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Abstract

The artificial vision system (AVS) uses image analysis methods that can interpret images and identify nutritional
deficiency symptoms in plant, even in the early stages of development. The objective of this study was to
propose methods of image processing using analysis by texture to identify the deficiency of calcium (Ca) in
maize (Zea mays L.) plants grown in nutrient solution. Plants were grown in nutrient solution in a greenhouse.
Calcium doses were 0.0; 1.7; 3.3 and 5.0 mM of Ca, with four replications. Plant and leaf images were sampled
at three main stages of maize development: V4 (plants with four leaves fully developed), V6 (plants with six
leaves fully developed) and V8 (plants with eight leaves fully developed). Sampled material was split into (i)
index leaf (IL) of the growing stage (V4 = leaf 4, V6 = leaf 6, and V8 = leaf 8), and (ii) new leaf (OL), both to
image capture and chemical analysis. Such leaves were scanned, processed by the AVS and chemically analyzed.
The texture methods used by the AVS to extract deficiency characteristics in the leaf images were: Volumetric
Fractal Dimension (VFD), Gabor Wavelet Energy (GWE) and VFD with canonical analysis (VFDCA). The
amount of Ca in the solution resulted in variation in the concentration of Ca in NL and IL, allowing the
observation of typical symptoms of Ca deficiency. The AVS method was able to identify all Ca levels in leaves,
being the GWE the best indicator using color images, scoring 80% of rights in images of the middle section of
new leaves in V4.

Keywords: artificial vision system, Gabor Wavelets, nutrient solution, greenhouse, Zea mays L.
1. Introduction

The world maize (Zea mays L.) production was 1162 million tons during the 2020/2021 crop season. The United
States was responsible for 31% of that amount with average 10.8 ton ha”, China cropped 22.4% (6.3 ton ha™)
and Brazil 8.9% with average 5.7 ton ha (FAO, 2022). To realize all its productive potential, the maize crops
requires that nutrient supply (Amaral Filho et al., 2005) be adequate (Rambo et al., 2004). Symptoms of calcium
(Ca) deficiency in maize results in internerval chlorosis and necrosis in younger leaves and tissues, reducing the
cells stability and integrity, and growth is inhibited (Epstein & Bloom, 2006; Taiz & Zeiger, 2010; Marschner,
2011). The evaluation of nutritional state of the plants is usually done through chemical analysis or visual
evaluation (Romualdo et al., 2014). Leaf chemical analyses of the nutrient status of the plant are time consuming
and expensive Reis et al. (2006). In addition, the identification of the deficiency using leaf chemical analyses
imply sampling at advanced phenological stage, which does not allow to take remediation actions for the crop
(Wu et al., 2007). The visual diagnosis is a practical and quick method to investigate the nutrient deficiency in
the plant, although its precision is limited and subjected to the experience of the observer (Baesso et al., 2007).
The difficulties of evaluating the nutritional status of in maize plants on the same crop cycle are the motivation
to propose additional approaches in nutrients (Luz et al., 2018). Since the chemical and visual diagnosis of
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nutrient deficiency have such disadvantages, the artificial vision system (AVS) may become an efficient method
to early identification of plant nutrient deficiency. The AVS can apply various methods to extract information
from scanned images. The AVS is a computing system that can compare the images with a data bank in an
automatic or semi-automatic routine (Punam & Udupa, 2001). The use of image analysis in agriculture is not
recent and several previous examples of success are available. Lukina et al. (2001) estimated vegetation
coverage in wheat (Triticum aestivum L.) using digital images. Karcher and Richardson (2003) used digital
image analysis to determine the lawn color. Baesso et al. (2007) and Baesso et al. (2012) used image analysis
and remote sensing techniques to identify nitrogen (N) deficiency in bean (Phaseolus vulgaris L.) plants using
neural networks and were able to identify the deficiency level. Florindo et al. (2014) studied brachiaria species
identification using imaging techniques based on fractal descriptors, and maked possible the correct prediction of
species in more than 93% of the samples. Silva et al. (2014) identified magnesium (Mg) deficiency in maize
grown in a greenhouse and found a 75.5% of rights in the V4 stage, considered worthy trust through the Kappa
index (Kappa = 0.9). Romualdo et al. (2014) used of artificial vision techniques for diagnostic of nitrogen
nutritional status in maize plants, with percentage of right of 82.5 and 87.5% at V4 and V7, respectively, by
Gabor Wavelet technique with color images. Luz et al. (2018) studied boron deficiency precisely identified on
growth stage V4 of maize plant using texture image analysis, and achieved 88.75% of accuracy in differentiating
between leaves using Fractal 3D, in V4 stage. Romualdo et al. (2018) used spectral indexes for identification of
nitrogen deficiency in maize, and found accuracy rate for N patterns was 80% at V4 stage and 93% at V7 stage.
Baesso et al. (2020) estudied artificial vision for nutritional diagnosis of corn grown with calcium silicate and
magnesium and found a 66% of rights. Patricio and Riederb (2018) reviewed the computer vision and artificial
intelligence in precision agriculture for the five most produced grains in the world: maize, rice, wheat, soybean,
and barley and and concluded that Computer vision systems can be used in grading systems for maize and
provides accurate descriptive data. It was identified that there are gaps to be filled with the development of
artificial intelligence for automation of tasks in the field. The use of methods capable to precisely identify the
nutrient status of plants is an excellent tool to manage maize nutrition, allowing to supply fertilizer in the same
crop cycle, which is not possible using the present day human visual diagnosis and/or leaf chemical analysis.

