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Abstract 
Recurring drought stress cycles and widespread striga (Striga hermonthica (Del.) Benth) infestations are two of 
the major constraints of sorghum production in sub-Saharan Africa (SSA) where they cause a crop loss of about 
60 billion US dollars and affect a population of about 100 M people annually. Plant breeders continue to employ 
conventional and molecular crop breeding strategies in the search for durable genetic resistance/tolerance 
mechanisms or for germplasm with genes against these two constraints. Crop wild relatives and landraces remain 
valuable resources of resistance/tolerance genes and have been utilized in the past to improve tolerance to 
drought stress and resistance to striga. The aim of this study was to assess the stability of performance of 64 
sorghum wild relatives, landraces and progenies from some generation of crosses under striga infested and 
drought stress conditions in agroecological environments endemic for these two stresses. The performance of the 
genotypes under drought stress was assessed in well-watered and in water stressed conditions at the Kenya 
Agricultural Livestock Research Organization (KALRO) Kiboko Research Centre whereas the same set was 
evaluated under striga artificially infested field and potted trials at the KALRO Alupe Research Centre during 
2018/2019 rainy seasons. Genotypes, B35 × ICSV III N, Macia, N13, ICSV 111 IN, F6YQ212 × B35, SRN39, 
GENO47293, ICSV 111 IN × B35, IS9830, Framida, GENO 45827, F6YQ212, B35 × AKUOR ACHOT were 
found to maintain stable high yields in both striga and drought conditions. The results here, showed that 
Genotype, Genotype × Environment (GGE) interaction partitioned genotypes in two of the four 
mega-environments according to their stability and mean grain yield (GY) and identified representative 
genotypes of the two traits that could be exploited to develop superior sorghum varieties adapted to drought and 
striga prone environments.  

Keywords: drought stress, genotype, genotype environment (GGE) interaction, Striga hermonthica, yield 
stability 
1. Introduction 
Sorghum is the fifth most important cereal crop globally and is a staple food for more than 500 million people in 
the semi-arid tropics of Africa and Asia that constitute more than 80% of the World’s production area (Beyene et 
al., 2015). Although sorghum has many biotic and abiotic production constraints drought stress and striga 
infestation rank as the two most crucial factors especially in SSA (Beyene et al., 2015). Drought stress is often 
the foundational cause of other constraints to production such as charcoal rot, Fusarium stalk, and sorghum ergot 
(Assefa et al., 2010). Intense drought stress cycles drastically reduce sorghum biomass and grain yields (Borrell 
et al., 2014). In the arid and semi-arid regions of Eastern Africa for instance, the average on farm grain yields of 
sorghum range between 0.6-1.5 t/ha against a worldwide average of 4.5 t/ha (Ngugi & Maswili, 2010) because of 
unpredictable and irregular rainfall. Under drought, sorghum genotypes develop drought avoidance or escape 
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mechanisms such as deeper roots, low osmotic adjustments or ability to maintain closed stomata. Selection for 
drought tolerance constitute use of indirect phenotypic traits such as stay-green and chlorophyll content. Drought 
stress occurs mostly during pre-flowering and post-flowering growth stages (Tuinstra et al., 2009) and affects the 
development of panicles and grain yield (Subudhi et al., 2000; Borell et al., 2014). Stay-green, a trait that allows 
genotypes under water stress to remain photosynthetically active is expressed after flowering, during grain filling 
period and has been positively associated with improved grain yields. Quantitative Trait Loci (QTLs) for 
stay-green and chlorophyll content been mapped to five chromosomal locations and have been utilized in several 
crop improvement programs to successfully select for drought tolerant genotypes (Subudhi et al., 2002; Prasad et 
al., 2006). Published sources of drought tolerance with stay-green QTLs include B35, E-36-1 (Haussmann et al., 
2002; Kebede et al., 2001) and more recently novel sources have been found in landraces and wild relatives 
(Ochieng et al., 2020).  

