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Abstract 
The artificial vision system (AVS) uses image analysis methods that can interpret images and identify nutritional 
deficiency symptoms in plant, even in the early stages of development. The objective of this study was to 
propose methods of image processing using analysis by texture to identify the deficiency of calcium (Ca) in 
maize (Zea mays L.) plants grown in nutrient solution. Plants were grown in nutrient solution in a greenhouse. 
Calcium doses were 0.0; 1.7; 3.3 and 5.0 mM of Ca, with four replications. Plant and leaf images were sampled 
at three main stages of maize development: V4 (plants with four leaves fully developed), V6 (plants with six 
leaves fully developed) and V8 (plants with eight leaves fully developed). Sampled material was split into (i) 
index leaf (IL) of the growing stage (V4 = leaf 4, V6 = leaf 6, and V8 = leaf 8), and (ii) new leaf (OL), both to 
image capture and chemical analysis. Such leaves were scanned, processed by the AVS and chemically analyzed. 
The texture methods used by the AVS to extract deficiency characteristics in the leaf images were: Volumetric 
Fractal Dimension (VFD), Gabor Wavelet Energy (GWE) and VFD with canonical analysis (VFDCA). The 
amount of Ca in the solution resulted in variation in the concentration of Ca in NL and IL, allowing the 
observation of typical symptoms of Ca deficiency. The AVS method was able to identify all Ca levels in leaves, 
being the GWE the best indicator using color images, scoring 80% of rights in images of the middle section of 
new leaves in V4. 
Keywords: artificial vision system, Gabor Wavelets, nutrient solution, greenhouse, Zea mays L. 

1. Introduction 
The world maize (Zea mays L.) production was 1162 million tons during the 2020/2021 crop season. The United 
States was responsible for 31% of that amount with average 10.8 ton ha-1, China cropped 22.4% (6.3 ton ha-1) 
and Brazil 8.9% with average 5.7 ton ha-1 (FAO, 2022). To realize all its productive potential, the maize crops 
requires that nutrient supply (Amaral Filho et al., 2005) be adequate (Rambo et al., 2004). Symptoms of calcium 
(Ca) deficiency in maize results in internerval chlorosis and necrosis in younger leaves and tissues, reducing the 
cells stability and integrity, and growth is inhibited (Epstein & Bloom, 2006; Taiz & Zeiger, 2010; Marschner, 
2011). The evaluation of nutritional state of the plants is usually done through chemical analysis or visual 
evaluation (Romualdo et al., 2014). Leaf chemical analyses of the nutrient status of the plant are time consuming 
and expensive Reis et al. (2006). In addition, the identification of the deficiency using leaf chemical analyses 
imply sampling at advanced phenological stage, which does not allow to take remediation actions for the crop 
(Wu et al., 2007). The visual diagnosis is a practical and quick method to investigate the nutrient deficiency in 
the plant, although its precision is limited and subjected to the experience of the observer (Baesso et al., 2007). 
The difficulties of evaluating the nutritional status of in maize plants on the same crop cycle are the motivation 
to propose additional approaches in nutrients (Luz et al., 2018). Since the chemical and visual diagnosis of 
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nutrient deficiency have such disadvantages, the artificial vision system (AVS) may become an efficient method 
to early identification of plant nutrient deficiency. The AVS can apply various methods to extract information 
from scanned images. The AVS is a computing system that can compare the images with a data bank in an 
automatic or semi-automatic routine (Punam & Udupa, 2001). The use of image analysis in agriculture is not 
recent and several previous examples of success are available. Lukina et al. (2001) estimated vegetation 
coverage in wheat (Triticum aestivum L.) using digital images. Karcher and Richardson (2003) used digital 
image analysis to determine the lawn color. Baesso et al. (2007) and Baesso et al. (2012) used image analysis 
and remote sensing techniques to identify nitrogen (N) deficiency in bean (Phaseolus vulgaris L.) plants using 
neural networks and were able to identify the deficiency level. Florindo et al. (2014) studied brachiaria species 
identification using imaging techniques based on fractal descriptors, and maked possible the correct prediction of 
species in more than 93% of the samples. Silva et al. (2014) identified magnesium (Mg) deficiency in maize 
grown in a greenhouse and found a 75.5% of rights in the V4 stage, considered worthy trust through the Kappa 
index (Kappa = 0.9). Romualdo et al. (2014) used of artificial vision techniques for diagnostic of nitrogen 
nutritional status in maize plants, with percentage of right of 82.5 and 87.5% at V4 and V7, respectively, by 
Gabor Wavelet technique with color images. Luz et al. (2018) studied boron deficiency precisely identified on 
growth stage V4 of maize plant using texture image analysis, and achieved 88.75% of accuracy in differentiating 
between leaves using Fractal 3D, in V4 stage. Romualdo et al. (2018) used spectral indexes for identification of 
nitrogen deficiency in maize, and found accuracy rate for N patterns was 80% at V4 stage and 93% at V7 stage. 
Baesso et al. (2020) estudied artificial vision for nutritional diagnosis of corn grown with calcium silicate and 
magnesium and found a 66% of rights. Patrício and Riederb (2018) reviewed the computer vision and artificial 
intelligence in precision agriculture for the five most produced grains in the world: maize, rice, wheat, soybean, 
and barley and and concluded that Computer vision systems can be used in grading systems for maize and 
provides accurate descriptive data. It was identified that there are gaps to be filled with the development of 
artificial intelligence for automation of tasks in the field. The use of methods capable to precisely identify the 
nutrient status of plants is an excellent tool to manage maize nutrition, allowing to supply fertilizer in the same 
crop cycle, which is not possible using the present day human visual diagnosis and/or leaf chemical analysis. 