The objective of this study was to propose methods of image processing using analysis by texture to identify the
deficiency of calcium (Ca) in maize (Zea mays L.) plants grown in nutrient solution, using an AVS of different
leaf sections.

2. Method
2.1 Greenhouse Experiment

The maize (Zea mays L.), hybrid DKB 499 was grown in a greenhouse using a hydroponic system with two
plants per 3.6 L pot, in nutrient solution. Maize was sown in plastic trays filled with clean sand and kept there up
to two weeks. Deionized water was supplied. Plants were then moved to the solution pots, supported by a foam
layer in such a way that their roots were immersed in the nutrient solution. The nutrient solution was based on
the Hoagland & Arnon (1950) formulation at 50% and with adaptation for the Ca levels. After five days, solution
in the pots were brought 100% of the formulation. Solutions were replaced at each week. The pH was monitored
and kept between 5 and 6 and temperature averaged at 28 °C. Each pot had their own bubbling system which
worked for 10 seconds at each 30 seconds interval.

The levels of Ca were: 0.0; 1.7 (33% of full dose); 3.3 (66% of full dose) and 5.0 mM (of full dose—100%) of
Ca. Plant and leaf images were sampled at three stages of maize development: V4 (plants with four leaves fully
developed), V6 (plants with six leaves fully developed) and V8 (plants with eight leaves fully developed).
According to Fancelli (1986), at stage V4 occurs the definition of the productive potential, at V6 the definition of
the number of seeds in the ear, and at V8 he definition of the number and size of the ear.

Sampled material was split in shoot, roots, new leaf (NL) and index leaf (IL) of the growing stage (V4 = leaf
four; V6 = leaf six, and V8 = leaf eight). NL and IL to image capture and chemical analysis. For chemical
analysis, all material was washed, dried in an oven with air circulation at 65 °C, grind and saved in plastic bags
for further nutrient analyses, according to methodology described in Bataglia et al. (1983). Samples were
solubilized with nitric-perchloric acid for determination of Ca in IL and NL.

