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Abstract 
Some species of the Heteroptera (Hemiptera) suborder are of great agricultural importance, mainly as pests, and 
their control is often necessary. The use of Bacillus thuringiensis, an entomopathogenic bacterium normally 
extracted from the soil and used in biological control, is an alternative to the chemical control of these insects. 
Mortality tests must be carried out in order to select and determine a viable toxic strain, but currently there is no 
validated methodology for conducting those tests. In this context, this research aimed to develop and improve a 
selective bioassay methodology to assess the toxic effect of B. thuringiensis Cry toxins on Diceraeus 
melacanthus (green-belly stink bug) and Euschistus heros (neotropical brown stink bug) nymphs. A bioassay 
methodology consisting of tubes and artificial diet was proposed. Bioassays with D. melacanthus and E. heros 
nymphs were performed incorporating Cry toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1F, Cry1G, 
Cry1Ia, Cry2Ab, Cry2A, Cry2Ae, Cry4A, Cry4B, Cry10, and Cry11Aa) into their liquid diet. The artificial 
feeding system developed in order to carry out the stink bug mortality tests was conducted. Among the toxins 
tested, we can highlight 2 causing 80-85% nymphal mortality on D. melacanthus, and 4 toxins causing 90-100% 
nymphal mortality for E. heros after 7 days of incubation. Both species are susceptible to different Cry toxins, 
with emphasis on Cry2Ab and Cry4B for D. melacanthus and Cry1B, Cry1G, Cry1Ia and Cry2Ab for E. heros. 

Keywords: biological control; bioassay; Cry toxins; green-belly stink bug; neotropical brown stink bug 

1. Introduction 
Species in the Heteroptera suborder (Insecta: Hemiptera) are commonly known as true or typical bugs. Most 
species are phytophagous, but there are predators and hematophagous species as well. They are distributed in 
practically all regions of the world, and have great agricultural importance as pests of many different crops 
(Possebom et al., 2020). The main difference between Heteroptera and other insects of the Hemiptera order is the 
presence of scent glands located in the abdomen as nymphs, and in the abdomen and thorax as adults, with 
different functions depending on the species (Panizzi et al., 2000; Possebom et al., 2020). Within the Heteroptera 
suborder, Pentatomidae is the most abundant family of insects found in many crop areas in Brazil, causing 
significant losses and damage (Panizzi et al., 2012; Sosa-Gómez et al., 2020; Steinhaus et al., 2022). 
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Euschistus heros (Fabricius, 1798), the neotropical brown stink bug of the Pentatomidae family that feeds mainly 
on soybean pods (Glycine max L., Fabaceae), causing loss of production and reduction in crop quality, when not 
properly controlled (Panizzi et al., 2012; Sosa-Gómez et al., 2020; Engel et al., 2021). This pentatomid has been 
reported to feed on other legumes such as peanuts (Pterogyne nitens Tul.), Solanaceae, Brassicae, Compositae 
species (Vivan & Degrande, 2011; Panizzi et al., 2012; Engel et al., 2021), and can be an issue in cotton plants 
(Soria et al., 2009; Sosa-Gómez et al., 2020). Another pentatomid of agricultural importance is Diceraeus 
melacanthus (Dallas, 1851), the green-belly stink bug, which preferentially feeds on maize (Zea mays L., Poaceae) 
and wheat (Triticum aestivum L., Poaceae), particularly in areas where soybean is followed by maize as a second 
crop (Chocorosqui & Panizzi, 2008; Corrêa-Ferreira et al., 2010; Panizzi et al., 2016; Sosa-Gómez et al., 2020). 
The occurrence of these stink bugs has been favored by the adoption of cultural practices such as a no-tillage 
system and intensive field production throughout the year which provides a food supply and causes outbreaks of 
both species of stink bugs (Cordeiro & Bueno, 2021; Engel et al., 2021; Smaniotto & Panizzi, 2015). 

The primary control tactic against these stink bugs almost exclusively involves the use of synthetic insecticides 
(Bueno et al., 2013; Panizzi, 2013; Gomes et al., 2020; Somavilla et al., 2020; Steinhaus et al., 2022) of 
broad-spectrum action (pyrethroids, neocotinoids, and organophosphate) (Sosa-Gómez et al., 2020; MAPA, 2021). 
These compounds are applied indiscriminately and negatively impact agroecosystems, such as reduction in 
biodiversity, selection of resistant stink bug populations, and emergence of new pest outbreaks (Lundgren et al., 
2009; Gomes et al., 2020). 

