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Abstract 

Maize demand for feed, industry, and consumption is increasing in line with the increase in population and 
industry, while the supply of maize does not meet the demand. Therefore, it is necessary to identify the 
significant variables that affect maize cultivation and scenarios to increase maize production and farmers’ 
income using simulation model. As a method to develop the models, a system dynamics simulation model is 
used to accommodate internal and external variables that affect the production and farmers’ income which can be 
done using organic fertilizer, the integration between land expansion and organic fertilizer, and the 
implementation of precision agriculture. The simulation results show that land area, use of fertilizers, and 
technology adoption affect the production and income of maize farmers. The scenarios developed include 
organic fertilizer scenario, expansion and organic fertilizer scenario, and precision agriculture scenario. The 
resulting scenario can be used as a recommendation for the government and stakeholders in developing strategies 
and policies related to a sustainable maize farming system that can help increase the production and income of 
maize farmers. 

Keywords: sustainable agricultural, economic development, model, representative decision making, simulation, 
system dynamics 

1. Introduction 

The Maize is one of the important cereal crops in Indonesia, as a staple food crop to replace rice and as animal feed 
(Ikayanti, 2018). The demand for maize increases from year to year is in line with the increasing number of 
population and industry, resulting in the increase of maize demand (Purwanto, 2007). Demand for maize comes 
from feed, industry, and consumption. The maize production absorbed by feed mills is insufficient and the quality 
of maize is less uniform (Kariyasa et al., 2018). The growth of maize production in East Java relies more on the 
increase of harvested area (Kariyasa et al., 2018). Agricultural production is changing due to shifts in consumer 
demand, input costs, food safety concerns, and environmental impacts (Walters et al., 2016). Changes in weather 
and climate are indicated to be one of the causes of crop failure and low productivity (Lewi et al., 2019). The food 
sovereignty program focuses on food security as a community’s right to determine the community’s food and 
agriculture system with limited corporate intervention (Lin, 2017). Dynamic farming systems model can be used 
as a tool to generate valuable data in assessing the productivity and environmental effects of cropping systems on 
agricultural land (Khaembah et al., 2021). Furthermore, climate change conditions can increase or decrease in 
frequency and intensity, leading to the losses even greater in the future (Aqil et al., 2013). The continuous use of 
inorganic chemical fertilizers has degraded agricultural land, thereby reducing the agricultural production 
(Simanjuntak et al., 2013). Appropriate management practices can improve soil quality and efficient use of 
Nitrogen (N) fertilizers to increase maize production (Qiao et al., 2021). A better appreciation of the community 
of soil balancing practice can enhance collaboration with scientists in soil health (Brock et al., 2021). The 
vertically integrated leaf N content under different field experiments can be accurately estimated by the optimized 
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red-edge absorption area (OREA) index (Wen et al., 2021). Long-term fertilization causes a decrease in soil quality, 
crop yields, and hampers agriculture (Wang & Wei, 2019). The integrated use of compost, human waste organic 
fertilizer and livestock manure is an approach that involves a series of strategic decisions by farmers to increase the 
use of organic fertilizers (Daadi & Latacz-Lohmann, 2021). Soil balancing is an approach to manage soil fertility 
that focuses on several elements such as Ca, Mg, and K to achieve a desired base cation saturation ratio (Brock et 
al., 2021).  

In reaction to concerns over agricultural biotechnology, environmentalists strongly advocate organic farming 
(Azadi & Ho, 2010). Organic farms use more renewable energy and have less of an impact on natural ecosystems 
(Smith et al., 2014). Membership in agricultural cooperatives, organic fertilizer subsidies, and farm size play a 
positive role in influencing farmers’ choices of using organic fertilizers (Wang et al., 2018). Fertilization using 
organic fertilizers rich in Zn and ZnO can increase food production and quality (Dimkpa et al., 2020). The addition 
of organic fertilizers has a positive effect on soil organic balance and farmers’ incomes (Flores-Sanchez et al., 
2014). 

The need for precision agricultural technology in agricultural operations is a current trend (Kostic et al., 2018). 
This technology was developed for agricultural management, for example seeding, fertilizer, irrigation, harvesting 
and planting, and precision agriculture technologies such as GNSS tractors and UAVs (Li et al., 2020). The 
development of mechanical kernel harvesting maize varieties offsets the effects of climate change to provide 
sustainable maize development in a particular area (Liu et al., 2021). The reduction in water availability has a 
limited effect on the allometry of plant mass allocation (Ciampitti et al., 2021). Precision agriculture equipment 
has great potential to contribute to agricultural production, as well as environmental protection and food safety 
(Gebbers & Adamchuk, 2010). Variables of perceived need for technology needs, perceived benefits, and 
facilitation conditions (knowledge and training) have a significant impact in increasing farmers’ willingness to 
adopt precision agricultural technology (Li et al., 2020). Technological knowledge develops following a life cycle, 
therefore there are sectoral evolutionary differences according to the knowledge base (Krafft et al., 2014). So far, 
the methodology used in solving agricultural cultivation problems has only focused on operations such as field 
experiments and surveys. Effective conservation strategies in maize cultivation are required to ensure that genetic 
resources are available in the future (McLean-Rodríguez et al., 2019). With reference to the research background, 
several research questions that arise include: 

(1) How to increase maize production by considering several production factors such as the use of organic 
fertilizers, land expansion, and the use of precision agriculture technology?  