Striga hermonthica affects cereal crops such as maize, millets and sorghum in SSA on an area of over 21 million 
ha (Sauerborn, 1991) where farmers lose 20-80% of their yield, equivalent to 4.1 million tons of grain per year 
(Kanampiu et al., 2002). Striga species is an obligate parasitic weed that is a major biotic stress in sorghum 
cultivation especially in areas with poor soil fertility (Rodenburg et al., 2005). The weed germinates upon 
stimulation by strigolactones induced by the host, or in some cases, by non-host plants (Bouwmeester et al., 2019; 
Hausmann et al., 2002). The germinated Striga then attaches to the roots of the host plants, using a special 
invasive organ, the haustorium (Gurney et al., 2005). The haustorium enables uptake of water and nutrients from 
the host plants resulting in yield losses of up to 100% (Kim et al., 2002; Ejeta, 2007). An adult Striga plant can 
produce up to 100, 000 tiny seeds that can survive in the soil for over 20 years making conventional control 
measures difficult to implement (Pieterse & Pesch, 1983; Gurney et al., 2005).  

Genetic diversity studies within S. hermonthica populations infesting cereal crops in Western, Eastern and 
Central Africa have reported existence of biotypes within the species (Ejeta, 2007). These biotypes are believed 
to be responsible for the breakdown of Striga resistance in previously resistant varieties (Doggett, 1988). 

Striga populations are highly outcrossing, making the use of single resistance genes to manage infestations 
inadequate. Genotypes that possess multiple genes for striga resistance, are likely to have genetic resistance that 
is durable across several environmental conditions as well as across ecological variants of the parasite 
(Haussmann et al., 2002). Wild sorghum genotypes have demonstrated resistance to Striga over the years and are 
likely to harbor resistance genes which if exploited may assist in the improvement of adapted sorghum varieties 
(Muraya et al., 2011; Magomere et al., 2015). Known sources of resistance to striga, include N13, SRN 39, 
Framida, IS9830 (Rodenburg et al., 2005) landraces and wild relatives recently identified by Muchira et al. 
(2021).  

Interaction between striga resistance and drought tolerance has been reported (Muchira et al., 2021) which 
suggested that most consistent top-yielding genotypes under natural and artificial striga infestation were from 
generation of crosses with drought-tolerant genotypes, such as LODOKA, B35, and E36-1 (Muchira et al., 
2021).  

Multi-environment trials data help to select the best environment for evaluating a genotype’s adaptability and 
stability by the analysis of the genotype × environment (G × E) interactions (Gauch et al., 2008). The variation 
of yield stability and adaptability that determine a genotype’s ability to thrive in a given environment is done 
through multivariate analyses such as Additive Main effects Multiplicative Interaction (AMMI) or Genotype plus 
Genotype Environment interaction (GGE) biplots (Gauch et al., 2008; Yan, 2001). Recent studies (Yan & Tinker, 
2006; Yan et al., 2007) point to the simplicity and clarity of GGE analysis for G × E in its use of means versus 
stability graphical plots. GGE biplots provide the discriminating power and representativeness in a 
multi-environment analysis demonstrating “which-won-where” pattern (Yan et al., 2007; Angelini et al., 2019). 
By grouping target locations to one mega environment, the GGE Bi-plot analysis provides an important means of 
investigating the representativeness of the mega-region. Genotypic stability is evaluated with the aid of the 
Average Environment Coordination (AEC) (Yan & Rajcan, 2002) that considers the most stable genotypes to be 
the ones with the shortest vertical distances from the AEC. According to GGE analysis a superior genotype is the 
one with high mean yield and high stability for that environment (Yan, 2001). The objective of this work was to 
evaluate grain yield performance and estimate the stability using GGE biplot analysis from data of 
multi-environment trials conducted under drought stress and striga infestation conditions.  
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2. Method 
2.1 Study Locations 
The study was conducted at Kiboko, and Alupe research Centres of KALRO. Kiboko Research Centre is 975 m 
above sea level (m a.s.l.) lies between latitude 2.15o S and longitude 37.75o E, in agroecological zone 4, lower 
semi-arid, with a rainfall average of 250 mm per season. Alupe is located at 1189 meters above sea level and is 
situated at latitude 00.29o S and longitude 34.08o E (Haussmann et al., 2004). Alupe Research Centre is classified 
as being in the lower medium agro-ecological zone with an annual mean temperature that ranges from 20.5 to 
21.7 °C and an annual rainfall of 1800-2000 mm. The soils at Alupe are shallow to deep, ferrallisols and the site 
is in a Striga hotspot zone making it appropriate for screening genotypes for Striga resistance. 

