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Abstract 
Fusarium wilt is a major constraint in amaranth production in Africa; the disease can lead to total crop failure. 
However, few studies have identified Fusarium species associated with amaranth diseases in Ghana. The study 
was conducted to identify Fusarium species causing wilt in amaranth in the Semi-deciduous and Guinea Savannah 
Agro-ecological zones of Ghana and determine variations in isolates. Using standard laboratory procedures, fungal 
pathogens were isolated and culture characteristics studied. Variations in virulence were determined using root dip 
method. Sequence analysis of the internal transcribed spacer region of isolates was carried out for species 
identfication. Based on morphological features complemented by sequence analysis; Fusarium equiseti, F. 
oxysporum, F. solani and F. proliferatum were identified. Fusarium equiseti was the dominant species appearing in 
82% of isolates. All the isolates were pathogenic. Based on virulence level, 9% of the isolates were classified as 
very highly virulent whilst 56% were weakly virulent. Genetically, isolates clustered into four groups irrespective 
of origin. The work identified and classified Fusarium species causing amaranth wilt in Ghana.  
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1. Introduction 
Amaranth (Amaranthus species) is an indigenous leafy vegetable crop grown and consumed in several tropical 
African countries. It thrives well under minimum rainfall of about 500 mm and on marginal soils (Jimoh et al., 
2018; Vidhi, 2020). Nutritionally, amaranth is rich in proteins, fat, carbohydrate, calcium and vitamins (Alegbejo 
et al., 2013; Achigan-Dako et al., 2014; Ochieng et al., 2019). It has the great potential of providing the nutritional 
needs of consumers, combat food insecurity and reduce poverty among rural poor farmers (Mekonnen et al., 
2018).  

The production of Amaranth is however; constrained by numerous pathogenic fungi causing several diseases such 
as leaf spots, wilting, root rot, dumping-off and dieback. Among the various diseases associated with the crop, 
diseases caused by Fusarium are highly prevalent because, this fungal pathogen is known to be cosmopolitan 
(Rampersad, 2020). The pathogen has a wide of host range; survives in soils and plant debris; and infects crops 
usually through the roots (Agrios, 2005). It may be spread by water, contaminated working equipment or seed 
(Lamichhane et al., 2017). Fusarium species causing wilt are soil-borne and survive in the soil debris as 
chlamydospores without a host plant for many years (Mwaniki et al., 2011; Worku & Sahe, 2018). Fusarium 
species attack on vegetables leads to vascular wilt, root rot, chlorotic leaves and damping-off (Hibar et al., 2007; 
Mwaniki et al., 2011; Osdaghi, 2020; Oljira & Berta, 2020). According to Blodgett et al. (2000) and National 
Research Council (2006), wilting and damping-off diseases caused by Fusarium can lead to total crop failure in 
Amaranth. Azil et al. (2020) citing Hwang and Evans (1995) reported that when the pathogen invades its host, it 
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colonizes the xylem vessels and causes the plant to show symptoms of leaf chlorosis, vascular discoloration, 
wilting, stunting and death of plant.  

Previous research studies have identified and reported multiple species of Fusarium responsible for or involved in 
different diseases and disease complexes. According to Barros et al. (2014) and Šišić et al. (2018), both F. solani 
and F. graminearum were associated with wilting and damping-off diseases of soybean and pea. Similarly, 
Daami-Remadi and El Mahjoub (2004) found that F. sambucinum, F. oxysporum and F. solani were responsible 
for potato wilt disease. Several authors (Blodgett et al., 1998; Barros et al., 2014; Kuzdraliński et al., 2014) have 
generally associated Fusarium species with multiple diseases attacking several vegetables, including amaranth. In 
Ghana, Ministry of Agriculture (2016) and Agbaglo et al. (2020) have reported that multiple species of Fusarium 
induce diseases and limit production of vegetables such as tomato, eggplant, pepper, and okra. However, a few 
have identified Fusarium species involved in amaranth wilt disease. To overcome this challenge, there is the need 
for more research to properly identify and understand the population difference in the pathogen. This is crucial for 
the development of efficient disease management strategies. This study was therefore carried out with the 
objectives to (i) identify and characterize Fusarium species associated with amaranth wilt disease in Ghana (ii) 
determine differences in pathogenicity of the isolates.  