(1) How to increase the income of maize farmers by considering the cost of maize cultivation?  

To overcome this problem, we developed a system dynamics (SD) simulation model to accommodate the 
non-linear relationship between model variables that affect maize production and farmer’s income (Cavana, 1999). 
SD facilitates the development of several scenarios modelling to increase the maize production and farmers’ 
income including: (1) scenarios of applying organic fertilizer; (2) land expansion scenario and the application of 
organic fertilizer; and (3) precision agriculture scenario. The data and information used in this study were obtained 
from BPS (Central Bureau of Statistics), the Ministry of Agriculture of the Republic of Indonesia (Kementan), and 
the Ministry of National Development Planning (BAPPENAS). The resulting models and scenarios can be used by 
the government and other stakeholders in developing strategies and policies related to cultivation systems that can 
help increase maize production and farmers’ income. To increase maize productivity, agricultural planning and 
policy implementation in the form of the right combination of fertilizers and yield estimates need to be prioritized 
(Otieno et al., 2020).  

By referring to the research problem, research questions, and research outputs, we define our research 
contributions as follows: (1) the development of simulation models to demonstrate the dynamics and interactions 
of various factors that affect productivity, production, and income of maize farmers; (2) the development of model 
scenarios to increase production and income of maize farmers by considering internal and external variables such 
as the use of organic fertilizers, integration of Land Expansion and Organic Fertilizer, and the use of technology to 
support precision agriculture; (3) the results of the model scenario can be used as input in formulating policies 
related to the maize cultivation system that can increase the production and income of maize farmers.  

This paper is organized as follows. Section 1 presents the introduction. Section 2 presents a literature review 
covering maize productivity and production, farm income, and system dynamics. Section 3 describes the model 
development consisting of the development of a causal loop diagram (CLD) and the development of stock and 
flow diagram (SFD). Section 4 presents model validation. Section 5 describes the scenario development. Finally, 
Section 6 presents conclusions and future research. 
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2. Literature Review 

This section describes the literature review used in the research covering maize productivity and production, farm 
income, and system dynamics.  

2.1 Maize Productivity and Production 

Productivity is the ability of the soil to produce crop production under certain conditions and tillage (Nurmala, 
2012). Several factors that affect maize productivity include harvested area (BPS Surabaya, 2020), seeds of 
superior varieties (Food Security Agency, 2009), fertilization (Ambarita & Kartika, 2015), irrigation (Sirappa & 
Razak, 2010), climate and weather (Prado Tanure et al., 2020), and labor (Hafidh, 2009). Productivity is used to 
compare the output with input in a production process. The output is the result of production, while the input is the 
area of land. Productivity is the result of rice production per unit area of land. The land productivity formulation 
can be seen in Equation (1).  

( )
(

tons
 tons/h )a

 ha( )

Production
Productivity

Land Area
=                                  (1) 

The largest contribution to national maize production comes from East Java Province, i.e., 25.60% (Kariyasa et 
al., 2018). Production is determined by land area and productivity. Production is obtained from the product of the 
multiplication of land area and productivity per hectare (Kariyasa et al., 2018) as shown in Equation (2).  

Production (tons) = Land Area (ha) × Productivity (tons/ha)                 (2) 

2.2 Farm Income 

Agricultural development aims to improve the welfare of the community in the agricultural sector (Rahim & 
Hastuti, 2008). Farm income will encourage farmers to be able to allocate these funds for various needs such as 
production costs for the next period, savings, and other expenses to meet family needs (Soekartawi, 1996). 
Farmers need to implement farm management practices and business skills to increase their income (Chilemba & 
Ragasa, 2020). Increasing inputs and technical facilities can increase yields and improve quality to increase 
farmers’ income (Reardon et al., 2009). Agricultural economics can increase its impact through better 
collaboration with other disciplines, stakeholder engagement, adopting a more systematic approach to major 
challenges, and innovation (Fresco et al., 2021). Appropriate and well-informed government support can 
significantly improve national innovation systems (Rong et al., 2021). Farmers with low incomes do not benefit 
significantly from participation in the market, this indicates the need to prioritize farmers’ incomes to ensure that 
they are not left behind (Nguyen et al., 2021). When the elasticity of price transmission decreases, the variability 
of domestic prices decreases, and the variability of world prices increases (Wang & Wei, 2019). The higher the 
price, the more efficient the labor force, and the tighter the credit limits on smallholders, the greater the income 
gain from supplying inputs to large farms rather than operating small farms (Ma & Sexton, 2021).  

