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Abstract 
In order to achieve high yields, the use of radiation by agricultural crops must be improved in order to maximize 
and extend the duration of foliar interception of solar radiation. Appropriately, studies aimed at the understanding 
and behavior of radiation in plants are extremely relevant. Accordingly, the objective of this study was to 
approach information about the concepts, radiation availability temporal, geographical, photosynthesis efficiency 
as a function of leaf arrangement and radiation interception efficiency × leaf area index (LAI). Studies aimed at a 
significant comprehension of radiation in crops demonstrate that the plant growth and development depend on 
the intensity and duration of solar radiation. More surveys are required on the subject for a better development of 
the culture, aiming to guarantee that the plants have better conditions to express their potential. 
Keywords: agricultural crops, agronomic performance, radiation intensity, radiation use efficiency, solar 
radiation management 

1. Introduction 
A considerable comprehension about the climatic elements allows and efficient planning by the farmers to be 
conducted with higher levels of precision (Filgueiras et al., 2018). In some locations, an agricultural production 
indicates large fluctuations and one of the most influential factors is the climate (Duarte & Wollmann, 2021). 
Accordingly, one of the closest relationships between climatic factors and atmospheric weather conditions is 
located in the balance between solar radiation and vegetation, where climate elements (temperature, humidity, 
and pressure) are the result of the balance of radiation received and reflected in the atmosphere (Hendges et al., 
2020). Accordingly, direct sunlight to plants is a valuable regulator of plant growth and development (Badmus et 
al., 2022). 

Considering the global solar radiation that falls on the earth surface, a specific part is reflected, and part is 
absorbed by crops, with the absorbed part denomined shortwave radiation balance (Krieger et al., 2019). 
Furthermore, the ratio between reflected radiation and global solar radiation is defined as albedo, or shortwave 
reflection coefficient, which is an important variable of the shortwave balance (Krieger et al., 2019). 

Moreover, in the quest to achieve high yields, one must maximize and extend the duration of leaf interception of 
solar radiation, using the energy absorbed efficiently for photosynthesis in order to obtain optimal proportions of 
leaves, stems, roots, and reproductive structures (Loomis & Amthor, 1999). The efficiency of radiation use is 
directly influenced by plant species, soil and climate conditions, and availability of natural resources to plants 
(Mahakosee et al., 2022). The environment for the crop growth is fundamental, as the adaptation of plants to this 
environment depends on the adjustment of their photosynthetic apparatus (Almeida et al., 2004). Furthermore, 
solar radiation provides the energy required for the processes associated with photosynthesis (Monteiro, 2009). 

Correspondingly, to comprehend the behavior of solar radiation and its effect on plants, the purpose of this study 
is to approach the main concepts about the availability of radiation × latitude and/or time of year, the efficiency 
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In Figure 1, a large variation throughout the year in the amount of energy received for latitudes further away 
from the Equator is observed. Accordingly, for the entire Equatorial zone, there is less variability. This is due to 
the higher variation in the angle of inclination of the Earth in relation to the solar orbit plane, at higher latitudes, 
with a maximum displacement of 23º27′ in relation to the plane. 

Furthermore, the exposure of the equatorial region to the sun rays is practically the same throughout the year. 
Moreover, at latitudes farther from the equator, the variation in the inclination of exposure to sunlight throughout 
the year is more accentuated, with higher oscillation in the amount of energy received per area, and the higher 
the latitude, the higher the amplitude in the amount of energy received. 

4. Efficiency of Photosynthesis as a Function of Leaf Arrangement 
Contextually, photosynthetically active radiation (PAR) is one of the most important factors for the 
photosynthesis phenomenon (Akitisu et al., 2022). The direct use of radiation by plants is largely affected by 
climatic and environmental characteristics, such as season, latitude, cloud cover, and plant configuration 
(Mahakosee et al., 2022). As previously mentioned, the research for higher yields investigates to maximize leaf 
interception, using the energy absorbed efficiently for photosynthesis (Loomis & Amthor, 1999). The productive 
yield of agricultural crops is established based on the efficiency of fundamental factors, such as light interception 
and the use of radiation (Lopes et al., 2022). For irrigated rice genotypes, there is an increase in productivity with 
a reduction in spacing (40, 30, 20, and 12.5 cm) (Neto et al., 2000). The architecture of these plants directly 
interferes with grain production, due to the better use of light and nutrients (Marchezan et al., 2005). According 
to the same author, they are classified according to their architecture as traditional type, intermediate type, and 
modern-Philippine type, according to the same author. 