2.2 Experimental Design

Experimental design was fully random in a 4x3 factorial (four Ca levels and three sampling events) with four
replications. In each collecting period established, 16 pots were sampled (samples destructive).
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2.3 Statistical Analysis

Statistical data analysis was accomplished using analysis of variance and Tukey test at 5% probability. Such
analysis was applied to data from Ca concentration in plants (g kg™), shoot dry mass (g plant™) and roots dry
mass (g plant™). According to Steel et al. (1997) the statistical model used was as follows:

Yijk = m + Ei + Nj + ENijj + eijk (1)
Where, Yijk is the value measured in the unit subjected to treatment ij at replication k, m is the overall average of

the experiment; Fi is the effect of maize stage of development; Ni is the effect of Ca levels applied; eijk is the
effect of uncontrolled factors at the unit subjected to treatments ij at replication k.

In cases where the F test was significant (p < 0.05) for interaction between Ca levels and stages of plant
development, the unfolding had the objective to study the levels inside the effect of maize stage of development.
In such cases, one regression analysis was performed to each development stage (three in total).

2.3 Artificial Visual System

The images were processed by artificial vision, using the traditional four steps approach: acquisition, image
segmentation, feature extraction and classification / identification (Bruno, 2000; Gonzalez & Woods, 2007).

2.4 Acquisition

The first step of the analysis is the digitalization (acquisition) of the leaf. Scanned leaves were IL and NL (the firt
leaf to show Ca deficiency). The leaves IL and NL were cut from de plant, digitalized using a conventional
table-scanner (HP Scanjet 3800), and stored in uncompressed digital format. The high resolution and the
uncompressed storage allow for the windowing-based approach in which small leaf epidermal structures are
analyzed. Subsequently, the images were stored in TIFF extension for further processing and extraction of
windows by the methods of artificial vision presented below and subsequently classified.

2.5 Image Segmentation

On the image segmentation, the digitalized image is processed in order to be analyzed by the system. The
segmentation process was used to discard the image background and artifacts (damages, holes, etc.) and also to
isolate target areas which showed nutrient deficiency symptoms (Rossatto et al., 2011).

2.6 Feature Extraction

This step consists of two parts. On the first, the leaves’ images are split and segmented from the background,
after that they are oriented (down to top). On the second part, there are extracted windows (areas of interest on
the image) from the leaves, which are used on the next step. The feature extraction step is responsible for the
analysis of the windows. For each window, a signature is extracted in order to characterize the leaf.

Three sectors of each scanned leaf were used: bottom, middle and top (Figure 1), for IL and NL, summing up 50
color images and 50 gray images for each. The sub-images can be called windows and they are sampled from
different positions of the leaf, discarding leaf defects as damages and holes, according to Casanova et al. (2009)
and Rossatto et al. (2011).

top ! i : middle ! i ; botton !

Figure 1. Separation of leaves for image analysis considering 3 parts: bottom, middle and top

In each part of the leaf were extracted windows with 80x80 pixel of the leaf surface. Each window was oriented
horizontally and stored in uncompressed format. The leaf texture windowed technique was proposed in Casanova
et al. (2009). The main idea of the approach is analyzing the leaf micro-texture, this way, the 80x80 pixel windows
can isolate the micro-texture features, allowing that the macro-texture does not interfere into the texture analysis.
Beside that, as showed in Rossatto et al. (2011) the windowed approach allows to extract samples for different
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positions of the leaf and allow discard windows that are completely different of homogeneous regions, that could
contain out layers, such as leaf defects, insect bitten among others.

A texture descriptor is used to extract a numeric vector that represents the sub-image in the feature space. On the

last step, a pattern classification scheme separates the feature space to classify the samples. Different texture

methods were used separately to demonstrate our proposal. The methods used were Volumetric Fractal Dimension

(VFD), Gabor Wavelet (GW) and Volumetric Fractal Dimension with canonical analysis (VFDCA). These

methods were chosen based on the good results obtained in the leaf texture analysis. In Luz et al. (2018),

Romualdo et al. (2018), Silva et al. (2014), Romualdo et al. (2014), Backes and Bruno (2013), Rossatto et al. (2011)
and Backes et al. (2009), the authors compared state of art texture methods for leaf identification and the best

results were achieved by them.

