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Abstract 
Common guava (Psidium guajava) and Pelargonium (Pelargonium zonale) have shown in-vitro antibacterial 
activity against Ralstonia pseudosolanacearum sp. nov. in previous studies. However, their phytochemical 
constituents and bioactive compounds against the pathogen have not been identified. The present study 
investigated the phytochemical components of P. guajava and P. zonale leaf extracts by phytochemical screening 
and gas chromatography-mass spectrometry (GC-MS). Phytochemical screening was done using different 
solvents while 100 mg of the dried ethanolic extract pastes from each plant sample was subjected to GC-MS 
analysis. Automated mass spectral deconvolution and identification system software (AMDIS, US) was used to 
analyze chromatograms and spectra representing individual compounds. Compound identification was 
performed by comparing each of the mass spectra with the database of NIST 11 (Gaithersburg, MD, USA), 
Wiley 7N (John Wiley, NY, USA) and by comparing the calculated Kovats linear retention indices using 
retention times of n-alkane series against the values in the NIST webbook. Flavonoids, phenols, alkaloids, 
saponins, terpenoids and tannins were detected in both plant samples. GC-MS analysis revealed presence of 35 
and 26 compounds from P. zonale and P. guajava respectively. Both P. zonale and P. guajava had 7 similar 
compounds with antibacterial properties; Fumaric acid, Phytol, Pyrogallol, 4-Hydroxybenzoic acid, Shikimic 
acid, Protocatechuic acid and 3, 4, 5-Trihydroxybenzoic acid ethyl ester but P. zonale had one additional 
antibacterial compound; Lactic acid. In both cases, Shikimic acid had the highest percent peak areas of 3.2% for 
P. zonale and 6.8% P. guajava respectively. Therefore, P. zonale and P. guajava can serve as alternative sources 
of active ingredients for formulation of commercial botanicals for the management of bacterial wilt of potato.  
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1. Introduction 
Bacterial wilt of potato caused by different species of gram-negative bacterium Ralstonia solanacearum mainly 
Ralstonia pseudosolanacearum sp. nov. [R. solanacearum (phylotypes I and III)] is one of the major biotic 
constraints to potato production worldwide (Safni et al., 2014; Boschi et al., 2017). To date there is no satisfactory 
management option available for complete eradication of the disease hence affected farmers have relied on 
integrated disease management options. Conversely, efficiency of integrated diseases management has been 
challenging due to its site-specific nature (Priou et al., 1999). This limitation has propelled adoption and extensive 
use of conventional pesticides for its management in potato fields (Sarkar & Chaudhuri, 2016; Biswal & Dhal, 
2018). However, improper use of these chemical pesticides poses human and environmental health risks especially 
in developing countries where most farmers use poor quality personal protective equipment (PPE) and deploy 
limited good agricultural practices (GAPs) (Mulugeta et al., 2020). Additionally, these pesticides can infiltrate into 
the soil as well as spill into water bodies causing both terrestrial and aquatic health hazards (Rahman et al., 2012; 
Mulugeta et al., 2020).  

Efforts have consequently been focused on developing botanicals (plant extracts) as eco-friendly management 
options against bacterial wilt pathogen (Rahman et al., 2012). Plant extracts contain numerous bioactive 
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compounds with bioactivity against various plant pathogens (fungi, bacteria and nematodes). For instance, various 
researchers have used raw plant extracts and oils for the management of fungi, bacteria, and nematodes (Borges et 
al., 2018). Some of the bioactive compounds in plant extracts include alkaloids, cyanogenic glycosides, 
glucosinolates, lipids, phenolics, terpenes, polyacetylenes and polythienyls. These compounds have shown good 
antimicrobial efficacy both in-vitro and in-vivo (under greenhouse) condition (Isman, 2000; Zaker, 2016). 
However, with few exceptions, these efficacy results have not been reproduced in the field and this phenomenon 
has been attributed to rapid degradation and volatilization of their bioactive compounds under field conditions due 
to varied abiotic factors (Borges et al., 2018). 