Currently, in maize, plant arrangement is one of the cultural practices that most interferes with grain yield 
(Sangoi et al., 2011). Solar radiation directly influences the shoots and roots growth, drastically affecting grain 
yield. As typical for C4 plants, maize has a higher photosynthetic performance and a significant assimilation 
between the photosynthetic process and grain production, but in appropriate edaphoclimatic conditions during 
the maize growing cycle is valuable (Guo et al., 2022). Gomes et al. (2011) emphasize that the solar radiation 
intercepted by the basal leaves of maize is signinificant at higher spacing (0.9 m). Alterations in plant 
architecture, such as smaller stature, fewer leaves, and more erect leaves, allowed higher light infiltration into the 
canopy, even with a high leaf area index (Almeida et al., 2000). This new corn stereotype enabled changes in the 
arrangement of plants that led to higher efficiency in the use of solar radiation in environments to obtain high 
yields (Argenta et al., 2001). 

In soybean, aiming to increase productivity, dense planting has been chosen, with spacing between rows of less 
than 45 cm, or the largest number of plants in the crop row in the spacing of 40 cm between rows (Petter et al., 
2016). The same author concludes that the densities of 20 and 30 plants m2 provide the best results in terms of 
efficiency in the use of photosynthetically active radiation and, consequently, higher productivity. Furthermore, it 
is possible to reduce the height of plants by using a growth regulator and making the plant architecture more 
erect, associated with a higher potential for soybean grain yield, in which more compact plants can be more 
efficient in photosynthesis (Souza et al., 2013). 

Finally, in wheat, increasing plant density (46, 60, 75, and 90 plants m2) reduces the number of tillers and the 
number of spikelets per ear (Senger, 2013). Studies indicated that there was an increase in productivity due to the 
morphological alterations caused by the application of trinexapac-ethyl, which, by decreasing the height of the 
plants, leaves them with a more suitable architecture to take advantage of the resources of the environment 
(Zagonel & Fernandes, 2007). 

5. Radiation Interceptation Efficiency × Leaf Area Index (LAI) 
LAI is the ratio between the foliage area and the soil surface occupied by it. Varies according to plant species, 
climate, seasons, and stage of plant development (Câmara & Heiffig, 2000). Furthermore, the density of plants 
contributes to the distribution of leaf area in the canopy and the way in which solar radiation is intercepted 
(Stewart et al., 2003). This phenomenon exertes direct influences on the development and architecture of plants, 
showing differences in spacing and/or arrangements worked (Ataíde et al., 2010). As the LAI increases, up to a 
critical value, there is a joint increase in a light interception and net photosynthesis (Heiffig et al., 2006). The 
“critical LAI” is defined as the amount of leaf required to intercept 95% of solar radiation at noon. When the 
growth rate is decreasing, below a given LAI and, no longer has a net contribution to the accumulation of 
photosynthesis, it is designated as “optimal LAI” (Müller, 1981). Finally, the variation over time of the leaf area 
usually increases up to a maximum limit, in which it remains for some time, then decreases due to the 
senescence of the old leaves (Manfron et al., 2003). 
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5. Conclusions 
Studies aimed at a better comprehension of radiation in crops demonstrate that the plant growth and development 
depend on the intensity and duration of solar radiation. Scientific research on the performance of light in plants 
has actively contributed to the emergence of strategies and alternatives to exploit the maximum productive 
potential of agricultural systems. Studies have been developing a parameterization of the requirements of 
productive potential and quality of the final product related to the optimization of natural resources, such as solar 
radiation. Accordingly, the key purpose of this review was to report on the processes that involve the conversion 
of solar energy into potential phytoenergy to express plant productivity. Furthermore, this study provided 
valuable information regarding the effects of exposure to solar radiation on plant growth and development and 
established a brief understanding of the knowledge gaps on the theme. Appropriately, more surveys are required 
on the subject for a higher development of the culture, aiming to guarantee that the plants have better conditions 
to express their potential. 
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