2.3 System Dynamics 

System dynamics is a method used to study the behavior of complex systems (Sterman, 2000). System dynamics 
can model non-linear behavior and dynamic interactions (feedback) between interrelated factors by performing 
scenarios on the existing systems (Walters et al., 2016). System dynamics (SD) is a method used to study and 
analyze complex systems (Sterman, 2000). It combines mathematics and computer simulation to explore the 
behavior of real-world systems and relationships over time (Neuwirth et al., 2015). System dynamics can be used 
as a tool in decision making, which can represent problems and facilitate stakeholders with various inputs needed 
in decision analysis (Bérard et al., 2017). System dynamics (SD) is a model-based decision support system that 
considers uncertainty as well as predicts dynamic and complex project behavior (Khatun et al., 2022). The 
evolution of the complexity of the processes of agricultural modernization, specialization, and differentiation, 
emphasizes the responsiveness of economic and legal institutions to various social and environmental problems of 
agriculture (de Olde & Valentinov, 2019). 

Several software that can be used to support SD modeling includes Dynamo, Powersim, Vensim, I-think, and so on. 
(Paut et al., 2021) have used dynamic bio-economic models to simulate management strategies for mixed farming 
and assess their impact on the long-term study. SD can model the interaction between individual behavior, personal 
factors, and environmental challenges (Lo Schiavo et al., 2019). The dynamic model can be used to determine the 
optimal rate, frequency, and method of lime application for a wheat monoculture system (Shoghi Kalkhoran et al., 
2021). Furthermore, SD emphasizes the feedback interaction and the non-linear character of the feedback system. 
Some SD variables can be seen in Table 1 (Sterman, 2000). 
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Table 1. System Dynamics Variables (Sterman, 2002) 

Variable Symbol Description 

Stock (Level)  A quantity that accumulates over time. It changes its value through integrating rates.

Flow (Rate)  Changes the values of the stock variable. 

Auxiliary  The formulation that involves one or more calculations. 

 

3. Model Development 

This section describes the model development covering causal loop diagrams (CLD) and stock and flow diagrams 
(SFD). Model development aims to analyze and forecast future business prospects (Frenzel & Grupp, 2009). 

3.1 Causal Loop Diagram (CLD) Development 
CLD is used to describe the relationship between several variables that affect the maize production and farmers’ 
income as well as several alternative strategies to increase the maize production and farmers’ income as shown in 
Figure 1. Understanding causal relationships between complex and dynamic systems is a major challenge (Pahl et 
al., 2008). This CLD is the initial hypothesis in developing a dynamic system model, which will later be converted 
into stock and flow diagram model (SFD) and validated to check whether the hypothesis is valid or not. 
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Figure 1. CLD of maize production and farmers’ income 

 

The increasing consumption per capita and the population shows a positive polarity (+) will increases the demand 
for maize. Harvested area is influenced by land expansion (R1), land conversion (B1), population, and net income 
of farmers. Land conversion is influenced by population, in which the greater the land conversion, the fewer the 
land availability. Land conversion is affected by the conversion of land use into housing, industry, and other public 
facilities. Harvest land area data were taken from East Java in 2007-2020. The minimum harvest area is 
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1,153,496 ha and maximum 1,295,070 ha, the average harvest area is 1,237,938 ha and the standard deviation is 
40.520 ha (Ministry of Agriculture & Central Bureau of Statistics, 2017). Harvested area affects the total amount 
of maize production. Maize production data is taken from maize production in East Java in 2007-2020. The 
minimum production is 4,252,182 tons and the maximum is 7,239,433 tons, the average production is 5,923,477 
tons and the standard deviation is 788,710 tons (Ministry of Agriculture & Central Bureau of Statistics, 2017). 

Maize demand is influenced by consumption needs, animal feed industry, non-animal feed, and independent 
animal feed (Suwandi et al., 2016). The fulfillment ratio is influenced by production and the maize demand. Maize 
demand for consumption is influenced by maize consumption per capita and population. The population is 
influenced by several factors such as the number of immigrations, the number of emigrations, fulfillment ratio, the 
birth rate (R2), and the death rate (B2). Population data were taken from East Java in 2007-2020. The minimum 
population is 36,506.003 people and the maximum is 39,768,554 people, the average population is 38,408,289 
people and the standard deviation is 1,042,447 people (Central Bureau of Statistics, 2019; Ministry of National 
Development Planning & Central Bureau of Statistics, 2018; Ministry of National Development Planning et al., 
2013). Fulfillment ratio of food commodities including maize is closely related to population growth (Khairati & 
Syahni, 2016). The fulfillment ratio will increase the number of populations which can reduce the amount of 
harvest land area (B3). 