2.2 Germplasm: Accessions and Generation of Crosses 

64 sorghum diverse genotypes comprising of wild accessions, local landraces, improved varieties and F4 
segregating populations were selected (Table 1). Most wild relatives and landraces were sourced from Genetic 
Resources Research Institute (GeRRI) of the Kenya Agricultural and Livestock Research Organization 
(KALRO), University of Nairobi (UON) with some accessions obtained from the International Crops Research 
Institute for the Semi-Arid Tropics (ICRISAT), Nairobi. The F4 populations were derived as generation of crosses 
between the 43 wild and cultivated accessions as shown in Table 1. This germplasm was chosen for evaluation of 
yield stability because it contains previously tested and proven sources of drought tolerance and striga resistance 
by different authors (Kebede et al., 2001; Hausmann et al., 2002; Rodenburg et al., 2005; Muchira et al., 2021; 
Ochieng et al., 2020). 

 

Table 1. Sorghum genotypes used in this study, sourced from ICRISAT and University of Nairobi (UON) and 
classified according to species 

Genotype Source Classification Species 

1. GBK 044058 GeRRI Wild Sorghum sp. 

2. GBK 044336 GeRRI Wild Sorghum sp. 

3. GBK 048922 GeRRI Wild Sorghum sp. 

4. GBK 047293 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

5. GBK 048916 GeRRI Wild Sorghum sp. 

6. GBK 016085 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

7. GBK 048917 GeRRI Wild Sorghum sp. 

8. GBK 016114 GeRRI Wild Sorghum sudanense (Piper) Stapf 

9. GBK 044063 GeRRI Wild Sorghum sp. 

10. GBK 048156 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

11. GBK 016109 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

12. GBK 044120 GeRRI Wild Sorghum sp. 

13. GBK 040577 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

14. GBK 048921 GeRRI Wild Sorghum sp. 

15. GBK 044448 GeRRI Wild Sorghum sp. 

16. GBK 045827 GeRRI Wild Sorghum purpureosericeum (Hochst. ex A. Rich.) Asch. &Schweinf.

17. GBK 048152 GeRRI Wild Sorghum arundinaceum (Desv.) Stapf 

18. GBK 044065 GeRRI Landrace Sorghum sp. 

19. GBK 043565 GeRRI Landrace Sorghum arundinaceum (Desv.) Stapf 

20. GBK 044054 GeRRI Landrace Sorghum almum Parodi 

21. OKABIR ICRISAT Landrace Sorghum bicolor 

22. IS 9830 ICRISAT Landrace Sorghum bicolor 

23. IBUSAR ICRISAT Landrace Sorghum bicolor 

24. AKUOR-ACHOT ICRISAT Landrace Sorghum bicolor 

25. LODOKA ICRISAT Landrace Sorghum bicolor 

26. E36-1 ICRISAT Stay-green source Sorghum bicolor 

27. B35 ICRISAT Stay-green source Sorghum bicolor 

28. N13 ICRISAT Landrace Sorghum bicolor 

29. SRN39 ICRISAT Improved variety Sorghum bicolor 

30. KARIMTAMA-1 ICRISAT Improved variety Sorghum bicolor 

31. GADAM ICRISAT Improved variety Sorghum bicolor 



jas.ccsenet.org Journal of Agricultural Science Vol. 14, No. 12; 2022 

40 

32. F6YQ212 ICRISAT Improved variety Sorghum bicolor 

33. MACIA ICRISAT Improved variety Sorghum bicolor 

34. FRAMIDA ICRISAT Improved variety Sorghum bicolor 

35. KAT/ELM/2016 PL82 KM32-2 ICRISAT Improved variety Sorghum bicolor 

36. KAT/ELM/2016 PL1 SD15 ICRISAT Improved variety Sorghum bicolor 

37. ICSV III IN ICRISAT Improved variety Sorghum bicolor 

38. HAKIKA ICRISAT Improved variety Sorghum bicolor 

39. B35 × AKUOR-ACHOT UON F4 Population Sorghum bicolor 

40. B35 × E36-1 UON F4 Population Sorghum bicolor 

41. B35 × F6YQ212 UON F4 Population Sorghum bicolor 

42. B35 × ICSVIII_IN UON F4 Population Sorghum bicolor 

43. B35 × LANDWHITE UON F4 Population Sorghum bicolor 

44. B35 × LODOKA UON F4 Population Sorghum bicolor 

45. E36-1 × MACIA UON F4 Population Sorghum bicolor 

46. F6YQ212 × B35  UON F4 Population Sorghum bicolor 

47. F6YQ212 × LODOKA UON F4 Population Sorghum bicolor 

48. IBUSAR × E36-1 UON F4 Population Sorghum bicolor 

49. IBUSAR × ICSVIII_IN UON F4 Population Sorghum bicolor 

50. IBUSAR × LANDWHITE UON F4 Population Sorghum bicolor 

51. ICSVIII_INxB35 UON F4 Population Sorghum bicolor 

52. ICSVIII_INxE36-1 UON F4 Population Sorghum bicolor 

53. ICSVIII_IN × LANDWHITE UON F4 Population Sorghum bicolor 

54. ICSVIII_IN × LODOKA UON F4 Population Sorghum bicolor 