The objective of this study was to propose methods of image processing using analysis by texture to identify the 
deficiency of calcium (Ca) in maize (Zea mays L.) plants grown in nutrient solution, using an AVS of different 
leaf sections. 

2. Method 
2.1 Greenhouse Experiment 

The maize (Zea mays L.), hybrid DKB 499 was grown in a greenhouse using a hydroponic system with two 
plants per 3.6 L pot, in nutrient solution. Maize was sown in plastic trays filled with clean sand and kept there up 
to two weeks. Deionized water was supplied. Plants were then moved to the solution pots, supported by a foam 
layer in such a way that their roots were immersed in the nutrient solution. The nutrient solution was based on 
the Hoagland & Arnon (1950) formulation at 50% and with adaptation for the Ca levels. After five days, solution 
in the pots were brought 100% of the formulation. Solutions were replaced at each week. The pH was monitored 
and kept between 5 and 6 and temperature averaged at 28 °C. Each pot had their own bubbling system which 
worked for 10 seconds at each 30 seconds interval. 

The levels of Ca were: 0.0; 1.7 (33% of full dose); 3.3 (66% of full dose) and 5.0 mM (of full dose—100%) of 
Ca. Plant and leaf images were sampled at three stages of maize development: V4 (plants with four leaves fully 
developed), V6 (plants with six leaves fully developed) and V8 (plants with eight leaves fully developed). 
According to Fancelli (1986), at stage V4 occurs the definition of the productive potential, at V6 the definition of 
the number of seeds in the ear, and at V8 he definition of the number and size of the ear. 

Sampled material was split in shoot, roots, new leaf (NL) and index leaf (IL) of the growing stage (V4 = leaf 
four; V6 = leaf six, and V8 = leaf eight). NL and IL to image capture and chemical analysis. For chemical 
analysis, all material was washed, dried in an oven with air circulation at 65 °C, grind and saved in plastic bags 
for further nutrient analyses, according to methodology described in Bataglia et al. (1983). Samples were 
solubilized with nitric-perchloric acid for determination of Ca in IL and NL. 

2.2 Experimental Design 

Experimental design was fully random in a 4x3 factorial (four Ca levels and three sampling events) with four 
replications. In each collecting period established, 16 pots were sampled (samples destructive). 
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positions of the leaf and allow discard windows that are completely different of homogeneous regions, that could 
contain out layers, such as leaf defects, insect bitten among others.  