2. Materials and Methods 
2.1 Sampling and Fungal Isolation 

Amaranth seeds, diseased plants, and soils were collected from 43 surveyed farms in the peri-urban communities 
of Kumasi and Tamale in the semi-deciduous and Guinea Savannah agro-ecological zones of Ghana respectively. 
Isolation of seed-borne fungal pathogens was conducted following the procedure described by the International 
Seed Testing Association (ISTA, 2015). Amaranth seeds were surfaced sterilized with 3% sodium hypochlorite 
(NaOCl) for 3 min and serially rinsed with sterilized distilled water three times. It was then placed on Potato 
Dextrose Agar (PDA) and incubated for seven days under alternating circles of 12 h light and 12 h darkness under 
near-ultraviolet (NUV) light. To isolate fungi from diseased plant tissues, root tissues were washed under tap water 
to remove debris and then cut into small pieces. Leaf tissues were cut into pieces to contain both symptomatic and 
asymptomatic portions and surface sterilized with 5% sodium hypochlorite for 1 min, and then rinsed with 
sterilized distilled water three times. The sterilized specimens were placed on PDA and incubated for five days at 
26±2 °C. Serial dilution method was used to isolate fungal species from soil (Kumar et al., 2015). One gram of 
each soil sample was suspended in 10 ml distilled water and serial dilutions of 10-1 to 10-5 were made using sterile 
distilled water. From dilutions of 10-4 and 10-5, 1 ml aliquots were picked with a pipette and spread on streptomycin 
amended PDA plates. Plates were then incubated at 26±2 °C for four days.  

After the period of incubation, fungal colonies that appeared on all plates were transferred onto fresh PDA and 
purified by single spore culturing. Fungi were identified based on habit and morphological characteristics of the 
fruiting bodies and slide examination with an identification manual (Barnett & Hunter, 1972; Mohd Nazri et al., 
2020). Pure cultures of fungi growing in media were obtained by single spore isolation, stored in slant universal 
bottles, and kept in the refrigerator at 4 °C for use (Choi et al., 1999).  

2.2 Morphological Characterization 

All purified fungal isolates were placed separately in the center of 90-mm diameter Half Strength Potato Dextrose 
Agar (HSPDA) plates and incubated at 26±2 °C for seven days for examination of colony form, elevation, margin, 
and colour (Watanabe, 2010; Miyashira et al., 2010). Colony growth of the different Fusarium isolates were 
measured daily along two perpendicular lines drawn beneath the plates. Mean colony diameter was then calculated 
by the average of the two colony diameters for each plate; the growth rate was calculated as the average of the 
7-day mean daily growth (Than et al., 2008; Mukuma, 2016). The experiment was laid out in a completely 
randomized design with four replications. Conidia shapes and sizes produced by representative isolates were 
observed and measured with an Amscope microscope for 30 conidia of each isolate.  

2.3 Fusarium Pathogenicity Tests 

Thirty-four Fusarium isolates were used for pathogenicity assays. The pathogenicity tests were performed using 
the root dip inoculation method. Inoculum of each Fusarium species was prepared by flooding the surface of 
7-day-old culture of each isolate with water. The surface was scraped with sterile glass rod to dislodge the spores. 
The spore-mycelium-water suspension was filtered through a four layered cheese cloth to remove the mycelia 
debris. The spore concentration of the suspension was determined and standardized by counting with a 
heamocytometre (Fuchs-Rosenthal). The resultant suspension was adjusted to contain 1 × 108 spores/ml and used 
for the assays. Seeds of amaranth were sterilized with 5% sodium hypochlorite (NaOCl) for 3 min and serially 
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rinsed with sterilized distilled water three times before sowing in sterilized soil for seedling growth. After 21 days, 
seedlings of amaranth were uprooted and tip of roots trimmed with sterilized scissors. The wounded roots were 
dipped into separate Fusarium inoculum for 30 min and then transplanted into 12-liter plastic buckets filled with 
sterilized soil (Korolev et al., 2000). Wounded roots immersed in sterilized distilled water for 30 min served as a 
control. Inoculated plants were covered with transparent polythene bags for 48 hours to build up high humidity for 
disease development. Wilt Disease severity was recorded weekly for six weeks. The plants were rated for disease 
severity on a 1 to 5 disease severity scale, where, 1 = no lesion or damage; 2 = 1-25% damage; 3 = 26-50% damage; 
4 = 51-75% damage; 5 = more than 75% damage or total destruction. The disease severity index (DSI) was 
calculated for each isolate as: 