In all methods of extracting the AVS used the naive Bayes classification and the cross validation learning method
were used. Each image processing, 80% of the images were used for training and 20% for testing "blind. The
classification experiment was carried out considering the four levels of Ca deficiency. These levels were controlled
and also validated with the chemistry analysis. The goal of the classification experiment is verifying the image
analysis accuracy to detected the nutrient deficiency classifying the groups according both chemistry analysis and
controlled level of Ca.

The VFD routines used works with binary images because it follows the proposal of Backes at al. (2009) in which
the image signature is calculated for all reE values:

E=1,V2 V3, ... Fpa (2)
0 (rmax) = [10g Vv (l)a 10g Vv (\/E)a 10g Vv (\/g)a e 10g Vv (rmax)] (3)

Where, E is the set of Euclidean distances for a maximum radius 7,,,,. In this routine the radius varied from 1 pm to
20 pm.

The transformed of Gabor bi-dimensional is a Gaussian function modulated in a senoidal oriented with a frequency
and a direction, and its bi-dimensional form in the space and frequency is given by the following equations.

g(x,y)=(2ﬂol_o_ ]exp{—;[;+zjﬂ+2ﬂij 4)
| u=w)Y V*
G(u,v) = exp {_E{G—f-‘- 0_—3} (5)

Where, frequency W and a direction 6, and its bi-dimensional form in the space g(x,y) and frequency G(u,v).

The transformed of Gabor can be adapted as a wavelet and in such a case these equations are used as a mother
wallet. In the next step, a filter dictionary can be obtained by dilation and rotation of gz(x,y) through the
function generated as proposed by Manjunath and Ma (1996):

ZuilXy) = a” g(x’y’) (6)
Where, a > 1; m, n are the scale and orientation, respectively, withm =0, 1,... M—1andn=0,1, ... N—1; M s the
total number of scales and N is the total number of orientations.

2.7 Classification/Identification

Finally, the last part is the classification/identification, where the pattern recognition algorithms performance the
classification of the leaves based on the feature vector extracted in the previous step.

For all methods the Naive Bayes classification and the cross validation learning method were used. For the
evaluation, the samples were separated randomly into n groups of roughly equal size and was made “to let an
outside group” the cross-validation which can also be called a “n-fold cross-validation” test scheme. Samples
were independent for each class, and these samples did not appear in the same training and testing. In each
processing, 80% of the images were used for training and 20% for testing “blind”.

For the best recognition result of Ca deficiency by the methods of AVS, the confusion matrices were generated to
assess the amount of right classifications made by AVS. And it is important to know classes that were difficult to
classify. In addition, were assessed the percentage of images correctly classified or Global Percentage of Right
(GPR) and Kappa index (K).

The Kappa index indicates the correlation between GPR and truth. And Kappa index is evaluated as follows:
0.00-0.20: not trust; 0.21-0.40: low; 0.41-0.60: moderate; 0.61-0.80: trust; 0.81-1.00: worthy trust (Everitt & Dunn,
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2001). The Kappa index is statistical measure of agreement or accuracy well know in pattern recognition
(Congalton, 1991). The Kappa index is used in this study to measure the confidence of the classification.
3. Results

3.1 Calcium Concentration in NL and IL

In all three stages investigated, the increase of Ca in NL and IL was concurrent and significant (p < 0.01) with the
Ca concentration in the nutrient solution. The IL fit a linear model (Figure 2a) and NL a quadratic model (Figure
2b). The symptoms were apparent when Ca was suppressed or in present in small concentrations (33%). In the
present study, plants suppressed of Ca had the smallest concentration of this element both in IL and NL in all
stages (Figure 2). As the Ca concentration increased in the nutrient solution, the concentration in leaves increased
from 0.98 to 8.11 g.kg" of Ca in IL and from 0.42 to 2.44 g kg™'of Ca in NL.
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Figure 2. Concentration of calcium (Ca) in the index leaf (IL) (a) and new leaf (NL) (b) of maize (Zea mays L.)
at the V4, V6 and V8 stages as a function of Ca concentration in nutrient solution. **Significative at 1% and *
Significative at 5%