A texture descriptor is used to extract a numeric vector that represents the sub-image in the feature space. On the 
last step, a pattern classification scheme separates the feature space to classify the samples. Different texture 
methods were used separately to demonstrate our proposal. The methods used were Volumetric Fractal Dimension 
(VFD), Gabor Wavelet (GW) and Volumetric Fractal Dimension with canonical analysis (VFDCA). These 
methods were chosen based on the good results obtained in the leaf texture analysis. In Luz et al. (2018), 
Romualdo et al. (2018), Silva et al. (2014), Romualdo et al. (2014), Backes and Bruno (2013), Rossatto et al. (2011) 
and Backes et al. (2009), the authors compared state of art texture methods for leaf identification and the best 
results were achieved by them.  

In all methods of extracting the AVS used the naive Bayes classification and the cross validation learning method 
were used. Each image processing, 80% of the images were used for training and 20% for testing "blind. The 
classification experiment was carried out considering the four levels of Ca deficiency. These levels were controlled 
and also validated with the chemistry analysis. The goal of the classification experiment is verifying the image 
analysis accuracy to detected the nutrient deficiency classifying the groups according both chemistry analysis and 
controlled level of Ca. 

The VFD routines used works with binary images because it follows the proposal of Backes at al. (2009) in which 
the image signature is calculated for all reE values:  

E = 1, √2, √3, … rmax                                    (2) Ʊ (rmax) = [log V (1), log V (√2), log V (√3), … log V (rmax)]                   (3) 

Where, E is the set of Euclidean distances for a maximum radius rmax. In this routine the radius varied from 1 μm to 
20 μm.  

The transformed of Gabor bi-dimensional is a Gaussian function modulated in a senoidal oriented with a frequency 
and a direction, and its bi-dimensional form in the space and frequency is given by the following equations. 

                       (4) 

                             (5) 

Where, frequency W and a direction θ, and its bi-dimensional form in the space g(x,y) and frequency G(u,v). 

The transformed of Gabor can be adapted as a wavelet and in such a case these equations are used as a mother 
wallet. In the next step, a filter dictionary can be obtained by dilation and rotation of gz(x,y) through the 
function generated as proposed by Manjunath and Ma (1996): 

gmn(x,y) = a-m g(x’,y’)                                  (6) 

Where, a > 1; m, n are the scale and orientation, respectively, with m = 0, 1, ... M – 1 and n = 0, 1, … N – 1; M is the 
total number of scales and N is the total number of orientations. 

2.7 Classification/Identification 

Finally, the last part is the classification/identification, where the pattern recognition algorithms performance the 
classification of the leaves based on the feature vector extracted in the previous step.  

For all methods the Naive Bayes classification and the cross validation learning method were used. For the 
evaluation, the samples were separated randomly into n groups of roughly equal size and was made “to let an 
outside group” the cross-validation which can also be called a “n-fold cross-validation” test scheme. Samples 
were independent for each class, and these samples did not appear in the same training and testing. In each 
processing, 80% of the images were used for training and 20% for testing “blind”. 

For the best recognition result of Ca deficiency by the methods of AVS, the confusion matrices were generated to 
assess the amount of right classifications made by AVS. And it is important to know classes that were difficult to 
classify. In addition, were assessed the percentage of images correctly classified or Global Percentage of Right 
(GPR) and Kappa index (K).  

The Kappa index indicates the correlation between GPR and truth. And Kappa index is evaluated as follows: 
0.00-0.20: not trust; 0.21-0.40: low; 0.41-0.60: moderate; 0.61-0.80: trust; 0.81-1.00: worthy trust (Everitt & Dunn, 
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Table 1. Global percentage of rights (GPR) of gray scale images using the volumetric fractal dimension (VFD), 
volumetric fractal dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf calcium 
(Ca), and corresponding Kappa index (K), for the top, middle and bottom sections of the index leaf and new leaf 
for the same sections from maize plants (Zea mays L.) at the V4, V6 and V8, under four levels of Ca in nutrient 
solution in greenhouse 