There are several factors that affect the maize productivity, namely: (1) the use of seed varieties, (2) the use of 
fertilizers, (3) the irrigation channels, (4) the labor, (5) the changes in climate and weather, including temperature, 
humidity, soil height above sea level and rainfall, (6) harvested area, and (7) pest attacks. Maize productivity 
data is taken from the average productivity of East Java in 2007-2020. The minimum productivity is 3.69 tons/ha 
and the maximum is 5.56 tons/ha, the average productivity is 4.77 tons/ha and the standard deviation is 0.54 
ton/ha (Ministry of Agriculture & Central Bureau of Statistics, 2017). The net income of farmers is influenced by 
gross income and maize cultivation costs. Farmers’ gross income per hectare is influenced by the price of maize at 
the farm level and the productivity. While the cost of cultivation is influenced by the overall input costs required 
for maize cultivation. 

3.2 Stock and Flow Diagram (SFD) Development 
The conceptual model that has been described through the CLD is then converted into a system dynamics model 
described through the SFD which contains levels, rates, auxiliary, source, and sinks (Sterman, 2000). Based on the 
CLD in Figure 1, several SFDs were developed covering the area of harvested land, maize productivity and 
production, population, and demand for maize, as well as farmers’ income. 

3.2.1 Harvest Land Area Submodel 

Harvested area is the area of plants that are collected after the plants are old enough (BPS Surabaya, 2020). The 
land conversion rate in 2007-2012 was around 3.71% per year, it decreased to 2.75% in 2013, and it was around 
0.82% per year starting 2014 (Ministry of Agriculture & Central Bureau of Statistics, 2017). The SFD of the 
harvest land area submodel can be seen in Figure 2. 

 

 

Figure 2. Submodel of harvest land area 
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The formulation of the harvest land area submodel can be seen in Equation (3): 

(3) 

The simulation result of the harvest area submodel is shown in Figure 3. The harvested area fluctuated during the 
period 2007 to 2020 with an average increase of 0.92% per year. The average harvested area in the period 2007 to 
2020 was around 1,251,946 ha. Harvest land area fluctuated in the period 2007-2020 because it was influenced by 
land expansion and land conversion as illustrated in Figure 2. Harvest land area reached its peak in 2010 because 
the rate of land expansion in 2007-2009 was around 5.97% per year which had an impact on harvest land area in 
2010. Meanwhile, starting in 2014, the rate of land expansion was only 2.06% (Ministry of Agriculture & Central 
Bureau of Statistics, 2017). 

3.2.2 Maize Productivity and Production Submodel 

Several factors that affect maize productivity include:  

(1) The use of seed varieties (Ardiani, 2009; Food Security Agency, 2009; Guo et al., 2017; Kariyasa et al., 
2018). 

(2) The use of fertilizers to meet nutrient deficiencies in the soil (Li et al., 2020). 

(3) Irrigation channels that function to support irrigation in maize cultivation (Kariyasa et al., 2018; Li et al., 
2020).  

(4) Labor in the cultivation process covering almost the entire production process (Hafidh, 2009; Suryani et 
al., 2019; Mohammadi & Tavakolan 2019). 

(5) Climate and weather changes (Prado Tanure et al., 2020). 

(6) Harvested area (BPS Surabaya, 2020).  

(7) Pests and diseases attack (Food Security Agency, 2009; Lewi et al., 2019; Seran, 2005).  

 

 

Figure 3. Harvest land area 

 

Fulfillment ratio is a comparison between the maize production and the total demand. Farmers’ gross income per 
hectare is influenced by productivity per hectare and the selling price of maize per kg at the producer level 
(Soullier & Moustier, 2018). The submodel of maize productivity and production can be seen in Figure 4. 

 

( )
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   1       0 [         ( ) = ( ) ( ]dt)
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Figure 4. Submodel of maize productivity and production 

 

The model formulation of the maize productivity and production can be seen in Equations (4)-(7): 

Maize Production in East Java (t) = Maize productivity (t) × Harvest land area (t)        (4) 

            (5) 

(6) 

Gross income (t) = [Maize productivity (t) × 1000] × Market price (t)             (7) 

The simulation result of the maize production in East Java is shown in Figure 5. In this research, simulation is used 
because simulation has the ability to develop a model of a real system so that it can provide a better understanding 
of the system behavior. Maize production increased from 2007 to 2020 with an average increase of 4.40%. From 
the simulation results, the average of maize production in the period 2007 to 2020 was around 5,655,347 tons and 
the standard deviation is 826,763 tons. Maize production data can be useful in determining model parameter values 
and can be used to validate the model by comparing the model simulation result with the actual data. 
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Figure 5. Maize production in East Java 

 

Maize production which tends to increase is influenced by productivity and harvest area, as shown in the causes 
strip Figure 6. Maize productivity has increased from 2007 to 2020 with an average increase of 3.34% per year. 
The average productivity of maize in the period 2007 to 2020 was around 4.60 tons/ha. Furthermore, the harvest 
area experienced a slight fluctuation with an increase of 0.92% per year. The average harvest area in the period 
2007 to 2020 was around 1,251,946 ha. 