Several studies have reported phytobiocidal effect of various plant extracts against bacterial wilt disease both 
in-vitro and in-vivo (Hassan et al., 2009; Oboo et al., 2014; Din et al., 2016; Mutimawurugo et al., 2020; Wamani 
2020). Examples of reported plant extracts with phytobiocidal effect against bacterial wilt pathogen include; 
onion (Allium cepa L.), garlic (Allium sativum L.), lemongrass (Cymbopogon citratus Stapf), castor bean 
(Ricinus communis L.), rosemary (Rosmarinus officinalis L.), lion’s ear (Leonotis nepetifolia R.Br.), African 
basil (Ocimum gratissimum L.), tobacco (Nicotiana tabacum L.), wild marigold (Tagetes minuta L.), stinging 
nettle (Urtica massaica Mildbr), moringa (Moringa oloifera), guava (Psidium guajava), geranium (Bauhinia 
recimosa), camphor brush (Tarchonanthus camphoratus) and French marigold (Tagetes patula) among others 
(Terblanche & Villiers, 1998; Oboo et al., 2014; Biswal, 2015; Mutimawurugo et al., 2020; Okeyo et al., 2021).  

In-vitro study by Okeyo et al. (2022) revealed antibacterial activity of Pelargonium zonale and Psidium guajava 
against bacterial wilt of potato [R. pseudosolanacearum sp. nov. (R. solanacearum (phylotype I)]. However, they 
did not conduct phytochemical profiling nor identified the specific bioactive compounds with antibacterial effect 
against the target pathogen. Therefore, the present study investigated the phytochemical components in ethanolic 
leaf extracts of P. zonale and P. guajava by quantitative phytochemical screening and gas chromatography-mass 
spectrometry (GC-MS).  

2. Material and Methods 
2.1 Sample Collection and Identification 

Fresh leaves of pelargonium (Pelargonium zonale) and guava (Psidium guajava) were collected from Taita 
Taveta and Mau Narok, Kenya, respectively. The identities of the test plants were confirmed by a taxonomist and 
sample specimens kept at the Department of Crops, Horticulture and Soil Sciences (CHS), Egerton University, 
Kenya.  

2.2 Preparation of the Plant Materials 

Five kilograms of Pelargonium zonale and Psidium guajava leaf samples were washed and rinsed under running 
tap water followed by shade drying at room temperature for 21 days. For complete drying, the dried plant 
materials were transferred into an oven at 40 °C for two days and dried materials ground into fine powders using 
sterile mortars and pestles. The ground powders were passed through 1 mm sieves to remove coarse particles. 
Twenty grams (20 g) of each powdered sample was weighed and stored separately for phytochemical screening. 
For Gas Chromatography spectrometry (GC-MS) analysis, 20 g of fine powder of each plant material was 
soaked in 200 mL of extraction solvent (98% ethanol) with regular stirring for 48 hours after which the solutions 
were filtered through double layers of muslin cloth and the filtrates collected in different sterile bottles. The 
filtrates were centrifuged at 9000 rpm for 10 minutes and the supernatants filtered through Whatman filter papers 
grade 1 (11 µm) to remove coarse particles. The filtrates were then concentrated to pastes at 60 °C slightly below 
the boiling point of ethanol (which is 78.37 °C). The resultant pastes were air-dried overnight, weighed, and 
stored at 4 °C.  

2.3 Phytochemical Screening 

Phytochemical screening of Pelargonium zonale and Psidium guajava leaf extracts was conducted at the animal 
nutrition laboratory, department of animal production at the University of Nairobi. Quantitative phytochemical 
profiling of P. zonale and P. guajava powdered leaf samples was carried out to determine the presence of 
alkaloids, flavonoids, saponins, phenols, terpenoids and tannins (Harborne, 1973; Quettier et al., 2000; Obdoni & 
Ochuko 2002; Padma et al., 2013; Indumathi et al., 2014; Shah & Yadav, 2015). 