DSI = 
∑ nv

NS
	×	100                                           (1) 

where, n = Number of plants rated in each grade category; v = Numerical value of disease grade; N = Total number 
of plants rated; S = Highest disease grade (Asma et al., 2018). Means for the six weeks severity score were used in 
determining the pathological differences among the isolates (Zhu et al., 2014; Kalman et al., 2020). The 
experiment was laid in a completely randomized design with three replications. At the end of the assays, fungal 
pathogens were re-isolated to confirm Koch’s postulate. 

2.4 Genomic DNA Isolation, Polymerase Chain Reaction, Amplification and Sequencing  

Genomic DNA of each fungal isolates was extracted from 7-day-old cultures using the modified Cetyl 
trimethylammonium bromide (CTAB) method (Tripathy et al., 2017; Weiland, 2019). At the Functional 
Bioscience Laboratory, Madison, WI, USA, Polymerase chain reaction (PCR) was carried out with the DNA 
extracted from isolates as templates. The primer pair ITS1/ITS4, (ITS1: 5’-TCCGTAGGTGAACCTGCGG-3’and 
ITS4: 5’-TCCTCCGCTTATTGATATGC-3’) designed to amplify the internally transcribed spacer (ITS) region of 
isolates (White et al., 1990) was used in the PCR. The mixture was comprised 5 µl of template DNA, 2.5 µL each 
of forward and reverse primers, 1.25 µl of 2 mM MgCl2, 25 µl of master mix (10 mM Tris-HCl, 50 mM KCl, 1.5 
mM MgCl2, 0.2 mM dNTPs, 5% Glycerol, 0.08% IGEPAL® CA-630, 0.05% Tween® 20, 25 units/ml Taq DNA 
Polymerase, pH 8.6 at 25°C) (New England Biolabs, UK) and 13.75 µl of deionized autoclaved water. The PCR 
cycles were as follows: initial denaturation at 95 °C for 30 s, followed by 35 cycles of denaturing, annealing and 
extension at 95 °C for 10 s, 59 °C for 15 s and 72 °C for 30 s, with a final extension at 72 °C for 5 min. The 
Amplified products were separated by 1.5% w/v agarose gel (Invitrogen, Carlsbad, CA), stained with Ethidium 
bromide alongside 1.0 kb marker at 100 V for one hour. Bands were observed under UV light. The amplified PCR 
products were sequenced using the BigDye Terminator Cycle Sequencing Kit v3.1 (Applied Biosystems, USA) 
and analyzed on an ABI 3730xl DNA Analyzer (Applied Biosystems, USA).  

2.5 Analysis of Data 

Data collected from isolate colony diameter, daily growth, conidia length and width, and the severity scores were 
subjected to Analysis of variance using the Genstat statistical software version 12.0. (Lawes Agricultural Trust, 
VSN International, UK). Differences in means were compared using the Least Significant Difference (LSD) where 
significant treatment differences were found. Virulence of isolates was grouped according to their severity scores 
as: 2-weakly virulent; 3-moderately virulent; 4-highly virulent; 5-very highly virulent.  