3.2 Visual Symptoms and Dry Mass of Shoots and Roots

In plants where Ca was completely suppressed, there was a massive decrease in growth, necrosis in the growth
apex of leaves, evolving to the typical descent death. Therefore, we considered that the low Ca levels in nutrient
solution caused the typical symptoms of Ca deficiency and allow the use of the images as standards for Ca
deficiency identification through AVS. The dry mass production in shoots and roots were significantly different (p
<0.01) as Ca supply varied, fitting a quadratic model in all stages (Figure 3).
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Figure 3. Dry mass in shoot (a) and dry mass in roots (b) of maize (Zea mays L.) at the V4, V6 and V8 stages as
a function of calcium (Ca) concentration in nutrient solution. **Significative at 1%
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The symptoms of Ca deficiency appears first in the new leaves and meristems of maize (Figure 3). Morpholcgical
symptoms of Ca deficiency were observed in all plants with complete or partial lack of Ca in the nutrient solution,
such as deformed leaves, with crisped margins thin and twisted tops (Figure 4).

1 ﬂu\‘

Figure 4. Dead maize meristem of maize grown into 0.0 mM Ca solution (a); Intense dilacerations of leaf margin in
new leaves of maize grown into 1.7 mM of Ca (b); Margin deformation of leaves of maize grown into 3,4 mM Ca
solution (c); and new maize leaf grown in nutrient solution without Ca deficiency (d),
at the 29™ day after emergence.

3.3 Artificial Visual System (AVS)

The best result of the AVS using gray scale images was the VFDCA, with 69.0% of rights on the medium portion
of the NL during the V4 stage, 66.0 % at the top portion of the leaves in V6 and 59% in the medium portion of IL
in V8 (Table 1). The use of color images improve the percentage of rights (Table 2). In all growth stages the best
results were found in NL using the GWE routine, reaching 80.0% and 69.5 % of rights in the medium portion
during the V4 and V6 stages, and 65.0% at the leaf base during V8, and the Kappa was considered “very reliable”.

The best result was 80.0 % of rights in V4 (Kappa = 0.941), resulting that the GWE routine using color images has
the best potential. In addition, the number of rights were high in V4 and decreased towards the V8, meaning that
the routine is suitable to identify Ca deficiency in young plants.

The NL is the leaf that had more information recovered by the AVS regarding the Ca nutritional status of maize
plants grown in greenhouse (Table 2). The confusion matrix is shown in Table 3 related to the GWE method in the
medium portion of the NL during the V4. From 50 images analyzed, for the 0.0 nM of Ca solution, 98% of images
were correctly classified, and the other 2% were classified as being grown in the 1.7 mM of Ca solution. The “zero”
at the end of lines means there was no image classified as being of 3.3 mM or 5.0 mM Ca solutions. In the class of
leaves that were grown in 1.7 mM of Ca, 66% of images were correctly classified, 30% of images were classified
as being grown in 3.3 mM and 4% as 0.0 mM.
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Table 1. Global percentage of rights (GPR) of gray scale images using the volumetric fractal dimension (VFD),
volumetric fractal dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf calcium
(Ca), and corresponding Kappa index (K), for the top, middle and bottom sections of the index leaf and new leaf
for the same sections from maize plants (Zea mays L.) at the V4, V6 and V8, under four levels of Ca in nutrient
solution in greenhouse

IL NL
VFD VFDCA GW VFD VFDCA GW
GPR  Kappa GPR  Kappa GPR  Kappa GPR  Kappa GPR  Kappa GPR  Kappa