55. ICSVIII_IN × MACIA UON F4 Population Sorghum bicolor 

56. LODOKA × ICSVIII_IN UON F4 Population Sorghum bicolor 

57. LODOKA × LANDWHITE UON F4 Population Sorghum bicolor 

58. LODOKA × OKABIR UON F4 Population Sorghum bicolor 

59. OKABIR × AKUOR-ACHOT UON F4 Population Sorghum bicolor 

60. OKABIR × B35 UON F4 Population Sorghum bicolor 

61. OKABIR × ICSVIII_IN UON F4 Population Sorghum bicolor 

62. AKUOR-ACHOT × ICSVIII_IN UON F4 Population Sorghum bicolor 

63. LANDWHITE × B35 UON F4 Population Sorghum bicolor 

64. LANDWHITE × MACIA UON F4 Population Sorghum bicolor 

 

2.3 Drought Stressed Trials 

Drought tolerance evaluation experiment was sown at the KALRO Kiboko field station, Kenya for one season, 
in July 2017, in two blocks; the first block was irrigated throughout from the germination to physiological 
maturity whereas in the second block, water stress was strategically applied in three regimes so as to induce 
drought tolerance response: The well-watered trial was irrigated 3 times per week, each time receiving 3 hours of 
irrigation supplied at 25 mm per plot from sowing to physiological maturity stage. For the water stressed trial, 
irrigation was withdrawn at 14 days after sowing. From then on, water stress was maintained throughout until at 
40 days and up to 60 days after sowing, when 25 mm of water per plot was applied twice a day at an interval of 
two days at each application period. Sixty days after sowing, water was again withdrawn, and drought stress 
maintained till physiological maturity. 

Both irrigated and drought stressed blocks were laid out in a 12 × 8 alpha lattice design, replicated three times. 
The trial consisted of 2 row plots of 2 m length with an inter-row spacing of 0.75 m and intra-row spacing of 
0.25 m. Diammonium Phosphate (DAP) fertilizer was applied during planting at a rate of 100 kg ha-1 and the 
crop was top-dressed with urea, 21 days after emergence, at a rate of 40 kg ha-1, and then earthed up at 30 days 
after emergence. The crop was raised according to the standard agronomic practices recommended in the area. 

2.4 Drought Tolerance Scoring 

Data on agronomic traits were collected on 6 randomly selected plants in the 2 center rows following the 
methodology suggested by IBPGR and ICRISAT (1993). Data was scored on the following traits: days to 50% 
flowering (DFL; counts), number of green leaves at maturity (GLAM), Relative chlorophyll content (RCC), and 
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grain yield (GY; t ha 1). Grain yield data was determined on plot basis as recommended by IBPGR and ICRISAT 
(1993).  

2.5 Striga Trials and Data Scoring 

For the assessment of the response to Striga, two sets of trials, one in the field and the other in pots were 
designed. Both field and pot trials were set up in one season of the long rains of 2017 at KALRO Alupe and as 
noted elsewhere, the site is a Striga hermonthica hotspot. Both experiments were laid out in a square lattice 
design with three replications, each block consisting of eight plots. The field experiment was planted in an 
artificially striga-infested field with a spacing of 75 cm between rows and 20 cm between plants in the row. Each 
row contained 21 plants. striga inoculum was prepared by mixing 5 kg of sand with 15 g of striga seeds that had 
been harvested from the same location in the previous season. A supplemental striga inoculum of 15 g was 
spread along each row during planting to improve the consistency of striga seed load across the plot. Phosphorus 
(P) was applied at the rate of 90 kg ha-1 after thinning, whereas nitrogen (N) was applied at the rate of 92 kg ha-1 
when the plants were 45-50 cm tall, which was about 30 days after germination. Insect pests, especially fall 
armyworm (Spodoptera frugiperda) and cutworms (Agrotis spp., Spodoptera spp., and Schizonycha spp.), were 
controlled using Voliam TargoR SC (Syngenta Crop Protection AG, Switzerland) containing active ingredients, 
chlorantraniliprole and abamectin. The field experiment was rainfed and was sown at start of the rainy season.  