 
IL NL 

VFD  VFDCA GW VFD VFDCA  GW 

GPR Kappa  GPR Kappa GPR Kappa GPR Kappa GPR Kappa  GPR Kappa

V4 

Top 34.0 0.590  55.0 0.770 46.5 0.718 41.5 0.695 66.0 0.866  51.5 0.765 

Base  29.5 0.557  49.5 0.741 44.5 0.686 39.5 0.65 62.5 0.858  52.5 0.764 

Middle 21.5 0.473  53.5 0.769 39.0 0.639 39.5 0.647 69.0 0.879  60.0 0.844 

V6 
Top 45.5 0.681  51.0 0.733 48.5 0.742 39.0 0.604 66.0 0.867  59.9 0.810 
Base  46.5 0.724  46.0 0.707 48.0 0.719 35.0 0.571 65.5 0.857  57.5 0.812 
Middle 44.0 0.702  48.0 0.740 45.5 0.690 32.0 0.539 55.5 0.798  57.0 0.788 

V8 

Top 48.5 0.741  54.0 0.794 50.5 0.785 48.5 0.708 53.5 0.795  54.0 0.780 

Base  50.5 0.734  58.5 0.788 52.5 0.749 48.0 0.698 55.0 0.783  54.5 0.768 

Middle 55.5 0.747  59.0 0.795 55.0 0.767 51.0 0.707 52.0 0.797  43.0 0.742 

 

Table 2. Global percentage of rights (GPR) of colors images using the volumetric fractal dimension (VFD), 
volumetric fractal dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf calcium 
(Ca), and corresponding Kappa index (K), for the top, middle and bottom sections of the index leaf and new leaf 
for the same sections from maize plants (Zea mays L.) at the V4, V6 and V8, under four levels of Ca in nutrient 
solution in greenhouse 

 
FI FN 

VFD  VFDCA GW VFD VFDCA  GW 

GPR Kappa  GPR Kappa GPR Kappa GPR Kappa GPR Kappa  GPR Kappa

V4 

Top 46.5 0.722  60.0 0.79 55.5 0.771 43.0 0.719 67.5 0.873  62.5 0.854 

Base  40.0 0.622  35.5 0.633 50.5 0.773 54.0 0.768 71.0 0.89  60.5 0.859 

Middle 42.5 0.7  54.5 0.778 55.5 0.793 42.0 0.698 65.5 0.873  80.0 0.941 

V6 
Top 48.5 0.716  49.5 0.762 53.0 0.780 47.0 0.686 48.5 0.745  62.5 0.867 
Base  48.0 0.738  60.0 0.829 61.0 0.810 45.5 0.704 51.0 0.734  67.0 0.896 
Middle 47.0 0.691  52.5 0.742 56.0 0.789 39.5 0.668 48.5 0.700  69.5 0.901 

V8 

Top 56.5 0.795  55.0 0.784 58.5 0.807 51.0 0.726 43.5 0.708  64.5 0.808 

Base  52.5 0.781  58.0 0.827 59.5 0.820 42.0 0.703 49.0 0.742  65.0 0.849 

Middle 51.5 0.767  55.0 0.795 62.5 0.814 55.5 0.769 48.5 0.734  57.5 0.813 

 

Table 3. Confusion matrix of the medium portion of maize new leaves (NL), classified by the Gabor Wavelets 
Energy (GWE) on color images of stage V4 leaves, submitted to calcium (Ca) levels in nutrient solution 

Correct classification  
% images classified using the GWE of NL in V4 with color images 

0.0 mM 1.7 mM 3.3 mM 5.0 mM 
0.0 mM 98 2 0 0 

1.7 mM 4 66 30 0 

3.3 mM 0 26 72 2 

5.0 mM 6 2 8 84 

 

Another interesting aspect of the confusion matrix is the percentage of rights for the 0.0 mM and 3.3 mM. The 
results point to the 0.0 mM as being the easiest to classify, and that the greatest percentage of errors occurs in the 
3.3 mM (Table 3). This probably happens because the images obtained from the leaves grown into the 3.3 mM 
solution are very close to those of leaves grown into the 1.7 mM. Even though, the AVS still can correctly classify 
a large amount of images. This happens because the Ca concentration in the NL of V4 plants grown into the 3.3 
mM is 0.94 g kg-1 (Figure 2b) and are very close to the Ca concentration in the NL of V4 plants grown into the 1.7 
mM of Ca solution, which is 0.85 g kg-1 of Ca (Figure 2b). Such closeness may have caused the difficulty of the 
AVS to identify the nutritional status of plants. However, the discrimination among the Ca levels is still reasonable, 
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since it would be nearly impossible to distinguish visual symptoms in plants with Ca levels this close to each other. 
The AVS was able to identify Ca severe (0.0 mM) and moderate (1.7 mM) deficiencies, when the deficiency is to 
small (3.3 mM), the percentage of rights is 80%. Therefore, it would be possible to correct deficiency even at very 
small levels, but still causes decrease in the crop production. 