2.6 Phylogenetic Analysis 

Obtained sequenced data were manually edited and assembled using the BioEdit software, then queried for 
similarities with strains (Rahjoo et al., 2008; Chen et al., 2017) deposited at the Genebank of the National Centre 
for Biotechnology Information (NCBI) using the BLAST search tool. Sequences were aligned using the Clustal W 
package in MEGA software (Tamura et al., 2013). A phylogenetic tree was constructed using maximum likelihood 
(ML) in MEGA 7 software.  
3. Results  
3.1 Fungal Identification and Morphological Characterization  

Thirty-four isolates obtained and examined fit the description of Fusarium species based on their morphological 
features. Three, twelve, thirteen, and six of the strains were isolated from leaf, seeds, roots, and rhizosphere soil, 
respectively (Table 1). The isolates obtained, however, exhibited diverse cultural characteristics in colony forms, 
elevations, margins, and colour irrespective of where they originated from. Two colony forms namely circular and 
irregular were observed (Figure 1). Majority (56%) of the isolates exhibited circular colony with smooth edges 
whilst 44% of the isolates produced irregular colony form with wavy edges. Eight and twenty-six of the isolates 
exhibited flat and raised elevations respectively (Figure 2). Culture margins produced by the isolates were either 
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smooth or undulate whilst four main colony colours namely white, cream, orange and pink were observed (Figure 
3). Conidia shape of the isolates was crescent with multiple septations (Figure 4). The length and width of 
Fusarium conidia differed significantly (P ≤ 0.01) from each other. The length ranged from 9.41µm (Boad Soil 1) 
to 41.5 µm (AsoM 3R) all from Kumasi metropolis while the width ranged from 1.97 µm (ChoMa 39L) to 6.87 µm 
(AsoM 3R) isolated from Tamale and Kumasi metropolises respectively.  
Colony diameter and growth rate for Fusarium isolates showed significant difference (P ≤ 0.01) among the isolates. 
Mean colony diameter and growth rate for Fusarium isolates ranged from 12.10 to 46.5 mm and 2.04 to 11.21 
mm/day respectively (Table 1). For both colony diameter and growth rate of Fusarium isolates, highest and the 
lowest records were registered by isolates ‘Emin Seed 13’ and ‘ChoLo Seed 40’ obtained from Kumasi and Tamale 
metropolises respectively.  

 

Table 1. Morphological characteristics of Fusarium isolates from Semi-deciduous and Guinea savannah 
Agro-ecological zones 

Agro-ecological Location Isolate code 

Culture Mean  
colony  
diameter 
(mm) 

Daily  
growth  
rate  
(mm/day) 

Conidia  
Length  
(µm) 

Conidia 
Width  
(µm) Form Elevation Margin Colour

Semi-deciduous  Kumasi AsoM 3R Circular Raised Smooth Orange 29.52 7.23 41.5 6.87 

Semi-deciduous  Kumasi AsoM 4R Circular Raised Smooth Orange 29.62 5.22 17.3 3.08 

Semi-deciduous  Kumasi AsoM Soil 3 Circular Raised Undulate Cream 12.88 3.28 18.31 3.4 

Semi-deciduous  Kumasi Boad Soil 1 Circular Raised Undulate Pinkish 28.1 6.58 9.41 3.53 

Guinea savannah  Tamale ChoIa Seed 30 Irregular Raised Undulate Orange 33.62 8.21 30.81 4.34 

Guinea savannah  Tamale ChoLo 43R Irregular Raised Undulate Orange 13.95 2.79 15.64 2.92 

Guinea savannah  Tamale ChoLo Seed 40 Circular Raised Undulate Orange 46.52 11.21 36.31 5 

Guinea savannah  Tamale Cholo Seed 43 Irregular Raised Undulate White 43.93 10.89 21.02 3.5 

Guinea savannah  Tamale ChoMa 39L Irregular Raised Smooth Cream 18.45 4.54 20.6 1.97 

Guinea savannah  Tamale ChoNa 35L Irregular Flat Undulate White 28.5 6.94 29.28 4.46 

Guinea savannah  Tamale ChoNa Seed 36 Irregular Raised Undulate Cream 32.17 7.47 27.11 3.6 

