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Abstract 
The comprehension of the precise water consumption of agricultural crops is a valuable tool for establishing 
management programs and irrigation schedules. Appropriately, the purpose of this study was to promote a 
bibliographic review on the main reflexes of the inappropriate use of water and what this process can promote in 
the establishment and development of agricultural crops. Moreover, theoretical questions were raised regarding 
physiological responses triggered by soil water deficit and its effect on crop growth, critical periods for water 
deficit, physiological responses, and their effects on the growth of main agricultural crops. Information on the 
misuse of water resources and its effects have presented a series of manifestations to plants and, consequently, to 
agricultural production, such as a production depletion, reduction of carbon fixation, nutritional deficiency, 
reduction of plant height, reduction of thousand-grain weight, yellowing of leaves, reduction in germination 
percentage, among other factors. Correspondingly, water stress can cause a drastic reduction in leaf area, 
productivity decrease, stomatal closure, leaf senescence, reduced roots, reduced flowering, hampering crop 
emergence and stability, spikelet sterility, etc. Finally, studies aimed at the consequences of poor irrigation and/or 
inadequate precipitation values are of high importance, mainly due to the investigative improvement on the use 
of water in an effective and sustainable way. 
Keywords: plant morphoagronomic parameters, plant physiological processes, sustainability, water resources 
rational use 

1. Introduction 
In agricultural production, the climatic influence normally occurs with the rain establishment to the full crop 
development in different phenological phases and negatively when the weather comes from droughts, extreme 
rains, and hail (Duarte & Wollmann, 2021). Furthermore, there is a significant concern about the knowledge of 
the correct and ration water resources application and how this strategy has not been respected over the years. 
Accordingly, Figure 1 indicated the main steps according to the water absorption and transpiration in plant and 
leaf perspectives. 
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Soybean at the morphological level can show changes in the shoot and root zone. These alterations are more 
frequent when plants are subjected to long periods of drought, which may include a reduction in trifoliate leaves 
(Mangena, 2018) and a reduction in plant size and root volume (Mesquita, 2018). These morphophysiological 
changes reduce the percentage of flowering, pod formation, and other yield components (Battisti et al., 2018). 

Consequently, they increase the premature fall of flowers and cause the abortion of pods and the “slump” of 
grains (Monteiro, 2009). Stress during soybean growth can achieve yield reductions of between 46 and 74% 
(Battisti et al., 2018). 

In wheat, it can difficult the crop emergence and establishment. The rubber can harm the final yield, due to the 
increase in the sterility of flowers and incomplete filling of the grains (Monteiro, 2009). 

In rice, water deficiency interferes with many physiological processes with a significant impact on the 
production of phytomass and grain yield (Monteiro, 2009). Also, it causes several biochemical and 
morphological alterations in plants, such as a reduction in the stomatal opening, CO2 absorption, and 
photosynthetic rate, reflecting negative effects on the vigor, height, and grain yield (Bota et al., 2004). 
Considering the reproductive phase, panicles are poorly exposed and/or not emitted. Along with the inhibition of 
anthesis, which leads to high sterility of spikelets. Spikelet fertility is the component that has the highest 
correlation with grain yield, under water deficit conditions in the reproductive phase (Pinheiro et al., 2000). 

In beans, water deficit generates changes in its phenology, whereas Lopes et al. (1986) observed a decrease in the 
cycle, under conditions of water deficiency, anticipating maturation after the emission of the first plants. 
Furthermore, its cycle increases, when it occurs during the formation of flower buds and flowering (Monteiro, 
2009). Where stomatal resistance and respiratory rate increased and where net photosynthetic rate, plant height, 
the number of leaflets, and leaf area decreased (Costa et al., 1991). A lack of water reduces turgidity, and 
subsequently cell expansion, which, in turn, reduces stem and leaf elongation (Monteiro, 2009). 