4. Discussion 
The results of Ca concentration in NL and IL are in accord with those reported by Silveira and Monteiro (2010) in 
their study of N and Ca nutrition of Tanzania grass, where the isolated effect of Ca concentration in recently 
expanded leaves fit a quadratic model. The concentration of Ca in the IL was greater as compared to the NL 
because Ca is usually immobile, therefore the Ca deficiency symptoms appears firstly in the newer leaves 
(Malavolta, 2006). Grangeiro et al. (2006) also stated that Ca inside the plant moves together with water and once 
deposited, do not show relocation towards other plant tissues, being accumulated mainly in tissues with intense 
transpiration. According to Malavolta (2006), the amount of Ca transfer through phloem is very small, resulting in 
Ca deficiency symptoms to appear first in new leaves. 

The visual symptoms of Ca deficiency in NL agrees with Ramos et al. (2009). According to Epstein & Bloom 
(2006), Ca demand seems to be intense in such tissues and Ca in older tissues is not relocates to younger tissues. 
The small mobility of Ca is mainly due to the low solubility forms it assumes inside plants, such as the pectate of 
the medium lamellae of cell wall, which makes plant requirement of Ca be constant along its growth (Malavolta, 
2006). The visual symptoms are in accordance with previous reports (Taiz & Zeiger, 2010; Epstein & Bloom, 2006; 
Epstein, 1975). Malavolta (2006) reported such symptoms, and according to Mengel and Kirkby (1987), the 
requirement of Ca by maize can be easily demonstrated by interrupting the supply to the plant roots and observing 
the immediate decrease in growth. According to Marschner (2011), Ca deficiency usually retards the plant growth. 
Mengel and Kirkby (1987) states the need of Ca for plant growth is easily demonstrated by the interruption of Ca 
supply to roots.  

According to Patrício and Riederb (2018) computer vision systems are already widely employed in different 
segments of agricultural production and they can be used in grading systems for maize. The use of such systems 
provides a simple, producing accurate descriptive data.  

Baesso et al. (2020), Luz et al. (2018), Romualdo et al. (2018), Silva et al. (2014), Romualdo et al. (2014), 
compared state of art texture methods for leaf identification of nutrition maize plants.  

Studying the identification of Mg concentrations in maize by AVS, Silva et al. (2014) also found that the analysis 
of color images scored higher than gray images in all stages of development of the plant and then the AVS 
identified the images of the leaves of corn with levels of Mg with 75.5% rights using the middle section of the IL 
by the VFDCA technique, based on color images in V4 stage. 

Romualdo et al. (2014) studying nitrogen nutritional status in maize plants, found percentage of right of 82.5% 
using Gabor Wavelet technique, as in this study in which the percentage of rights is 80% in V4 stage. Romualdo et 
al. (2018) found accuracy rate for nitrogen patterns was 80% at V4 stage using spectral indexes for identification of 
nitrogen deficiency in maize.  

In study de boron deficiency identification on maize, the best method texture image analysis was Fractal and 
achieved 88.75% of accuracy in V4 stage; Gabor has already reached 81.75% of accuracy in differentiating (Luz et 
al., 2018). Baesso et al. (2020) found a 66% of rights for nutritional diagnosis of maize with calcium silicate and 
magnesium.  

Through these systems it is possible to automate laborious tasks, in a non-destructive way, producing adequate 
data, bringing gains of production, quality, and food security (Patrício & Riederb, 2018). 

5. Conclusion 
Maize plants grown into greenhouse show visual symptoms related to Ca deficiency, which significantly interfere 
in shoot and root dry mass production. The NL of maize is the leaf that has the greatest amount of information for 
the AVS classification using color images. IN color images, the best routine to identify Ca deficiency was the 
GWE. The AVS had 80% of rights in identifying Ca deficiency in color images, with a Kappa of 0.941 “very 
reliable”. This was superior to all gray scale images in all growth stages studied.  
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