 

 
Figure 6. Causes strip of maize production in East Java 
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3.2.3 Population and Maize Demand Submodel 

The population is affected by the birth rate, death rate, immigration rate, emigration rate, and the effect of the 
fulfillment ratio. The crude birth rate (CBR) of the population in East Java in the population projections for 2010 to 
2035 is between 14.1% to 16.4%, while the crude death rate (CDR) of the population in East Java during this 
period is recorded between 8.1% to 8.6% (Central Bureau of Statistics, 2018). Maize demand is influenced by 
consumption with per capita consumption between 1,443 to 4,064 kg/capita/year, animal feed industry between 
8,181,850 to 9,797,102 tons/year, and non-animal feed industry between 2,713,000 to 5,727,297 tons/year, as well 
as for independent animal feed around 992,680 up to 5,500,051 tons/year (Suwandi et al., 2016). SFD of 
population and maize demand submodel can be seen in Figure 7.  
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Figure 7. Submodel of population and maize demand 

 

The model formulation of the population and maize demand can be seen in Equations (8)-(11): 

(8) 

Maize demand (t) = [Consumption demand (t)/1000] + Animal feed demand + Industry demand   (9) 

Industry demand (t) = Animal feed industry (t) + Non-animal feed industry (t)       (10) 

Consumption demand (t) = Population (t) × Consumption per capita (t)           (11) 

The simulation result of the population submodel is shown in Figure 8. The importance of using simulation 
because simulation provides a more realistic replication of the real system because it requires fewer assumptions 
(Chase & Aquilano, 1991). Figure 8 shows that population increased from 2007 to 2020 with an average increase 
of 0.66% per year. From the simulation results, the average population in the period 2007 to 2020 was around 
37,945,350 people and the standard deviation was 1,096,555 people. Population data can be useful in determining 
model parameter values and can be used to validate the model by comparing the model simulation result with the 
actual data. 

 

0
 ( 1)   0( ) [ ( ) ( )]dt    
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Figure 8. Population in East Java 

 

Maize demand is influenced by demand for consumption, industrial demand, and demand for animal feed. Maize 
demand in East Java fluctuated during 2007 to 2020, with a minimum value of 13.77 million tons and a maximum 
of 19.15 tons. Causes strip of simulation result on maize demand is shown in Figure 9. 

3.2.4 Farmers’ Income and Cultivation Cost Submodel 

Income indicators are profit per kilogram and price per kilogram (Soullier & Moustier, 2018). The net income of 
farmers is influenced by gross income minus the cost of cultivation. Meanwhile, cultivation costs are obtained 
from the accumulated input costs incurred for: (1) purchasing seeds; (2) purchase of fertilizers; (3) labor salaries; 
(4) other additional expenses (Food Security Agency, 2009; Kariyasa et al., 2018; Ojo & Baiyegunhi, 2020; 
Suwandi et al., 2016). The submodel of farmers’ income and cultivation cost can be seen in Figure 10. 
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Figure 9. Maize demand in East Java 
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The formulation of the farmers’ income and cultivation cost submodel can be seen in Equations (12) and (13): 

Net income (t) = Gross income (t) – Cultivation cost (t)                  (12) 

Cultivation cost (t) = Fertilizer cost (t) + Labor cost (t) + Seed cost (t) + Other cost (t)         (13) 

The net income received by farmer is the difference between the gross income of the farmer and the cost of 
cultivation. The simulation results of net income per hectare fluctuated from 2007 to 2020, with a minimum value 
of Rp7.6 million and a maximum value of Rp15.2 million. Causes strip of simulation results on net income per 
hectare is shown in Figure 11. 

 

 
Figure 11. Causes strip of net income 

 

4. Model Validation 

Model validation was carried out using two methods, those are: (1) structural validation to identify the model 
credibility and to assess accuracy of the model equation; and (2) behavioral validity test to asess the substance of 
the model in accordance with the model's objectives (Sterman, 2000). 

