lethality Bioassays Against S. frugiperda 

Non-sporulating bacteria: Ten bacterial isolates were grown on 25 mL of TY medium at 120 rpm, 28 °C for 12 h 
in rotary shaker (Shaker Incubator Model G25 New Scientific). Then, the pre-inoculum was poured onto 75 mL 
of TY medium and incubated at 200 rpm, 28 °C for 48 h in a rotary shaker. An aliquot of 75 μL of TY broth was 
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Table 2. Lethality bioassay for Spodoptera frugiperda using non-sporulating isolates 

Non-sporulating bacteria (R) Larvae weight (g/lar) 
LGA-V05-13 0.5169±0.096 b 

LGA-V20F 0.5663±0.089 a 

LGA-V05-6 0.5996±0.089 a 

LGA-EV05 0.5769±0.081 a 

LGA-EV08 0.5796±0.076 a 

LGA-V20C 0.5615±0.089 a 

LGA-V20G 0.5674±0.091 a 

LGA-V20B 0.5569±0.091 a 

LGA-V05-22 0.5564±0.083 a 

LGA-V05D 0.5432±0.091b 

Control (H20) 0.5572±0.094 a 

Anova p = 0.001882 

Note. Means followed by different letters differ from each other by the Scott-Knott test at 5% probability. 

 

3.4 Lethality Bioassay with B. thuringiensis Strains for Larvae and Pupae Stages of S. frugiperda 

Bioassays applying spores from B. thuringiensis showed significant differences on larvae sub-lethality by 
Scott-Knott test at 5% probability for both strains tested. Low concentrations of spores seem to be more efficient 
in controlling the development of larvae in acquiring weight. LGBBA-1321 strain stood out even more than 
LGBBA-1355 strain (Table 3). 

According to the results of bioassays over pupae weight, no significant differences (P > 0.05) on sub-letality 
were noted according to the Scott-Knott test at 5% probability for any strains (Table 4).  

 

Table 3. Lethality bioassay for Spodoptera frugiperda larvae using Bacillus thuringiensis strains 

Concentrations 
Larvae weight (g/lar) 

LGBBA-1355 LGBBA-1321 
3 × 10⁴ 0.0143±0.005 d 0.0132±0.005 c 

3 × 10⁵ 0.0119±0.006 d 0.0102±0.009 c 

3 × 10⁶ 0.0319±0.009 c 0.0128±0.004 c 

3 × 10⁷ 0.0343±0.013 b 0.0171±0.005 b 

3 × 10⁸ 0.0270±0.009 c 0.0134±0.002 c 

3 × 10⁹ 0.0414±0.011 a 0.0181±0.003 b 

Control (H20) 0.0355±0.005 b 0.0355±0.005 a 

Anova p = 3.3 × 10-28 p = 1.1 × 10-42 

Note. Means followed by different letters differ from each other by the Scott-Knott test at 5% probability. 

 

Table 4. Lethality bioassay for Spodoptera frugiperda pupae using Bacillus thuringiensis strains 

Concentrations 
Pupae weight (g/lar) 

LGBBA-1355¹ LGBBA-1321¹ 
3 × 10⁴ 0.2991±0.027 0.2352±0.005 

3 × 10⁵ 0.3005±0.026 0.2775±0.006 

3 × 10⁶ 0.3213±0.034 0.2516±0.009 

3 × 10⁷ 0.3145±0.025 0.2891±0.013 

3 × 10⁸ 0.3083±0.028 0.1903±0.009 

3 × 10⁹ 0.3068±0.027 0.2691±0.011 

Control (H2O) 0.3079±0.027 0.2669±0.005 

Anova p= 0.08985 p= 0.81679 

Note. ¹ There is no significance by Anova test. 
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3.5 Lethality Bioassay With Dipel® 

The treatment with commercial product Dipel® was also not effective over larvae weight showing no significant 
differences (P > 0.05) according to the Anova and the Scott-Knott test at 5% probability (Table 5). 

 

Table 5. Lethality bioassay for Spodoptera frugiperda larvae using Dipel® 

 Larvae weight¹ (g/lar) Larvae weight¹ (g/lar) 
Control (H2O) 0.0308±0.005 0.2669±0.021 

Dipel® 0.0660±0.011 0.2207±0.027 

Anova p = 0.1629 p = 0.16293 

Note. ¹ There is no significance by Anova test. 

 
4. Discussion 
The complete DNA sequencing of the 16S rRNA gene allowed a more reliable and accurate taxonomic 
classification for each non-sporulating isolate, when compared to the partial DNA sequencing of the 16S rRNA 
gene performed by Almeida (2017). Based on data from 16S rRNA partial sequencing, LGA-V05D isolate was 
classified as B. thuringiensis with an identity of 96%. However, based on 16S rRNA complete sequencing the 
LGA-V05D, LGA-V20B and LGA-V20G were taxonomically classified as Arthrobacter echigonensis 
(Micrococcaceae). Advances in taxonomic classification have shown that A. echigonensis should be reclassified 
within the genus Sinomonas [S. echigonensis (Ding et al., 2009) Zhou et al. (2012), comb. nov.], signed by the 
similarity in composition of the main fatty acids, polar lipids and cell wall amino acids (Zhou et al., 2009). 