Top 340 0.590 55.0 0.770 46.5 0.718 415 0.695 66.0  0.866 51.5  0.765

V4 Base 29.5  0.557 49.5  0.741 445  0.686 39.5  0.65 62.5 0.858 52,5  0.764

Middle 21.5 0473 535  0.769 39.0 0.639 39.5  0.647 69.0 0.879 60.0 0.844
- Top 455 0681 510 0733 485 0742 390 0604 660 0867 599 0810

Vo6 Base 46.5 0.724 46.0 0.707 48.0 0.719 350 0.571 65.5 0.857 57.5 0812

Middle 44.0 0.702 48.0  0.740 45.5  0.690 32.0 0.539 555  0.798 57.0 0.788
I Top 485 0741 540 0794 505 0785 485 0708 535 0795 540 0780

V8 Base 50.5 0.734 58.5 0.788 52.5  0.749 48.0 0.698 55.0 0.783 545 0.768

Table 2. Global percentage of rights (GPR) of colors images using the volumetric fractal dimension (VFD),
volumetric fractal dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf calcium
(Ca), and corresponding Kappa index (K), for the top, middle and bottom sections of the index leaf and new leaf
for the same sections from maize plants (Zea mays L.) at the V4, V6 and V8, under four levels of Ca in nutrient
solution in greenhouse

FI FN
VFD VFDCA GW VFD VFDCA GW
GPR  Kappa GPR  Kappa GPR Kappa GPR Kappa GPR  Kappa GPR  Kappa

Top 46.5 0.722 60.0 0.79 555 0771 43.0 0.719 67.5 0.873 62.5 0.854

V4 Base 40.0 0.622 355  0.633 50.5  0.773 54.0 0.768 71.0 0.89 60.5  0.859

Middle 425 0.7 545  0.778 555  0.793 42.0 0.698 655 0.873 80.0 0.941
- Top 485 0716 495 0762 530 0780 470 0686 485 0745 625 0867

Vo6 Base 48.0 0.738 60.0 0.829 61.0 0.810 455 0.704 51.0 0.734 67.0 0.896

Middle 47.0 0.691 525 0.742 56.0 0.789 39.5  0.668 48.5  0.700 69.5 0.901
I Top 565 0795 550 0784 585 0807 510 0726 435 0708 645 0808

V8 Base 525 0.781 58.0 0.827 59.5  0.820 42.0 0.703 49.0 0.742 65.0 0.849

Middle 51.5 0.767 55.0 0.795 625 02814 555  0.769 485 0.734 57.5 0.813

Table 3. Confusion matrix of the medium portion of maize new leaves (NL), classified by the Gabor Wavelets
Energy (GWE) on color images of stage V4 leaves, submitted to calcium (Ca) levels in nutrient solution

. . % images classified using the GWE of NL in V4 with color images
Correct classification

0.0 mM 1.7 mM 3.3 mM 5.0 mM
0.0 mM 98 2 0 0
1.7 mM 4 66 30 0
3.3 mM 0 26 72 2
5.0 mM 6 2 8 84

Another interesting aspect of the confusion matrix is the percentage of rights for the 0.0 mM and 3.3 mM. The
results point to the 0.0 mM as being the easiest to classify, and that the greatest percentage of errors occurs in the
3.3 mM (Table 3). This probably happens because the images obtained from the leaves grown into the 3.3 mM
solution are very close to those of leaves grown into the 1.7 mM. Even though, the AVS still can correctly classify
a large amount of images. This happens because the Ca concentration in the NL of V4 plants grown into the 3.3
mM is 0.94 g kg™ (Figure 2b) and are very close to the Ca concentration in the NL of V4 plants grown into the 1.7
mM of Ca solution, which is 0.85 g kg™ of Ca (Figure 2b). Such closeness may have caused the difficulty of the
AVS to identify the nutritional status of plants. However, the discrimination among the Ca levels is still reasonable,
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since it would be nearly impossible to distinguish visual symptoms in plants with Ca levels this close to each other.
The AVS was able to identify Ca severe (0.0 mM) and moderate (1.7 mM) deficiencies, when the deficiency is to
small (3.3 mM), the percentage of rights is 80%. Therefore, it would be possible to correct deficiency even at very
small levels, but still causes decrease in the crop production.