4.1 Structural Validation 
This validation establishes several causal relationships in the causal loop diagram in Figure 1 which consists of 
three balancing feedback loops or B-Loops (B1, B2, and B3) and three reinforcing feedback loops or R-Loops (R1, 
R2, and R3). Based on the model formulation, the model consists of variables that are mutually influential and 
significant in shaping the maize cultivation model. In general, the model variables consist of level, auxiliary, and 
rate. Level variables include population, maize productivity, and harvest land area. Auxiliary variables include 
maize production, maize demand, fulfillment ratio, gross income, net income, and cultivation cost. The structure 
verification test is also carried out by checking for errors in the results of the model formulation that have been 
made. Structural validation is done by conducting a structure verification test by checking for errors in the model 
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formulation and dimensional consistency tests in the form of checking units of all model variables. Furthermore, a 
dimensional consistency test was conducted to check whether the mathematical equations in the research model 
had consistency in terms of dimensions. The results of testing the mathematical equations in the research model 
based on the real system/the results of data collection are on the increase in maize productivity as follows: 

Increase maize productivity = RANDOM UNIFORM (0, 0.13, 0) 

Units: dmnl. 

From the data and literature study, it is found that the increase in corn productivity is between a minimum of 0% 
and a maximum of 13% (Kariyasa et al., 2018; Purwanto, 2007), this shows the correspondence of numbers and 
units between the simulated model and the data. The results of the validation of the structure of the maize 
production and farmers’ income submodel can be seen in Figures 12 and 13. 

 

 

Figure 12. Structure verification test on maize production and farmers’ income submodel 
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Figure 13. Dimensional consistency test of maize production and farmers’ income submodel 

 

4.2 Behavior Validity Test 
Behavior validity tests are carried out by comparing the average or error rate and variations in amplitude or error 
variance (Barlas, 1989; Qudrat-Ullah, 2012). The model will be valid if the error rate is ≤ 5% and the error 
variance is ≤ 30%. The process of model validation by using behavioral validity tests can be seen in Equations (14) 
and (15). 

  
    100%

S A
rao te

A
Err r

−= ×                                (14) 

where, S = The average value of the simulation results; A = The average value of data.  

  
    100%S a

a

Err
S S

va iance
S

or r
−= ×                              (15) 

where, SS = Standard deviation of simulation; Sa = Standard deviation of data. 

The results of the calculation of the error rate and error variance on maize productivity, harvested area, maize 
production, and population are shown in Table 2. 
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Table 2. The results of the calculation of error rate and error variance of some variables of the model 

No. Variable 
The Average  

Rate of Data 

The Average Rate 

of Simulation 

Standard  

Deviation of Data

Standard Deviation 

of Simulation 

Error Rate 

(%) 

Error Variance

(%) 

1 Harvest Land Area (ha) 1,237,938 1,251,946 40,520 42,361 1.13 4.54 

2 
Maize Productivity 

(tons/ha) 
4.77 4.60 0.54 0.64 3.68 20.19 

3 
Maize Production 

(tons) 
5,923,477 5,655,347 788,710 770,955 4.53 2.25 

4 
Population 

(people) 
38,408,289 37,945,350 1,042,447 1,096,555 1.21 5.19 

 

From the results of the error rate and error variance test, all error rates are ≤ 5% and error variances are ≤ 30%, thus 
indicating that the model is valid. The comparison of simulation results with the data on maize productivity, 
harvested area, maize production, and population variables can be seen in Figures 14 to 17. 

 

 
Figure 14. The comparison of simulation result of harvest land area model and data 

 

 
Figure 15. The comparison of simulation result of maize productivity model and data 
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Figure 16. The comparison of simulation result of maize production model and data 

 

 

Figure 17. The comparison of simulation result of population model and data 

 

5. Scenario Development 

Scenarios were developed to increase maize production and farmers’ income through (1) organic fertilizer scenario; 
(2) expansion and organic fertilizer scenarios; and (3) precision agriculture scenario. 

5.1 Organic Fertilizer Scenario 
The continuous use of inorganic fertilizers in maize farming can have a negative impact on soil productivity and 
the environment (Yoyo Sulaeman et al., 2017). The use of organic fertilizers, especially on dry land, is very 
important, given the large number of lands that have experienced degradation of organic matter, in addition to the 
high cost of inorganic fertilizers. Drought can reduce crop yields, while organic fertilizers rich in Zn and ZnO can 
increase yields under drought (Dimkpa et al., 2020). Effects caused by drought on food crops can be overcome by 
fertilizing with organic fertilizers rich in Zn and ZnO to increase production and quality. SFD scenario model of 
organic fertilizer can be seen in Figure 18. This scenario is developed by replacing inorganic fertilizers with 
organic fertilizers rich in Zn and ZnO. The simulation results of the maize productivity before (base model) and 
after the scenario can be seen in Figure 21 (a).  

Through this scenario, maize productivity increases from an average of 5.90 tons/ha to 6.73 tons/ha. This scenario 
can increase maize productivity by around 14.02%. The comparison of maize production in East Java before (base 
model) and after scenario can be seen in Figure 22 (a).  