Bacillus thuringiensis is a Gram-positive aerobic spore-forming bacterium of the Bacillaceae family, of 
cosmopolitan coverage (Krywunczyk & Fast, 1980; Bravo et al., 2011), and can be found in several substrates such 
as soil, water, plant surfaces, dead insects, spider webs, and stored grains (Bravo et al., 1998; Valicente, 2019). The 
entomopathogenic activity of this bacterium is due to proteinaceous inclusions produced during the sporulation 
phase, which are crystals composed of proteins called endoproteins or crystal proteins (Monnerat & Bravo, 2000; 
Bravo et al., 2017; Chen et al., 2021). Also known as Cry toxins or Cry proteins, delta-endotoxins participate in the 
formation of protein crystals, linked to bacterial sporulation, formed from the phase following sporulation, and 
released when cells are lysed (Bravo et al., 2013). These proteins are the most used for insect biocontrol, they have 
an action spectrum usually restricted to a specific order of insects (Palma et al., 2014) and have an extremely toxic 
action (Bravo et al., 2013; Adang et al., 2014; Jurat-Fuentes & Crickmore, 2017).  

The use of B. thuringiensis in insect pest biocontrol has many advantages such as specificity to target insects, a 
non-polluting effect on the environment, innocuousness to mammals and vertebrates, and non-toxicity to plants, 
which allows its direct application (Whiteley & Schnepf, 1986; Schünemann et al., 2014; Jurat-Fuentes & 
Crickmore, 2017). Bacillus thuringiensis has merited researchers’ attention for controlling insect 
larvae/worms/nymphs of the Lepidoptera, Diptera, Coleoptera, Orthoptera, and Hemiptera orders, in addition to 
other organisms such as mites, nematodes, and protozoa (Palma et al., 2014). 

Few studies have been carried out to evaluate the toxicity of Cry toxins with regard to insect mortality in the 
Heteroptera suborder. Therefore, this research aimed to develop and improve on a selective bioassay methodology 
to assess the toxic effect of individual Cry toxins on D. melacanthus and E. heros nymphs, under laboratory 
conditions. 

2. Method 
2.1 Insects Used in the Bioassays 

This study was performed using D. melacanthus and E. heros second-instar nymphs obtained at the Insect Rearing 
Platform of Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil. The insect-rearing conditions were 
as described by Blassioli-Moraes et al. (2014). 

2.2 Artificial Feeding System Initial Setting 

The artificial feeding system consisted of a sterile centrifuge tube (50-mL Falcon tube) containing seven nymphs 
(Figures 1A and 1B) in triplicate. Each tube with nymphs was considered an experimental unit. The tubes were 
covered with Parafilm® (3 × 3 cm), sterilized under ultraviolet light (UV) and elongated to twice its size. About 
100 µL of liquid aphid diet (Dadd & Mitter, 1966) were placed over Parafilm® (Figure 1C) and then 50 µL of the 
treatment (first aniline blue, then Cry toxins). Soon after, another Parafilm® of the same size was used to cover the 
droplet in order to produce a sachet containing the mixture (Figure 1D). The liquid diet was previously filtered 
through a Millipore® membrane (0.22 µm) with the aid of a sterile syringe and stored at -20 °C until the moment of 
use. The entire procedure took place in a laminar flow cabinet with UV-sterilized materials. The tubes with the 
feeding system and insects were placed on shelves with the feeding system facing upwards (Figures 1E and 1F) 
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Table 2. Efficiency (%) of Cry toxin treatments on Diceraeus melacanthus nymphs for 7 days of incubation 