Guinea savannah  Tamale ChoNa Soil 37 Circular Raised Undulate Cream 18.57 4.58 20.94 4.17 

Guinea savannah  Tamale ChoYa Seed 31 Circular Raised Undulate Cream 26.71 6.57 10.66 3.12 

Semi-deciduous  Kumasi Ded 5Rr Irregular Raised undulate White 40.5 10.21 13.85 3.97 

Semi-deciduous  Kumasi Ded 6Rr Irregular Raised Undulate White 21.47 4.34 18.97 2.96 

Semi-deciduous  Kumasi Ded 7Rr Irregular Flat Undulate Orange 12.12 2.43 10.76 2.83 

Semi-deciduous  Kumasi Ded Seed 6 Circular Raised Undulate White 30.88 8.2 26 3.92 

Semi-deciduous  Kumasi Ded Seed 7 Circular Raised Smooth White 30.52 7.83 25.57 3.69 

Semi-deciduous  Kumasi Ded Soil 6 Circular Flat Smooth White 37.86 9.1 16.94 3.68 

Semi-deciduous  Kumasi Emin 10Ll Irregular Flat Smooth White 36.64 9.27 28.06 3.14 

Semi-deciduous  Kumasi Emin 8Rr Irregular Raised Undulate Cream 25.61 5.53 28.58 4 

Semi-deciduous  Kumasi Emin Seed 13 Circular Flat Smooth Pinkish 12.1 2.04 17.87 2.3 

Semi-deciduous  Kumasi Emin Seed 8 Circular Flat Undulate Orange 22.41 6.09 23.39 3.32 

Guinea savannah  Tamale Gumb 20Rr Circular Flat Smooth Orange 33.17 7.67 24.47 4.15 

Guinea savannah  Tamale Gumb Seed 18 Irregular Raised Smooth White 36.8 9.35 25.95 3.94 

Guinea savannah  Tamale Gumb Seed 19 Circular Raised Undulate Pinkish 21.34 4.98 18.55 3.52 

Guinea savannah  Tamale Gumb Seed 21 Irregular Raised Undulate Cream 29.02 7.06 24 3.77 

Guinea savannah  Tamale Gumb Soil 18 Circular Raised Undulate White 40.55 10.07 26.04 4.68 

Guinea savannah  Tamale Kaku Soil 22 Circular Raised Smooth White 27.93 8.22 12.28 2.07 

Semi-deciduous  Kumasi Kent 2Rr Circular Flat Undulate Pinkish 16.05 4.08 21.26 3.62 

Guinea savannah  Tamale SagD 23Rr Irregular Raised Undulate Cream 35.93 8.47 23.48 3.92 

Guinea savannah  Tamale SagD 24Rr Circular Raised Smooth Pinkish 35.69 8.64 18.9 3.66 

Guinea savannah  Tamale SagD Seed 24 Circular Raised Undulate Orange 34.69 9.13 20.86 3.55 

Semi-deciduous  Kumasi TeckP 15Rr Irregular Raised undulate Orange 24.76 5.92 40.81 3.37 

L.S.D. (p ≤ 0. 05) 6.41 1.91 0.748 0.43 

CV 13.8 17.1 2.2 7.3 

Note. l and r represent isolates from leaf and root respectively. 
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Table 2. Pathological variation among Fusarium isolates from Semi-deciduous and Guinea savannah 
Agro-ecological zones 