For the pot experiment, jiffy pots measuring 30 cm diameter were filled with 20 kg of striga free soil obtained 
from a striga free field. Each pot contained four plants and was used to represent a plot. The pot experiment was 
set up in the field alongside the field experiment but not under any shelter. The pot experiment was rainfed for 
most of the growth period but due to the restricted pot size, supplemental irrigation was applied when deemed 
necessary. Fertilizer and insecticide applications were done as described earlier. Striga infestation count in the 
field and pot trials was recorded at two-week intervals from the 42nd day after sowing when the first striga 
germination was expected. The total striga counts (TSC) were used to calculate (Area under Striga Number 
Progressive Curve) ASNPC. Agronomic data scored included: Number of Striga forming capsules (NSFC), Days 
to 50% anthesis (DTF), Dry panicle weight (DPW), Grain yield (GY) and 100 seed weight (SWT). Grain yield 
per plot was calculated using the method on recommended by IBPGR and ICRISAT (1993). 

2.6 Estimation of Genetic Diversity 

DNA was extracted for genotyping from a total of 153 accessions and 6 randomly tagged F4 plants using the 
method described by Ochieng et al. (2020) and quality and quantity was checked by running a gel 
electrophoresis and the samples were aliquoted into a 96 well plate. Samples were then sent to the Integrated 
Genotyping Service and Support (IGSS) at the Bioscience Eastern and Central Africa (BecA) Lab at the 
International Livestock Research Institute (ILRI) hub, for library construction and DArT-sequencing (DArTseq). 
Estimation of genetic diversity was performed using The TASSEL (Trait analysis by association, Evolution and 
Linkage) software. A total of 26,291 raw SNPs were generated for the 153 diverse genotypes in TASSEL 
software. Filtering was performed using a site minimum count of 70%, and a minimum allele frequency of 0.05. 
After filtering, 7,075 SNPs were recovered, and these were used to assess genetic diversity within the 153 
genotypes with TASSEL software version 5.2.63 and the results were generated from the archaeopteryx tree. 

2.7 Statistical Analysis 

The META-R software was used to generate Best Linear Unbiased Estimates (BLUEs) for grain yield across the 
locations for the two traits. In each location the BLUEs statistics were then used for GGE biplot analyses to show, 
“Which Won Where “and to plot out “Mean vs. Stability”. Stability of the genotypes for grain yield was assessed 
with the R software using means of grain yield, striga-related, and drought-related parameters measured. A 
selection intensity of 20% was imposed to identify the best genotypes.  

3. Results  
3.1 AMMI Analysis and Within Environment ANOVA 

Table 2 shows the environment variance was highly significant, but genotype and genotype × environment 
interactions were not significant. PC1 (env) contributed 97.9% of the variation but PC2 (GY) contributed only 
1.6%. In Table 3, the highest mean GY were from Env4 (potted striga trial) and Env3 (field striga trial). Env1 
(drought stressed) had the highest cv for GY. GY had the highest narrow-sense heritability, h2 (0.874) in Env3 
followed by Env4 (0.780) and Env2 (0.689). 
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Table 2. Grain Yield (GY) AMMI-ANOVA 

SOV DF MS F-Value Pr (> F) 

Env 3 647.43 431.59 3.49*** 

Rep(env) 8 8.45 0.85 5.59* 

Gen 76 73.38 7.38 9.93ns 

Gen × Env 174 39.95 4.01 5.84ns 

PC1 78 107.40 10.81 0.005** 

PC2 76 1.85 0.19 1.00ns 

PC3 74 0.56 0.06 1.00ns 

Error 497 9.93   

Total 986 37.56   

Note. ns, *, **, ***: not significant (p > 0.05), highly significant (p < 0.05), very highly significant difference (p 
< 0.001), respectively; SOV: Source of variation; DF: degrees of freedom; MS: Mean squares; F: Fisher value; P: 
Probability.  