2.4 Gas Chromatography-Mass Spectrometry (GC-MS) Analysis 

Gas chromatography-mass spectrometry (GC-MS) analysis of P. zonale and P. guajava leaf extracts was 
conducted at the Mycotoxin and Nutrition Platform laboratory of the International Livestock Research Institute 
(ILRI), Nairobi Kenya. One hundred milligrams of the dried paste per plant sample was transferred into 2 ml 
eppendorf tubes containing 2000 µl of absolute methanol and each tube vortexed for 2 minutes for total 
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dissolution. After complete dissolution, 150 µl aliquot per sample was trasfered into a 1.5 ml eppendorf tube and 
vacuum dried in a vacuum concentrator at room temperature. Vacuum dried samples were derivatized according 
to Lisec et al. (2006). Briefly, vacuum dried samples were transferred into dried sample vials followed by 
addition of 100 µl of pyridine and 75 µl of methoxyamination reagents respectively and the sample vials were 
tightly capped. The samples were heated at 37 °C on a heating block for 2 hours with regular vortexing after 
every 15 minutes. After 2 hour, 75 μl of silylation reagent was added in each sample and heated at 70 °C on a 
heating block for 1 hour with regular vortexing after every 15 minutes. The derivatized samples were cooled and 
transferred into 250 µl glass inserts loaded in GC vials and the lids capped.  

The derivatized samples were analyzed by GC-MS. A portion (1 µl) of the derivatized sample solution was 
injected in to a 7890A GC system (Agilent Technologies, USA) coupled with a 240-ion trap mass spectrometer 
detector (Agilent Technologies) using the Agilent 7693A automatic liquid sampler at a split ratio of 10:1. A 
VF5-MS (5% phenyl methylpolysiloxane, 30.0 m × 0.25 mm, 0.25 µm) film capillary column was used with the 
injector port set at 280 °C. Helium was used as carrier gas at a flow rate of 1 mL/min. The oven temperature was 
held at 50 °C followed by an increase of 4 °C/min to 180 °C and finally followed by an increase to 250 °C at 
3 °C/min. The ion trap mass spectrometer parameters were as follows: scan range 50-450 (m/z), ionization mode 
EI, filament delay time 8 min. The transfer line temperature, manifold temperature and trap temperature of 
250 °C, 100 °C and 150 °C, respectively. The total run time was 56 minutes. 

2.5 Compound Identification 

A homologous n-alkane series was analyzed alongside the derivatized sample and used to compute the Kovats 
Linear retention index. Chromatograms and spectra representing individual compounds were analyzed using the 
automated mass spectral deconvolution and identification system software (AMDIS, US). The identification of 
the individual compounds was performed by comparing each of the mass spectra with the database of NIST 11 
(Gaithersburg, MD, USA) and Wiley 7N (John Wiley, NY, USA) consisting of more than 62,000 patterns of 
known compounds and also by comparing the calculated Kovats linear retention indices using retention times of 
n-alkane series against the values obtained in the NIST webbook (https://webbook.nist.gov/chemistry/) for the 
same capillary column stationary phase (Strehmel et al., 2008). The compounds were identified as their 
corresponding Silyl and or Oxime derivatives. Absolute compound identity was assigned for matches within +/- 
5 of the database Kovats linear retention index. The quantification of individual compounds was performed by 
the peak area percentage method. The identified compound concentrations were expressed as percentage of each 
individual compound to the total of all compounds detected in the derivatized sample.  

2.6 Data Analysis 

Data obtained from quantitative phytochemical profiling was first tested for normality using the Wilk’s Shapiro 
test and the difference in the mean compositions compared using Mann-Whitney U test at 5% probability level 
(Wilcoxon, 1945; Mann & Whitney, 1947; Wilcoxon, 1992) in R software, version 4.1.0 (R Studio Team, 2020).  