Agro-ecological  Location Fusarium Isolate Severity Scale (1-5) Virulence 

Semi-deciduous  Kumasi Emin 8R 2 Weakly virulent  

Semi-deciduous  Kumasi AsoM 4R 2 Weakly virulent  

Semi-deciduous  Kumasi Ded 5R 2 Weakly virulent  

Semi-deciduous  Kumasi Emin Seed 13 2 Weakly virulent  

Semi-deciduous  Kumasi Kent 2R 2 Weakly virulent  

Semi-deciduous  Kumasi Ded Seed 6 2 Weakly virulent  

Semi-deciduous  Kumasi TeckP 15L 2 Weakly virulent  

Semi-deciduous  Kumasi AsoM 3R 2 Weakly virulent  

Semi-deciduous  Kumasi Ded Seed 7 2 Weakly virulent  

Guinea savannah  Tamale Gumb 20R 2 Weakly virulent  

Guinea savannah  Tamale SagD 23R 2 Weakly virulent  

Guinea savannah  Tamale ChoLo 43R 2 Weakly virulent  

Guinea savannah  Tamale ChoNa Seed 36 2 Weakly virulent  

Guinea savannah  Tamale ChoLo Seed 40 2 Weakly virulent  

Guinea savannah  Tamale ChoMa 39L 2 Weakly virulent  

Guinea savannah  Tamale Gumb Seed 21 2 Weakly virulent  

Guinea savannah  Tamale Gumb Seed 18 2 Weakly virulent  

Guinea savannah  Tamale SagD 24R 2 Weakly virulent  

Guinea savannah  Tamale ChoNa 35L 2 Weakly virulent  

Semi-deciduous  Kumasi Boad Soil 1 3 Moderate violent 

Semi-deciduous  Kumasi AsoM Soil 3 3 Moderate violent 

Semi-deciduous  Kumasi Emin 10L 3 Moderate violent 

Semi-deciduous  Kumasi Ded Soil 6 3 Moderate violent 

Guinea savannah  Tamale Cholo Seed 43 3 Moderate violent 

Guinea savannah  Tamale ChoYa Seed 31 3 Moderate violent 

Guinea savannah  Tamale Kaku Soil 22 3 Moderate violent 

Guinea savannah  Tamale ChoIa Seed 30 3 Moderate violent 

Guinea savannah  Tamale SagD Seed 24 3 Moderate violent 

Semi-deciduous  Kumasi Ded 7R 4 Highly virulent 

Semi-deciduous  Kumasi Emin Seed 8 4 Highly virulent  

Guinea savannah  Tamale Gumb Seed 19 4 Highly virulent 

Semi-deciduous  Kumasi Ded 6R 5 Very highly virulent 

Guinea savannah  Tamale ChoNa Soil 37 5 Very highly virulent 

Guinea savannah  Tamale Gumb Soil 18 5 Very highly virulent 

 

3.3 Molecular Characterization  

All DNA sequences generated for this study have been deposited in the Genebank with accession numbers 
OL998416-OL998447. Blast search matched sequence data from this study with those deposited at the NCBI 
GenBank and confirmed identity of isolates to the species level based on high similarity score of between 96-100% 
and E-value of 0.0. The search results confirmed that 28 isolates of the 34 isolates were Fusarium equiseti and a 
single isolate of F. oxysporum, F. solani and F. proliferatum (Figure 6). Three of the isolates (Cholo seed 40, choNa 
seed 39 and SegD seed 24) were only identified as Fusarium species. 