Members of the genus Sinomonas can synthesize silver nanoparticles with antimicrobial activity (Manikprabhu 
et al., 2016), hydrolyze starch (Ser et al., 2015), biodesulfurize coal (Mishra et al., 2014), present ability to 
degrade oil in the sea (Wu et al., 2010) and to degrade the antioxidant sesamine (Kumano et al., 2016). Recently, 
it was discovered that members from this genus exhibit plant growth-promoting effects and antagonistic activity 
against many root and leaf pathogens, potentiating their use in sustainable agriculture (Adhikari et al., 2017). 
These studies also showed this genus may have inhibitory activity against phytopathogenic fungi isolated from a 
soil sample, such as Exserohilum turcicum (Fu et al., 2019). Sinomonas also showed antimicrobial activity 
against the multi-resistant Staphylococcus aureus and can be used in future studies to minimize the problems 
related to the resistance of this bacteria (Manikprabhu et al., 2016). 

The complete DNA sequencing of the 16S rRNA for LGA-EV05 isolate assigned it as Curtobacterium herbarum 
strain SEFSH2 (Microbacteriaceae). Their cells are gram-positive, strictly aerobic, spore-free and mobile, with 
an optimum average temperature for growth at 25 °C (Behrendt et al., 2002). This genus is well known for 
composing plant growth-promoting bacteria (Vimal et al., 2019), however, it also presents plant pathogenic 
species such as C. flaccumfaciens (Soares et al., 2013). There are bacteria from this genus able to manage 
degradation of hydrocarbons, particularly in soils contaminated with oil (Lumactud et al., 2016), and to reduce 
toxicity caused by aluminum metal in soils (Ma et al., 2016). Strains of C. herbarum applied as bioinoculant 
could improve the production of saffron plants showing multifunctional ability to produce siderophores, plant 
growth hormones like IAA, and to solubilize phosphate (Díez-Méndez & Rivas, 2017). C. herbarum also 
improved both root and shoot growth for Arabidopsis plants as well as root growth for lettuce and basil (Mayer, 
Dörr de Quadros, & Fulthorpe, 2019). 

The non-sporulating isolate LGA-EV08 was taxonomically affiliated with Brevibacillus nitrificans strain DA2 
by the complete DNA sequencing of the 16S rRNA. The strain DA2T (=  JCM 15774T  =  NCIMB 14531T) is the 
type strain of species and was isolated from a microbiological agent for enhancing microbial digestion in sewage 
treatment tanks. This bacterium presents gram-positive cell, facultatively anaerobic, mobile and capable of 
growing at pH 5-8. As a nitrifying bacterium, it removes nitrogen through biological nitrification and can be 
applied in wastewater treatments (Takebe, Hirota, Nodasaka, & Yumoto, 2012). 

The taxonomic characterization based on complete DNA sequencing of 16S rRNA for non-sporulating bacteria 
performed by Alves (2020) were also more accurate than those based on partial DNA sequencing (Almeida, 
2017). Apart from genus classification, complete DNA sequencing of ribosomal gene brings classification in the 
level of species in this work as in the work of Alves (2020). For isolates LGA-V0513, LGA-V056, LGA-V20C, 
LGA-V20F, LGA-V0522, the reliable classification was as follow, respectively: Bacillus toyonensis, 
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Novosphingobium lindaniclasticum, Rhizobium vallis, Cupriavidus necator and Chromobacterium vacinni 
(Alves, 2020). 

Based on the increasing interest on the search an application of non-sporulating bacteria as biological control 
against insect-pests, the ten new isolates originated from the agricultural soil (Omori et al., 2016) were tested for 
their effectiveness against S. frugiperda, the fall armyworm-cartridge larva. Entomopathogenic potential could 
be evaluated only as sub-lethality on larvae weight. LGA-V0513 and LGA-V05D were the two non-sporulating 
isolates that showed some subtle effect on the weight of S. frugiperda larvae. Therefore, this data includes the 
Bacillus toyonensis and A. echigonensis species as possible agents against this pest. Future studies should be 
done improving the conditions of bioassays to acquire a better response against S. frugiperda. The resistance of 
this pest is well known. As noted, S. frugiperda presented resistance in several countries and is the only target 
pest species that has developed field resistance to Bt crops in several areas of the world (Dangal & Huang, 
2015). 