Treatment  
Time of exposure to Cry toxins 

1 day 2 days 3 days 4 days 5 days  6 days 7 days 

Control        

Cry1Aa 4.7 4.7 4.7 5.5 6.2 25.0 31.2 

Cry1Ab 0 0 4.7 11.1 0 18.7 18.7 

Cry1Ac 0 4.7 9.5 11.1 6.2 12.5 12.5 

Cry1B 0 0 0 - - 0 6.2 

Cry1C 4.7 9.5 23.8 33.3 37.5 37.5 43.7 

Cry1F 0 0 9.5 0 0 0 0 

Cry1G 0 0 4.7 0 0 6.2 6.2 

Cry1Ia 4.7 4.7 4.7 0 6.2 18.7 18.7 

Cry2Ab 0 4.7 14.3 38.9 62.5 62.5 75.0* 

Cry2A 4.7 4.7 14.3 22.2 31.2 62.5 68.7 

Cry2Ae 0 4.7 19.4 22.2 43.7 62.5 68.7 

Cry4A 0 4.7 9.5 16.6 25.0 25.0 31.2 

Cry4B 4.7 23.8 33.3 38.9 43.7 75.0 81.25* 

Cry10 0 9.5 23.8 38.9 43.7 50.0 62.5 

Cry11Aa 0 14.3 19.0 22.2 37.5 50.0 56.2 

Note. (-) data not available, the number of live nymphs in the Cry treatment was higher than in the control 
treatment. * Cry toxins efficiency on nymphs > 75%. 

 

Table 3 shows the trial’s findings regarding the average number of dead insects, absolute mortality, and Cry toxins’ 
efficiency on D. melacanthus nymphs at the end of 7 days of incubation. For the average number of dead insects, 
the Cry4B toxin had a 6.0 average compared to 1.6 in the control, with a total of 18 and 5 dead nymphs, 
respectively, and a sample size of 21 nymphs (n = 21) for each treatment. The Cry1F toxin was not efficient on 
nymphs. Lowest efficiency indices were observed for Cry1B and Cry1G toxins (6.2%). 

 

Table 3. Mortality and Cry toxins’ efficiency on Diceraeus melacanthus nymphs after 7 days of incubation 

Treatment 
Nymph mortalitya  
(dead insect average) 

Absolut mortalityb

(total dead insect number) 
(n = 21) 

Efficiency (%) Standard Error 

Control 1.6 5 0 0.577 

Cry1Aa 3.3 10 31.2 0.577 

Cry1Ab 2.6 8 18.7 1.154 

Cry1Ac 2.3 7 12.5 0.577 

Cry1B 2.0 6 6.2 1.000 

Cry1C 3.6 12 43.7 1.000 

Cry1F 1.6 5 0 1.154 

Cry1G 2.0 6 6.2 1.000 

Cry1Ia 2.6 8 18.7 1.154 

Cry2Ab 5.6 17 75.0* 2.309 

Cry2A 5.3 16 68.7 2.081 

Cry2Ae 5.3 16 68.7 1.527 

Cry4A 3.3 10 31.2 1.154 

Cry4B 6.0 18 81.2* 1.732 

Cry10 5.0 15 62.5 2.000 

Cry11Aa 4.6 14 56.2 0.577 

Note.a average number of dead D. melacanthus nymphs from three replicates with 7 nymphs each. b total number 
of dead insects in treatments with 21 nymphs for each tested toxin. * treatment efficiency > 75%.  
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Table 5. Efficiency (%) of Cry toxin treatments on Euschistus heros nymphs for 7 days of incubation 

Treatment  
Time of exposure to Cry toxins 

1 day 2 days 3 days 4 days 5 days  6 days 7 days 

Control - - - - - - - 

Cry1Aa - - - - - - 0 

Cry1Ab 0 0 31.2 33.3 28.5 28.5 38.4 

Cry1Ac 0 0 18.7 20.0 21.4 28.5 38.4 

Cry1B 0 11.7 43.7 53.3 71.4 71.4 84.6* 

Cry1C 0 0 0 - 0 0 - 

Cry1F 30.0 47.0 43.7 40.0 35.7 35.7 30.7 

Cry1G 30.0 58.8 68.7 66.6 64.3 78.5 92.3* 

Cry1Ia 30.0 35.3 31.2 40.0 42.8 100.0* 100.0 

Cry2Ab 25.0 88.2 93.7 93.3 100.0 100.0* 100.0 

Cry2A 0 23.5 18.7 20.0 14.3 21.4 23.0 

Cry2Ae 20.0 17.6 18.7 33.3 57.1 64.3 61.5 

Cry4A 15.0 35.3 37.5 33.3 28.5 42.8 38.4 

Cry4B 5.0 52.9 56.2 53.3 50.0 57.1 61.5 

Cry10 - - - - 7.1 7.1 0 

Cry11Aa 0 0 0 0 - 0 - 

Note. (-) data not available, the number of live nymphs in the Cry treatment was higher than in the control 
treatment. * Cry toxins’ efficiency on nymphs observed > 80%. 