 

Table 3. Grain Yield (GY) within environment ANOVA 

Env Mean DF MSG MSE CV h2 

Env1 1.46 63 1.08 1.18 74.5 -0.09 

Env2 0.998 62 0.682 0.212 46.1 0.689 

Env3 1.48 63 4.42 0.539 50.4 0.874 

Env4 10.6 62 177 38.8 58.8 0.780 

Note. SOV: Source of variation; DF: Degrees of freedom; MSG: Mean squares; MSE: Mean squares error; CV: 
Coeff of variation; h2: narrow sense heritability. 

 

3.2 Drought Tolerance Evaluation 

Nine genotypes (IESV21400 DL, LODOKA, IESV23006 DL, IESV92043 DL, OKABIR, GBK 016109, GBK 
048156, IESV23010 DL, AKUOR-ACHOT) outperformed the two widely known published sources of drought 
genes, in sorghum, namely , E36-1 and B35 with respect to relative chlorophyll content (RCC) at maturity 
(Figure 1), whereas 7 genotypes (LODOKA, OKABIR, IBUSAR, F6YQ212, AKUOR-ACHOT, GBK 047293, 
GBK 048917) had more green leaves at maturity (GLAM) than E36-1 and B35 under drought stress conditions 
(Figure 2). 

 

 
Figure 1. Relative chlorophyll content of genotypes under drought stress in comparison with known stay-green 

sources, E36-1 and B35 
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biplots have been used to analyze mean of yields, stability and adaptability performance of genotypes across 
environments (Yan et al., 2007). The GGE biplots sown here, showed not only the most stable and high yielding 
genotypes in the four mega-environments defined here but they also demonstrated ‘which genotypes won where’, 
which environments were most representative and discriminative. Genotypes, E36-1 × MACIA, B35 × 
LANDWHITE, GEN044120 in Env3, GEN016085, AKOUR ACHOR × ICSVIII.IN in Env4 were the most 
stable and had the highest mean GY (Figure 7). As confirmed by the ‘which won where’ biplot data in Figure 6, 
E36-1 × MACIA, B35 × F6YQ212 and ICSVIII.IN × MACIA were the best performers in Env3 whereas 
AKOUR ACHOR × ICSVIII.IN, ICSVIII.IN × B35 and OKABIR × AKUOR ACHOT were the most well 
adapted in Env4. Genotypes, ICSVIII, GEN048922 and GEN 016109 and IS9830 were the most unstable and 
low yielding in Env2 and Env1 respectively. The influence of the large environmental variation in the 
measurement of grain yield under drought stress conditions explains the low stability and the inability to 
discriminate the performance of genotypes under well-watered and drought stressed mega-environments as 
shown by the GGE biplots. Although GGE analysis was able to identify genotypes that have the similar 
sensitivity to the same environment, it was not able to explain why some of the winning genotypes in a particular 
environment were not significantly represented in another environment (Yan et al., 2007). 

4.3 Genetic Relatedness and Implication for Stability for GY 

In terms of genetic diversity and distance, wild accessions showed the highest level of relatedness with most 
clustering together in one subclade with resistant donor source, N-13. The only wild genotypes that clustered 
away from the rest were GEN048917 and GEN0444448 in Cluster 2, as well as GEN047293 in Cluster 3 (Figure 
4). Landrace accessions were also distributed in different subclades within Cluster 1 with LODOKA and 
GEN044054 (Cluster 3) being the only landrace genotypes that clustered away from the rest. Improved varieties 
as well as the F4 generation of crosses were distributed within the population, an indication of low genetic 
relatedness but of high diversity. Most F4 crosses clustered together with each other or with either of the parents 
used in the cross. However, some crosses grouped away from their progenies and parents, and this suggest the 
possibility that they were off types (Figure 4). These included, B35 × AKUOR ACHOT_ and B35 × LAND 
WHITE which clustered in completely different clusters from their parents and siblings (Figure 1). The wild 
relatives and landraces by clustering into distinct categories, would seem to suggest the existence of unique 
drought tolerance or striga resistance QTLs essential for GY stability and therefore the need to map and identify 
them for introgression into improved varieties (Cowan et al., 2020). 