Through this scenario, maize production in East Java is predicted to increase from an average of 7,847,972 tons to 
9,086.265 tons. This scenario can increase maize production in East Java by around 15.78%. The comparison of 
maize cultivation costs before (base model) and after scenario can be seen in Figure 23 (a).  
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Figure 18. SFD of scenario model of organic fertilizer 
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5.2 Land Expansion and Organic Fertilizer Scenario 
The addition of new land as a maize cultivation area can increase the availability of harvest area. New land 
clearing for maize cultivation is also influenced by farmers’ income (Wang et al., 2018). Efforts to increase 
maize production can be pursued by expanding harvested areas and increasing productivity. Another problem is 
obtained from the use of fertilizers to increase productivity. The continuous use of inorganic chemical fertilizers 
has a negative impact on soil productivity and the environment. Membership in agricultural cooperatives, 
organic fertilizer subsidies, and farm size play a positive role in influencing farmers’ choices of organic 
fertilizers instead of chemical fertilizers (Wang et al., 2018). The scenario model of land expansion and the use 
of organic fertilizer can be seen in Figure 19.  

This scenario is developed by (1) replacing inorganic fertilizers with organic fertilizers; and (2) expanding 
agricultural land. The simulation result of the maize productivity before (base model) and after this scenario can be 
seen in Figure 21 (b). 

The scenario simulation results show that through this scenario, maize productivity increases from an average of 
5.90 tons/ha to 6.12 tons/ha. This scenario can increase maize productivity by around 3.80%. The comparison of 
maize production in East Java before (base model) and after this scenario can be seen in Figure 22 (b).  

5.3 Precision Agriculture Scenario 
The purpose of an application of technology in farming is to achieve higher agricultural productivity (Soekartawi, 
1996). Precision agriculture technologies are a subset of agricultural practices that are economically efficient and 
environmentally sustainable (Kolady et al., 2021). The use of technology in farming will affect how many workers 
are required, but technological sophistication alone does not necessarily increase productivity without proper 
application of fertilizers (Nababan, 2009). To increase productivity and cost efficiency of farming, as well as 
farmer welfare, several initiatives are required such as the expansion of agricultural services, the availability of 
high-quality seeds, sufficient fertilizer at affordable prices, and provision of economical internet in remote areas 
(Elham et al., 2020). Female farmers, remittances, and agricultural machinery can increase agricultural efficiency, 
while the use of fertilizers tends to reduce agricultural efficiency (A. Gold & S. Gold, 2019). To develop a more 
competitive maize cultivation, it is necessary to apply the right technology (Food Security Agency, 2009). The 
perceived benefits of technology, facilitation conditions through the knowledge enhancement and training have a 
significant impact on increasing farmers’ willingness to adopt precision agricultural technology (Li et al., 2020) 
such as the use of Global Navigation Satellite System (GNSS) and Unmanned Aerial Vehicle (UAV). 

In this study, several strategies that need to be carried out related to the implementation of precision agriculture 
include: (1) the application of precision agriculture technology such as the Global Navigation Satellite System 
(GNSS) tractor, which offers many advantages for farmers including higher accuracy, higher operating speed, 
easier operation, less affected by bad weather, and accurate use of inputs (fertilizers, pesticides, seeds) (Keskin et 
al., 2018) and Unmanned Aerial Vehicle (UAV) for pest control, crop irrigation, and plant health monitoring 
(Yinka-Banjo, 2020); (2) increasing knowledge through socialization related to the use of precision agricultural 
technology (Li et al., 2020); and (3) training on the use of precision agricultural technology (Li et al., 2020). The 
SFD of the scenario model for precision agriculture can be seen in Figure 20.  

This scenario was developed through the application of precision agricultural technology. The comparison of the 
maize productivity model before (base model) and after the scenario can be seen in Figure 21 (c).  

Using this scenario, maize productivity is projected to increase from an average of 5.90 tons/ha to 6.66 tons/ha. 
This scenario can increase the productivity of maize by about 12.82%. The comparison graph of maize production 
in East Java before (base model) and after the scenario can be seen in Figure 22 (c). 
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Figure 19. SFD of scenario model of land expansion and organic fertilizer 
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Figure 20. SFD of scenario model of precision agriculture 
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(a) Organic fertilizer  (b) Land expansion and organic fertilizer  

 

(c) Precision agriculture  

Figure 21. The comparison of the maize productivity model before (base model) and after scenarios 

 

(a) Organic fertilizer (b) Land expansion and organic fertilizer 

 

(c) Precision agriculture 

Figure 22. The comparison of the maize production in East Java before (base model) and after scenarios 
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Using the land expansion and organic fertilizer scenario, maize production in East Java is predicted to increase 
from an average of 7,847,972 tons to 8,000,214 tons. This scenario can increase maize production in East Java by 
around 1.94%. Whereas if using the precision agriculture scenario, maize production in East Java is predicted to 
increase from an average of 7,847,972 tons to 8,413,554 tons. This scenario can increase maize production in East 
Java by around 7.21%. The comparison of maize cultivation costs before (base model) and after all scenarios are 
implemented can be seen in Figure 23.  