3. Physiological Responses Released by Soil Excess Water and Its Effect on Crop Growth 
One of the significant alterations that occur due to excess water related to metabolism is that anoxia causes a 
drop in the production of ATP (adenosine triphosphate) in plants, which results in low C fixation by 
photosynthesis. With anoxic stress, ATP production occurs through fermentation and glycolysis pathways 
(Henrique, 2010). In maize, while the growing point is below ground level, plants will be sensitive to flooding 
and tend to die from lack of oxygen if waterlogging occurs for a prolonged period (Monteiro, 2009). 

Under water excess conditions, the signals originating from the root system are transferred to the soil, causing 
the stomata to close and, consequently, minimizing the photosynthetic rate and the absorption and assimilation of 
CO2 (Wu et al., 2022). Moreover, water stress results in a significant accumulation of osmolytes in plants, 
decreasing the plant osmotic potential to maintain water status and physiological activities required by plants 
(Mukherjee et al., 2022). Additionally, gas exchange is considerably lower in soils with excess water, driven by 
the effects of plant and root respiration and low O2 concentrations (Dash et al., 2022). 

In soybean, this variable results in smaller plants, with small, yellowish leaves, short internodes, adventitious 
roots, and nodules on the soil surface, with the base of the stem showing spongy tissue (aerenchyma). Prolonged 
periods of soil layer saturation, cloudy days, and low evaporative demand from the atmosphere, reduce plant 
growth and leaf area. During the growing season, flooding can impair microbiological activity and biological 
nitrogen fixation, with reflections on grain quality and productivity (Monteiro, 2009). 

In wheat, excess soil water has a negative effect on the weight of a thousand grains and on crop productivity 
(Guarienti et al., 2005). Furthermore, the common bean plant is relatively sensitive to excess water, so it does not 
support soil excess water, even for short periods (Vieira, 1978). In periods of frequent and/or intense rainfall or 
excessive irrigation, it impairs its metabolism, restricting its production potential (Silva et al., 2006). Excess 
water is extremely harmful to the emergence and preservation of grains after physiological maturation (Silva et 
al., 2006). Finally, considering the rice plant, excess water in the crop in the early stages can cause a reduction in 
germination percentages, seedling drowning, and tiller abortion (Santos & Rabelo, 2008). 

4. Critical Periods for Soil Excess Water 
In maize, the critical period to excess water occurs at the beginning of the cycle, while the growth point is below 
ground level (Monteiro, 2009). In soybean, H2O is important in germination-emergence, at this stage, the water 
content in the soil should not exceed 85% of the maximum available total water (Monteiro, 2009). 

For wheat, Guarienti et al. (2005) indicated that excess soil water negatively affected hectoliter weight in periods 
1-10 and 11-20 days before harvest. The authors expressed that the grain yield was affected by this variable in 
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periods 11-20 and 61-70 days prior to harvest. Accordingly, the 1000-grain weight was negatively influenced by 
the soil water excess, in the periods of 31-40 and 51-60 days prior to harvest. Furthermore, a reduction in grain 
yield in the period of 61-70 days prior to harvest was observed. In beans, it is extremely harmful to emergence 
(Silva et al., 2006). In rice fields, it is harmful in the early stages, causing a reduction in germination percentages, 
seedling drowning, and tiller abortion (Santos & Rabelo, 2008). 

5. Conclusions 
Information regarding the incorrect management of water resources entails in the development of agricultural 
crops indicated that it can cause serious disadvantages for the crop production, reduction of carbon fixation, 
nutritional deficiency, reduction of plant height, reduction of the 1000-grain weight, yellowing of leaves, and 
reduction in germination percentage, among other factors. Accordingly, the water stress phenomenon establishes 
a reduced leaf area, reduced productivity, stomatal closure, leaf senescence, reduced roots, reduced flowering, 
hampering the emergence and stability of the crop, and sterility of spikelets, etc. Correspondingly, future studies 
on the consequences of poor irrigation and/or inadequate precipitation values (very dry or very rainy years) are 
significantly relevant, as they improve the investigative sense of information about the use of water in 
responsible and efficient perspectives. 
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