Four main clusters were formed by the phylogenic tree constructed from the sequence analysis (Figure 6). Isolates 
clustered into these groups irrespective of origin. Cluster A was the biggest group consisting of 21 F. equiseti 
isolates and single isolates of F. solani and F. proliferatum. Very highly virulent Fusarium isolates observed in the 
pathogenicity assay were contained in this cluster. The cluster A is subdivided into three-sub clusters A1, A2, and 
A3, Sub-cluster A1 contained seven isolates of F. equiseti and single isolates of F. solani and F. proliferatum. 
Sub-clusters A2 and A3 were made up of nine and three isolates of F. equiseti respectively. Cluster B, consist of ten 
isolates with two-sub clusters B1 and B2. Sub-cluster B1 consisted of four highly virulent isolates, made up of 
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(Akbar et al., 2018; Bechem & Afanga, 2018). The observed differences in morphplogy of the isolates could be 
due to movement of Fusarium species carried in seeds across farms in the country. Morphological characteristics, 
however, could not detect the different Fusarium involved to the species level due to the limitation associated with 
traditional markers for pathogen identification. These limitations include high level of overlapping features such as 
colony colour, colony diameter and conidia shapes. The inability of the current study to morphologically identify 
Fusarium to the species level is in line with previous studies (Leslie & Summerell, 2006; Dita et al., 2010; Kalman 
et al., 2020), who found that overlap of several morphological features among Fusarium limits its use to separate 
the pathogen to species level. To overcome the limitation associated with morphological identification, this study 
relied on the use of molecular tools to properly identify the pathogens to species level without any ambiguity or 
misdiagnosis. Application of sequence analysis of the ITS region made it possible to properly identify and confirm 
F. equiseti, F. oxysporum, F. solani, and F. proliferatum as major Fusarium species associated with amaranth wilt 
in the study area. The ITS region has successfully been relied on to identify species of unknown fungal isolates due 
to its ability to delineate interspecific variations among closely related species (Lin et al., 2011). The blast search 
results showed that of the four species, Fusarium equiseti, was the dominant species responsible for amaranth wilt 
and chlorosis. This finding agrees with several studies that Fusarium equiseti is the major Fusarium species that 
causes wilt in several vegetable crops such as tomato and eggplant (Mwaniki et al., 2011; Akbar et al., 2018). 
Identification of single isolates of F. oxysporum, F. solani, and F. proliferatum in this study however, suggest these 
species are of minor economic importance in amaranth wilt disease; although, F. oxysporum and F. solani are well 
known for causing serious diseases in vegetables and other crops (Mukuma, 2016; Kalman et al., 2020). 
Identification of Fusarium proliferatum however, raises great concern in amaranth more especially since the crop 
is a vegetable requiring minimal heating before consumption. Fusarium proliferatum is reported to be a major 
source of mycotoxins such as fumonisin, fusaric acid, beauvericin, fusarins, fusaproliferin and moniliformin. 
Fumonisin is known to be highly thermostable, conserving its compound during heating or processing (Leslie & 
Summerell, 2006). The identities of three Fusarium species were not confirmed in this study. This could possibly 
be due to the use of limited number of ITS primers for sequencing as several authors (Mukuma, 2016; Alsohaili & 
Bani-Hasan, 2018), have reported the limitations associated with the use of few ITS primers to identify closely 
related fungi species. 

All 34 Fusarium isolates evaluated within the present study were found to be pathogenic with varied disease 
severity. Fusarium species were classified as very highly virulent, highly virulent, moderately virulent, or weakly 
virulent which agrees with Hirayama et al. (2018) and Kim et al. (2020); who found variations in pathogenicity of 
different Fusarium species involved in wilt diseases of several crops. Although the current study did not find the 
basis underlining the causes of differences in virulence of the isolates, previous studies (Akbar et al., 2018; Asma 
et al., 2018) have reported that variations in virulence of fungal isolates are genetically controlled. Phylogenetic 
analysis of the isolates revealed the relatedness of Fusarium species involved in amaranth wilt. Clustering of the 
isolates was not based on their origin but it was interesting to observe that isolate designated as very highly and 
highly virulent in the pathogenicity assay all clustered in clade A, apart from one highly virulent isolate (Ded 7R) 
which was grouped in clade B. Clustering of isolates from different origins in the same clades according to 
Rampersad (2020) could be due to the adaptive ability of the fungus resulting from the spread of fungal spores 
across fields and vegetative materials. Results of this study further revealed that F. equiseti clustered with other 
Fusarium species which according to O’Donnell et al. (2015) suggests F. exquiseti involved in amaranth diseases 
may be polyphyletic expressing close relatedness to different isolates.  

5. Conclusion 
The study identified that Fusarium equiseti, F. solani, F. proliferatum, and F. oxysporum were associated with 
amaranth wilt disease in the Semi-deciduous and Guinea Savannah agro-ecological zones of Ghana with Fusarium 
equiseti identified as the dominant Fusarium species in the study area. The work further showed variations in 
genetic, virulence and cultural characteristics among Fusarium isolates. Identification of multiple Fusarium 
species involved in amaranth wilt disease is newly reported in Ghana. It is recommended that a holistic approach is 
employed to manage Fusarium diseases in Amaranth. 
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