 

For the average number of dead insects, the Cry1Ia and Cry2Ab toxins had an average of 7.0 dead nymphs 
compared to 2.6 in the control (Table 6). The absolute mortality of nymphs exposed to these same toxins was 21 
compared to 8 in the control. Therefore, the Cry1Ia and Cry2Ab toxins’ efficiency was 100% on E. heros nymphs. 
After seven days of incubation, the Cry1Aa and Cry10 toxins were not efficient, Cry1C and Cry11Aa toxin 
treatments had more live insects at the end of the trial than the control treatment. 

 

Table 6. Mortality and Cry toxins’ efficiency on Euschistus heros nymphs after 7 days of incubation 

Treatment 
Nymph mortalitya 

(dead insect average) 
Absolut mortalityb

(total dead insect number)
Efficiency (%) Standard Error 

Control 2.6 8 0 1.527 

Cry1Aa 2.6 8 0 0.577 

Cry1Ab 4.3 13 38.4 1.527 

Cry1Ac 4.3 13 38.4 2.516 

Cry1B 5.3 19 84.6 1.154 

Cry1C 2.3 7 - 3.214 

Cry1F 4.0 12 30.7 3.605 

Cry1G 6.6 20 92.3 0.577 

Cry1Ia 7.0 21 100.0 0 

Cry2Ab 7.0 21 100.0 0 

Cry2A 3.3 10 23.0 2.516 

Cry2Ae 5.3 16 61.5 2.081 

Cry4A 4.3 13 38.4 2.309 

Cry4B 5.3 16 61.5 2.886 

Cry10 2.6 20 0 3.785 

Cry11Aa 2.3 17 - 0.577 

Note.a average number of dead E. heros nymphs from three replicates with 7 nymphs each. b total number of dead 
insects in treatments with 21 nymphs for each tested toxin.  
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4. Discussion 
The high damage potential of Euschistus heros and Diceraeus melacanthus had been previously reported in the 
literature (Torres et al., 2013; Gomes et al., 2020; Cordeiro & Bueno, 2021; da Silva et al., 2021). Among the 
options that seek to control insect pests without the use of chemical groups and with high specific toxicity, the use 
of microorganisms has taken an important position (Schünemann et al., 2014; Sosa-Gómez et al., 2020). Bacillus 
thuringiensis and their toxins are the most manipulated microbial pesticides worldwide and have been accepted by 
the public as a safe bioinsecticide (Bravo et al., 2011; Ruan et al., 2015).  

While studies show that the hemipteran insects are susceptible to Cry protein toxicity (Porcar et al., 2009; Dorta et 
al., 2010; Melatti et al., 2010; Salazar-Magallon et al., 2015; Torres-Quintero et al., 2016; Schünemann et al., 2018; 
Torres Cabra et al., 2019; da Costa et al., 2021), brief is the knowledge about the effect of Cry toxins on 
pentatomids (Schünemann et al., 2014). Research using Cry proteins directly on insects in the Heteroptera 
suborder are scarce and focused on the effects that genetically-modified (GM) plants (plants expressing 
insecticidal crystalline proteins derived from B. thuringiensis) can also have on non-target organisms and in the 
third trophic level of the food chain (Wellman-Desbiens & Côté, 2005; da Cunha et al., 2012; Silva et al., 2014). 

According to our results, the diet proved to be satisfactory and well accepted by the stink bugs at the tested 
artificial feeding system, conceivably, the adequate one for bioassays using Cry toxins. This is important to prove 
that insects were fed with the provided diet and, consequently, ingested bacterial proteins offered in each treatment. 
An artificial feeding system, like the one used in this research, was efficient for the sucking pest Myzus persicae 
(Sulzer, 1776) (Hemiptera: Aphididae) mortality testing (Paula et al., 2015). Some methodologies for stink bugs 
have already been established for chemical testing, mainly with 20-mL glass vials (Snodgrass, 1996; Snodgrass et 
al., 2005; Lopez Jr et al., 2012a, 2012b). 