The two strains of Bt (LGBBA-1321 and LGBBA-1355) showed effective response over larvae but not pupae of 
S. frugiperda. Despite similar results, the LGBBA-1321 strain stood out in terms of spore concentration 
optimization. This allows to hypothesize that probably this strain will present better average lethal concentration 
(CL50) rates in improved bioassays. It was also noted for both strains that the lowest concentrations of spores 
initially seemed more efficient in reducing the weight of the larvae. Again, one can speculate about the potential 
resistance of this insect-pest against the traditional Bt-based biological control. The biological control practices 
adopted in recent years against this pest have already shown their evolution with resistance in the control of 
insect-pests (Yang, Wang, & Kerns, 2022).  

S. frugiperda belongs to the order Lepidoptera and family Noctuidae and it has been demonstrating their 
resistance to the use of B. thuringiensis as the protein toxins produced by these bacteria have the same binding 
sites in larval intestines, thus reducing their mortality effect (Heckel, 2015). These insects belong to the order 
Lepidoptera (Noctuidae) and demonstrate their resistance to the use of B. thuringiensis, as the protein toxins 
produced by these bacteria have the same binding sites in larvae, thus reducing their mortality effect (Heckel, 
2015). It can be observed that there are few studies that show the capacity of non-sporulating bacteria to control 
this insect-pest. Serratia spp., a non-sporulating bacteria, are effective but not immediately lethal when they 
inhabit the digestive tract of the larva. Some of the strains often become pathogenic upon reaching the hemocoel 
(Mason et al., 2022). There are new molecules that can act against the pest. Rhabduscin synthesized by 
Xenorhabdus nematophila (non-spore forming) is an isocyanide that acts at nanomolar-level as an inhibitor of 
phenoloxidase, a key component of the insect innate immune system (Nuñez-Valdez et al., 2019). Thus, this drug 
is able to kill the insect-pest once it cannot fight against this and others applied in addition a (Crawford et al., 
2012).  

Bt-derivatives are the main products used in the formulation of biopesticides, with Dipel® being one of the most 
used and known (Roh et al., 2017). It contains toxins and proteins that lead to insect death (Bravo, Gill, & 
Soberón, 2007). In this study, it can be observed that with the application of Dipel® there was no effect on the 
mortality of larvae, as they developed normally gaining weight and reaching the pupal stage. It is possible that 
population of S. frugiperda used in this study should be resistant to this commercial product. Other authors have 
also written about resistance to Dipel®. The first reports occurred in the early 1990s, as the case of Plutella 
xylostella larvaes (Lepidoptera: Plutellidae), which were resistant to this product. The development of resistance 
also was observed in Sesamia nonagroides (Lepidoptera: Noctuidae), Ostrinia nubilalis (Lepidoptera: Pyralidae) 
and in genetically modified maize fields in Spain (Kranthi et al., 2006). In South Africa, a specific case of 
resistance by Busseola fusca (Lepidoptera: Noctuidae) over GM Cry2Ab maize crops was well studied and the 
resistance was effect of the evolution and inheritance of a recessive autosomal gene by the pest, conferring the 
tolerance trait (Berg & Campagne, 2015; Campagne et al., 2017). 

Concerning transgenic plants, the Herculex® I Insect Protection (TC1507 event) was launched in Argentina 
released during the 2005-2006 season as an innovative product. The technology consists in plants expressing the 
entomopathogenic protein Cry1F and was widely adopted due its high level of effectiveness against fall 
armyworm. However, resistance against this has already been detected and it seems to be increasing in that 
county threatening the reliability and durability of this control trait. Resistance against Cry1F was characterized 
as recessive autosomal and monogenic in Puerto Rico, Brazil and Argentina (Chandrasena et al., 2017), which is 
very worrying.  

Due to the development of resistance by the current insect pests, the increasing production of new chemical and 
commercial products and the need for more target-specific and environmentally sustainable products for 



jas.ccsenet.org Journal of Agricultural Science Vol. 15, No. 3; 2023 

53 

biological control, the exploration of innovations in biotechnology is extremely necessary. The search for new 
entomopathogenic organisms, including non-sporulating bacteria, is a matter of fact. In this case, the correct 
taxonomic classification and entomopathogenic effectiveness of non-sporulating bacteria can reveal promising 
biological resources to be prospected for many biotechnological properties. 

5. Conclusion 
The application of primers that cover the entire region of the amplicon for the complete DNA sequencing of 16S 
rRNA gene provides greater reliability to the taxonomic classification of non-sporulating bacteria. The 
nomenclature for the five new classified isolates was in accordance with Brevibacillus nitrificans strain DA2 
(LGA-EV08), Curtobacterium herbarum strain SEFSH2 (LGA-EV05) and Arthrobacter echigonensis strain 
MN1405 (LG-V20B, LG-V20G and LG-V05D). LGA-V0513 and LGA-V05D presented subtle sub-lethality 
effect on larval weight of S. frugiperda. Bt-LGBBA-1321 was slightly more efficient than Bt-LGBBA-1355 in 
controlling larval weight of S. frugiperda. The population of S. frugiperda used in this work was resistant to 
Dipel®. The correct taxonomic positioning of non-sporulating soil isolates reveal new biotechnological 
possibilities to be prospected in the future. 
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