3. Results 
3.1 Quantitative Phytochemical Screening 

Quantitative phytochemical profiling of Pelargonium zonale and Psidium guajava leaves revealed the presence 
of all the six tested phytochemicals; flavonoids, phenols, alkaloids, saponins, terpenoids and tannins in both P. 
zonale and P. guajava leaves as illustrated in Table 1. A comparison between P. guajava and P. zonale leaf extracts 
showed that there was no significant difference at p ≤ 0.05 in their phytochemical composition.  

 

Table 1. Phytochemical components of Psidium guajava and Pelargonium zonale leaf extracts  

Plant species 
Relative abundance 

Flavonoids 
(mg Q.E./g) 

Phenols  
(mg G.A.E./g)

Alkaloids (%) Saponins (%) Terpenoids (%) 
Tannins  
(mg T.A.E./g)

Psidium guajava  34.44±0.01a 46.22±0.02a 1.26±0.02a 6.08±0.02a 0.67±0.01a 106.40±0.02a

Pelargonium zonale 16.24±0.01a 47.62±0.02a 1.93±0.01a 9.41±0.02a 2.27±0.01a 190.30±0.02a

p-value (α = 0.05) 0.08 0.10 0.08 0.10 0.08 0.10 

Note. The values are presented as average means±standard deviation. Q.E. = Quercetin Equivalent, G.A.E. = 
Gallic Acid Equivalent, T.A.E. = Tannic Acid Equivalent. 
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Alkaloids have antibacterial and antifungal properties which have propelled their adoption and use in plant 
protection field (Adamski et al., 2020). In-vitro and in-vivo studies have revealed their antibacterial properties 
against bacterial wilt of solanaceous plants (Din et al., 2016; Mutimawurugo et al., 2020; Abd-Elrahim et al., 
2021). Some alkaloids act through inhibition of topoisomerase enzyme while others such as bisindole 
monoterpenoid act as DNA intercalating agents and hence poisoning the target bacteria (Tanaka et al., 2006).  

Saponins protect plant against infection by different microbes as well as infestation by insect pests (Desai et al., 
2009). Steroidal saponins react with bacterial membrane sterols inhibiting cell growth and hence overall bacterial 
growth (Wang et al., 2000). Some groups of terpenoids are used as pesticides and fungicides due to their 
insecticidal and antimicrobial properties (Martin-Smith & Khatoon, 1963). They exhibit antibacterial activity by 
acting on the phospholipid bilayers of bacterial cells affecting electron transport, phosphorylation process, 
protein translocation and other enzyme dependent reactions leading to cell mortality (Dorman & Deans, 2000). 
Phenols aids adaptation of plant species to abiotic and biotic stresses (Cosme et al., 2020). Some phenols such as 
thymol and carvacrol are documented to have antibacterial activity against bacterial wilt of solanaceous plants 
(Abd-Elrahim et al., 2021). Tannins also have anti-microbial properties (Din et al., 2016). They can directly kill 
the target bacteria by damaging the cell membrane and or can bind to adhesins in the host tissue preventing 
attachment of bacterial inoculum, disease establishment and spread (Mainasara et al., 2012; Wang, 2014).  