Treatments with Cry toxins against Diaphorina citri Kuwayama (Hemiptera: Liviidae) nymphs in Citrus sinensis 
(L.) Osbeck systemically colonized seedlings (Dorta et al., 2010) showed different toxicities regarding the 
individual proteins. The highlights in that study were Cry4B, Cry10, Cry11, and Cyt1A, which caused around 
65% mortality in D. citri nymphs. Interestingly, the results found in the current study for the Cry4B toxin 
showed a mortality rate above 85% in D. melacanthus nymphs, while the Cry10 toxin obtained the lowest rates 
(38.1%) on E. heros. The Cry2Ab protein demonstrated 100% mortality on E. heros assured within the first 48 
hours (90.4% mortality). In our study, the Cry2Ab protein resulted in 100% mortality results when ingested by 
E. heros, and 80.9% on D. melacanthus. It could be seen as a possible interaction between this protein and these 
insects’ intestine. In the interaction assessment of Cry toxins with the intestine of the hemipteran Lygus hesperus 
Knight (Heteroptera: Miridae), it was observed that there was no interaction with Cry1Ac, but Cry2Ab presented 
a strong extracellular interaction (Brandt et al., 2004). 

The mechanism of action of different proteins has been identified as receptors for Cry toxins in the lepidopteran 
midgut (de Maagd et al., 2012; Bravo et al., 2017), but not for pentatomids, and, when reported, it is related to the 
third trophic level. Therefore, the insect gut pH, the presence of specific receptors on microvilli of midgut cells, as 
well as the proteolytic activation of Cry toxins ingested by insects are essential and necessary factors in the 
interactions for the occurrence of toxicity (Li et al., 2011; Bravo et al., 2013; Javed et al., 2019; Chen et al., 2021). 
Consequently, those factors may be associated with the differences in mortality obtained between both tested stink 
bug demonstrates by individual Cry toxins. However, there is little information regarding the digestive physiology 
of hemipterans associated with Cry toxins, and the literature is insufficient to elucidate about the mechanism of 
resistance or susceptibility of these insects (Schünemann et al., 2014).  

Subsequently, spores and vegetative cells of B. thuringiensis were detected in the midgut of the predator Podisus 
nigrispinus (Dallas, 1861) (Hemiptera: Pentatomidae) fed on Bombyx mori (Lepidoptera: Bombycidae) treated 
with B. thuringiensis kurstaki (HD1) (Nascimento et al., 1998). Histological sections of the P. nigrispinus midgut 
shows the effects of proteins Cry1F, Cry1A.105, and Cry2Ab2, with histopathological changes, after predating 
Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) fed on GM Bt-maize but not being lethal to 3rd 
trophic level (Souza et al., 2021). In additional, other studies showed that the Cry1Ac toxin caused ultrastructural 
changes in the digestive cells of the predatory stink bug P. nigrispinus when it fed on S. frugiperda that had 
consumed GM Bt-cotton expressing the toxin (da Cunha et al., 2012). Nevertheless, mortality or impacts were not 
observed for E. heros fed on GM Bt-soybean plants expressing the Cry1Ac protein (Silva et al., 2014; 
Schünemann et al., 2018). In the present study, the Cry1Ac protein caused low mortality (33.3%) in D. 
melacanthus and reasonable mortality (61.9%) for E. heros in a direct exposure to the toxin. The susceptibility to 
Cry toxins was evidenced for E. heros nymphs exposed in the absence of substrate, but only the combination of 
toxins (contained Cry2, Cry1, and Cry9 proteins) resulted in the highest mortality and efficiency (> 98%) 
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(Schünemann et al., 2018). B. thuringiensis’ spectrum of action may depend on the combination of individual Cry 
toxins revealing synergisms between them (Estruch et al., 1997; Schünemann et al., 2018). 

Euschistus heros and D. melacanthus are susceptible to Cry toxins correlating effect directly with the average 
mortality of these insects’ pests. Individual toxins produced by B. thuringiensis have insecticidal activity and 
different degrees of lethality in both phytophagous-sucking insects of the Heteroptera suborder. Nonetheless, 
assays of protein interaction with the insect gut are suggested and can help with more information regarding the 
digestive physiology of hemipterans associated with Cry toxins, as well as the verification of interaction and 
possible synergism between the toxins against these pests. In this way, we can expand knowledge about the 
pathosystem so that toxins can be most efficiently used, with other strategies to control, against the stink bug pests. 

5. Conclusions 
The Cry toxin consumption system through artificial diet in Falcon tubes is efficient and can be used for 
phytophagous stink bug species. The two stink bug species evaluated in this study are susceptible to different Cry 
toxins, with emphasis on Cry2Ab and Cry4B for D. melacanthus and Cry1B, Cry1G, Cry1Ia, and Cry2Ab for E. 
heros. 
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