4. Discussion

The results of Ca concentration in NL and IL are in accord with those reported by Silveira and Monteiro (2010) in
their study of N and Ca nutrition of Tanzania grass, where the isolated effect of Ca concentration in recently
expanded leaves fit a quadratic model. The concentration of Ca in the IL was greater as compared to the NL
because Ca is usually immobile, therefore the Ca deficiency symptoms appears firstly in the newer leaves
(Malavolta, 2006). Grangeiro et al. (2006) also stated that Ca inside the plant moves together with water and once
deposited, do not show relocation towards other plant tissues, being accumulated mainly in tissues with intense
transpiration. According to Malavolta (2006), the amount of Ca transfer through phloem is very small, resulting in
Ca deficiency symptoms to appear first in new leaves.

The visual symptoms of Ca deficiency in NL agrees with Ramos et al. (2009). According to Epstein & Bloom
(2006), Ca demand seems to be intense in such tissues and Ca in older tissues is not relocates to younger tissues.
The small mobility of Ca is mainly due to the low solubility forms it assumes inside plants, such as the pectate of
the medium lamellae of cell wall, which makes plant requirement of Ca be constant along its growth (Malavolta,
2006). The visual symptoms are in accordance with previous reports (Taiz & Zeiger, 2010; Epstein & Bloom, 2006;
Epstein, 1975). Malavolta (2006) reported such symptoms, and according to Mengel and Kirkby (1987), the
requirement of Ca by maize can be easily demonstrated by interrupting the supply to the plant roots and observing
the immediate decrease in growth. According to Marschner (2011), Ca deficiency usually retards the plant growth.
Mengel and Kirkby (1987) states the need of Ca for plant growth is easily demonstrated by the interruption of Ca
supply to roots.

According to Patricio and Riederb (2018) computer vision systems are already widely employed in different
segments of agricultural production and they can be used in grading systems for maize. The use of such systems
provides a simple, producing accurate descriptive data.

Baesso et al. (2020), Luz et al. (2018), Romualdo et al. (2018), Silva et al. (2014), Romualdo et al. (2014),
compared state of art texture methods for leaf identification of nutrition maize plants.

Studying the identification of Mg concentrations in maize by AVS, Silva et al. (2014) also found that the analysis
of color images scored higher than gray images in all stages of development of the plant and then the AVS
identified the images of the leaves of corn with levels of Mg with 75.5% rights using the middle section of the IL
by the VFDCA technique, based on color images in V4 stage.

Romualdo et al. (2014) studying nitrogen nutritional status in maize plants, found percentage of right of 82.5%
using Gabor Wavelet technique, as in this study in which the percentage of rights is 80% in V4 stage. Romualdo et
al. (2018) found accuracy rate for nitrogen patterns was 80% at V4 stage using spectral indexes for identification of
nitrogen deficiency in maize.

In study de boron deficiency identification on maize, the best method texture image analysis was Fractal and
achieved 88.75% of accuracy in V4 stage; Gabor has already reached 81.75% of accuracy in differentiating (Luz et
al., 2018). Baesso et al. (2020) found a 66% of rights for nutritional diagnosis of maize with calcium silicate and
magnesium.

Through these systems it is possible to automate laborious tasks, in a non-destructive way, producing adequate
data, bringing gains of production, quality, and food security (Patricio & Riederb, 2018).

5. Conclusion

Maize plants grown into greenhouse show visual symptoms related to Ca deficiency, which significantly interfere
in shoot and root dry mass production. The NL of maize is the leaf that has the greatest amount of information for
the AVS classification using color images. IN color images, the best routine to identify Ca deficiency was the
GWE. The AVS had 80% of rights in identifying Ca deficiency in color images, with a Kappa of 0.941 “very
reliable”. This was superior to all gray scale images in all growth stages studied.
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