From the GC-MS analysis results, P. zonale had 8 compounds documented to have antibacterial activity while P. 
guajava had 7. The 7 compounds were similar for the two plant extracts but their percent concentration varied 
per plant. P. zonale had one additional antibacterial compound. These compounds comprised of Fumaric acid, 
Pyrogallol, 4-Hydroxybenzoic acid, Shikimic acid, Protocatechuic acid, 3, 4,5-Trihydroxybenzoic acid ethyl ester 
(Gallic acid ethyl ester) and Phytol for both the two plant extracts and Lactic acid for P. zonale (He et al., 2011; M. 
Estevez & J. Estevez, 2012; Khan et al., 2015; Cynthia et al., 2018; Islam et al., 2018; Miret-Casals et al., 2018; 
Aldulaimi et al., 2019; Imade et al., 2021). In both plants, Shikimic acid had the highest peak area while the other 
compounds had less than 1% concentration and this can be an indication that Shikimic acid was the main bioactive 
component against Ralstonia pseudosolanacearum sp. nov. in the two plant extracts. However, the antibacterial 
effect might have also resulted from any of the detected compounds and or from the synergistic effect between 
either or all the identified antibacterial compounds per plant extract.  

Shikimic acid has shown in-vitro antibacterial activity against different bacteria but with higher inhibition activity 
against gram-negative bacteria as opposed to gram-positive bacteria (Tripathi et al., 2015; Bai et al., 2022). The 
high inhibitory activity against gram-negative bacteria can be attributed to thinner peptidoglycan layer in 
gram-negative bacteria as opposed to gram-positive bacteria (Tripathi et al., 2015). Shikimic acid is assumed to 
exhibit different modes of action against pathogenic bacteria; disrupts oxidative phosphorylation pathway, inhibits 
membrane fluidity by changing glycerophospholipid and fatty acid levels, disturbs the normal functions of 
potassium and calcium channels, dishevels protein synthesis through influenced ribosome function and 
aminoacyl-tRNA synthesis upon penetration of the bacteria cell membrane and finally, it interferes with the 
pyruvate metabolic pathway (Bai et al., 2022). The un-dissociated form of Fumaric acid and Lactic acid passes 
freely through the bacterial cell membrane into cytoplasm. Upon entry, the acid dissociates to release protons 
which acidify the cytoplasm leading to cell mortality (Lu et al., 2011; Tango et al., 2015). Even though pyrogallol 
has shown antibacterial activity against different bacterial pathogens, its mechanism of action and toxicity have not 
been studied (Tinh et al., 2016; Kharouf et al., 2022).  

Protocatechuic acid exhibits antibacterial activity through depolarization of the cell membrane, reduction of 
intracellular pH and adenosine triphosphate (ATP) as well as leakage of cell content and destruction of cell 
morphology. Additionally, Protocatechuic acid affects energy metabolism and amino acid biosynthesis of the 
target bacteria (Wu et al., 2022). The 4-Hydroxybenzoic acid affects the fluidity of the bacterial cell membrane 
(Patra, 2012). Gallic acid ethyl ester induces permanent changes in the cell membrane such as increased 
hydrophobicity, alters the surface charge as well as increased pore formation in the cell membrane resulting to 
leakage of essential intracellular constituents and hence mortality of the target bacteria (Borges et al., 2013; 
Aldulaimi et al., 2019). Phytol induces intracellular reactive oxygen species (ROS) accumulation in the bacterial 
cell leading to imbalance between intracellular ROS and the antioxidant defense system hence reducing 
glutathione (GSH) cell content. The low GSH exposes the cell to detrimental effects from the action of low pH, 
chlorine compounds, as well as oxidative and osmotic stresses. Phytol also causes DNA damage of affected 
bacteria (Lee et al., 2016).  
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5. Conclusion 
The study revealed that Pelargonium zonale and Psidium guajava leaf extracts have various secondary 
metabolites with different bioactivities. GC-MS analysis showed a total of 8 and 7 antibacterial compounds from 
ethanolic leaf extracts of P. zonale and P. guajava respectively. In both plants, Shikimic acid had the highest 
percent peak area among the detected antibacterial compounds and hence could be the main bioactive component 
against Ralstonia pseudosolanacearum sp. nov. in the two plant extracts. Further screening should be done with 
each compound to confirm their singular and or synergistic antibacterial activity as well as their mode of action 
against R. pseudosolanacearum sp. nov.  
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