4.4 GY Correlated Traits Contributing to Stability of Performance 

In sorghum, the stay-green trait is associated with more chlorophyll content and higher photosynthetic capacity 
ultimately leading to higher grain yields under drought stressed environments. Indeed, QTLs for stay-green have 
been mapped (Hausmann et al., 2004; Kebede et al., 2001) which correspond to QTLs for chlorophyll content 
(Crasta et al., 1999). In an earlier study, Ochieng et al., (2020), reported that though water stress reduced grain 
yield and yield related traits, RCC and GLAM, two prominent stay-green traits were positively correlated with 
grain yield under drought stress. The results reported here showed that landraces, such as LODOKA, OKABIR 
and AKUR-ACHOT scored the highest RCC, and GLAM and inevitably were among the highest grain yielders 
under water stress and outperformed known published stay-green drought tolerant sources, E-36-1 and B35. 
Equally, some wild relatives, such as accession, GBK 047293 had higher RCC, GLAM and GY than E-36-1 and 
B35 and performed as well as research bred cultivars such as IES 21400 DL. These findings underscore the fact 
that stay-green QTLs that are associated with drought tolerance in cultivated sorghum are also present in the 
landraces and wild relatives and help to determine the final GY and its stability under water stress. As would be 
expected, selection of these secondary traits, would reduce the effects of drought stress and lead to more stable 
grain yields in such environments (Sanchez et al., 2002).  

On the other hand, F4 generation of F6YQ212 × B35 cross and GBK 045827 wild relative were the most 
consistently striga resistant genotypes across both field and potted artificially infested trials, though not 
necessarily high yielding as indicated by their HGW values in both trials (Muchira et al., 2021). F4 generation of 
B35 × E36-1 cross, two known sources of drought tolerance were also among the most striga resistant genotypes 
and as shown by the GGE data. Previous studies (Ochieng et al., 2020; Muchira et al., 2021) identified, the 
phenotypic traits that were associated with drought tolerance such as RCC, GLAM or with striga resistance such 
as ASNPC , NSFC as being strongly positively correlated with each other respectively, though this relationship 
was not so direct with grain yield, reaffirming the large environmental variance in the mega-environments that 
are due to microenvironmental effects that masked additive variance for yielding ability and stability. If 
adaptability can be classified as general or specific, then most genotypes performed well in only specific 
environments, but this would be expected since these two sets of trials were conducted in two different locations, 
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with only one but not both stresses being imposed in the same test plots. The most adapted genotypes, it would 
appear were the once that were ether highly drought tolerant, striga resistant or had one parent or both as drought 
tolerant or striga resistant in the generation of crosses. As previous argued by Hausmann et al., (2004) and Sah et 
al., (2016), drought tolerance and striga resistance mechanisms are expressed when there is increased 
photosynthates or repressed abscisic acid production. Whereas physiological proof is needed to ascertain this 
claim, it is apparent that drought tolerance or striga resistance QTLs or a combination of both confers stability 
and higher grain yields and are expressed by the genotypes that possess them, when grown in drought or striga 
prone environments.  

5. Conclusion 
The environment considered most ideal in this study was the striga infested field trial (Env3) where genotypes, 
E36-1 × MACIA, GEN 044120 and B35 × LANDWHITE showed the least interaction with the environment and 
whose productivity was determined by the properties of the genotype themselves rather than the environment. 
The drought stressed (Env1) and the well-watered (Env2) were the least stable, indiscriminative and had the 
lowest genotype × environment interactions. Genotypes, Macia, N13, ICSV111 IN, SRN39, GENO47293, 
IS9830, Framida, GENO 45827, F6YQ212 and generation of crosses of, B35 × ICSV III N, F6YQ212 × B35, 
ICSV 111 IN × B35, B35 × AKUOR ACHOT where one of the parents was either drought tolerant or striga 
resistant, were the most well adapted to all the four mega environments. 

In order to gain full insight into the stability and adaptability of these genotypes for grain yield and minimize the 
effects of environmental variance, it is suggested that further trials should done in at least four seasons, in four 
locations where both drought stress and striga infestation are applied and artificially managed in the same field 
plots. Equally important especially in case of striga, it is recommended that striga free trials be setup to measure 
the extent to which striga affects particular traits. It is also recommended that the F4 generation of crosses with 
drought tolerance and striga resistance QTLs be selfed to fix the QTLs before any further testing. The 
germplasm identified here would be valuable to breeders aiming to develop sorghum varieties that combine both 
striga resistance and drought tolerance QTLs for subsistence and commercial production more specifically in the 
diverse agroecology of Eastern Africa.  
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