 

(a) Organic fertilizer (b) Land expansion and organic fertilizer 

 

(c) Precision agriculture 

Figure 23. The comparison of the maize cultivation costs before (base model) and after scenarios 

 

Using the organic fertilizer scenario, the cost of maize cultivation only increases slightly from an average of 
Rp8,205,199 to Rp9,069.978. This scenario has an impact on increasing the cost of maize cultivation by around 
10.54%. Farmers’ net income increased from an average of Rp15,794,534 to Rp18,919,286. This scenario can 
increase the net income of farmers by around 19.78%. Then if using the land expansion and organic fertilizer 
scenario, the cost of maize cultivation has increased quite a lot from an average of Rp8,205,199 to Rp12,226,361. 
The scenario has an impact on increasing the cost of maize cultivation by around 49.01%. The net income of 
farmers decreased from an average of Rp15,794,534 to Rp13,450,201. This scenario results in a decrease in the net 
income of farmers by around 14.84%. Whereas if using the precision agriculture scenario, the cost of maize 
cultivation has increased a lot from an average of Rp8,205,199 to Rp14,051,886. The scenario has an impact on 
increasing the cost of maize cultivation by around 71.26%. Farmers’ net income decreased from an average of 
Rp15,794,534 to Rp14,468,461. This scenario results in a decrease in the net income of farmers by around 8.40%. 
The comparison of farmers’ net income before (base model) and after all scenarios are implemented can be seen in 
Figure 24. 
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(a) Organic fertilizer (b) Land expansion and organic fertilizer 

 

(c) Precision agriculture 

Figure 24. The comparison of farmers’ net income before (base model) and after scenarios 

 

6. Conclusions and Further Research 

This research is designed to increase maize production and farmers’ income through the development of 
sustainable maize productivity and production models to meet demand and increase farmers’ incomes. This 
research was conducted by developing a system dynamics simulation model and scenario that can accommodate 
problems in the operational and strategic fields of the maize industry related to strategies to increase production 
and farmers’ income.  

Maize production is influenced by land harvest area and productivity. Several factors that affect the productivity 
and production of maize include harvested area, seed varieties, fertilizers, irrigation, climate and weather, labor, 
and pests and diseases. The demand for maize for consumption is calculated based on the calculation of 
consumption per capita multiplied by the total population. The fulfillment ratio is a comparison of maize 
production and the total demand. Farmers’ net income per ha is the difference between gross income per ha and 
maize cultivation costs per ha. Gross income of farmers is obtained by multiplying the price of maize at the 
producer level with maize productivity. Meanwhile, the cost of cultivation per hectare is obtained from the 
accumulated total input costs for maize cultivation per hectare.  

Several significant variables that affect maize production are the area of harvest, the use of fertilizers, and the use 
of technology. Scenario development is done by changing the structure of the validated model. Several scenarios 
were developed including: (1) organic fertilizer scenario by changing the use of inorganic fertilizers KCL, SP-36, 
Urea, NPK with organic fertilizers rich in Zn and ZnO; (2) land expansion and organic fertilizer scenarios by 
expanding the harvested area, changing the use of inorganic fertilizers to organic fertilizers, becoming membership 
in agricultural cooperatives, and using organic fertilizer subsidies; and (3) implementation scenarios of precision 
agriculture by utilizing precision agriculture technology, increasing farmer knowledge, and training in the use of 
agricultural cultivation technology. The results of scenario simulations show that: (1) the organic fertilizer scenario 
can increase productivity by 14.02%, production by 15.78%, and farmers’ income increases by 19.78% with a 
fairly low increase in cultivation costs of around 10.54%; (2) the scenario of land expansion and organic fertilizer 
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can increase productivity by 3.80%, production by 1.94%, and farmers’ income decrease by 14.84% with a fairly 
high increase in cultivation costs of around 49.01%; (3) the precision agriculture scenario can increase productivity 
by 12.82%, production by 7.21%, and farmers’ income decrease by 8.40% with a very high increase in cultivation 
costs of around 71.26%. 

The most optimal scenario is organic fertilizer which produces the highest productivity and production with the 
lowest cultivation costs because it replaces inorganic fertilizers with organic fertilizers rich in Zn and ZnO. The 
second optimal scenario is precision agriculture, which can increase productivity and production by reducing the 
number of workers but requiring the highest cultivation costs. The third optimal scenario is land expansion and 
organic fertilizer. The cost of cultivation under this scenario is quite expensive because of the need for land 
expansion. Future research is required to develop a sustainable agriculture by considering the environmental and 
social factors 
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