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Abstract 

The planted forests in Brazil and in the world represent a significant slice of the forest sector in general, having 
the mechanization of activities, especially forest harvesting, is of great importance in the process. The objective 
was to estimate, through the use of Artificial Neural Networks, more reliable configurations to estimate the 
mechanical availability of harvester forest harvester-type equipment. The analyzed data were compiled and 
organized in a database of production monitoring of a company in the forest sector located in the southeast 
region of Brazil, later trained and validated according to neural network techniques. A trend was observed for the 
Resilient Propagation algorithm, where among all the trained ANNs, those that obtained the best R2 correlation 
values, the Quickpropagation training algorithm presented a correlation coefficient between the estimated values 
and observed values considered high, 0.9908, demonstrating that the trained networks are reliable. The 
Backpropagation training algorithm had a lower result, with only 75.77% of the estimated mechanical 
availability variation being explained by the observed mechanical availability. However, the application of 
artificial neural networks offers a practical solution to the problem of estimating mechanical availability quickly 
and accurately. 

Keywords: artificial intelligence, forestry, harvest planning 

1. Introduction 

With the highlight for the cultivation of plantes forest of Eucalyptus and Pinus, Brazil produces several products 
from these forests, such as pulp and paper, industrialized wood panels, charcoal, lumber, firewood, among others, 
supplying the domestic and international market. A production chain of highly demanded needs a constant search 
for new technologies, continuous improvement and optimization of processes, become increasingly explored 
(Brazilian Tree Industry, 2020). 

The mechanization of the forest harvesting activity is going through moments of great innovation and 
technological advances, since it come to represent up to 50% of the costs of the final product when added to 
forest transport. Globally, this is an issue that can affect the profitability of companies and promote systemic 
losses to the process, however the sector still suffers from a lack of reliable data for the choice either of the 
system and/or the most suitable and and economically feasible equipment for the process (Nascimento et al., 
2011). 

Simões et al. (2010) reported that according to the last years occurred an intensification of the forest harvesting 
mechanization, leading to a continuous process of operational and economic yields evalution, highlighting to the 
great percentage of production costs aggregated to commercial plantations.  
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A good mechanical maintenance provides to the forestry equipment a higher reliability and increased of its 
mechanical availability, allowing them to maintain themselves normal operating conditions for the longest time 
possible, impacting directly on cost reductions as well as operating yields. However, there is a gap between 
maintenance and operation and a difficulty in measuring the real variables in which maintenance interferes, 
within the scope of ensuring availability and reliability of equipment for the harvesting operation (Lima, 2019). 

Advanced computational methods, such as Artificial Neural Networks (ANN), have been used in the Search for 
ways to achieve greater assertiveness in decision-making that may influence the performance of equipment, 
whether in productivity or mechanically. It is a parallel computational system composed of several simple 
processing elements (artificial neurons) connected among themselves in a specific way to perform a certain task, 
They are more accurate than other statistical techniques and accept an unlimited number of variables (Peng & 
Wen, 1999). 

Defining the optimal number of neurons in the hidden layer is extremely important, since an excessive number 
of neurons can lead to the memorization of training data, a process known as overfitting. In na opposite way, 
when the number of neurons in the hidden layer is small, it may not be enough, a process known as underfitting 
(Braga et al., 2000; Reis et al., 2019; Almeida et al., 2021). 

Considering the contextualized problem, the need to search for alternatives that are able to positively assist in 
elevation or maintaining the mechanical availability of equipment in the forestry sector, especially mechanized 
forestry harvesting, becomes of great importance to the process. The main objective of this study was to develop 
readily available mechanical availability prediction models that can be easily applied. 

2. Method 

2.1 Study Area 

The data from the forest harvesting process were obtained, compiled and organized into a production monitoring 
database of a forest sector company located in the northern region of the state of Espírito Santo. 

The evaluated areas are located in flat to gently undulating relief (with a maximum slope of up to 5%), altitudes 
between 10 m and 50 m. The climate is tropical Aw classified according to Köppen, with average annual rainfall 
between 1,350 and 1,375 mm, with the rainy period from October to December and the dry period from July to 
September, with rainfall irregularities from January to June. In these areas predominate the soils: abrupt yellow 
argisol A, moderate A planosol or prominent A and quartzarenic neosol (Silva et al., 2014). The data collection 
period was from September 24th to October 25th, 2020. 

2.2 Database 

The database with 409 observations contains information from 11 harvesters, 47 operators in rotation of three 
shifts lasting 8 hours in a period of 31 days, totaling 4,965.33 hours worked, in 08 production units (PU) that 
varied the useful area from 2.18 to 66.52 ha with 3 types of clones. The average individual volume (AIV) ranged 
from 0.3050 to 0.3913m3. Data from the forest register (Useful area, Clone, Spacing, Future management, 
barkless cut volume (VCSC) and from the pre-cut inventory (PCI), PU and AIV) were used. 

In this research, the harvesting cut-to-length system and the operation via a forest harvester were analyzed. Such 
equipment can be defined as a high mobile and stable driving set consisting of a tire, track or mixed base 
machine, a hydraulic boom and a head. This forest harvester is able to simultaneously perform the operations of 
felling, delimbing, tracing, debarking and stacking the wood (Machado, 2014). 

The model evaluated consists of a hydraulic crawler excavator from Komatsu, model PC200-F, with a model 
370E harvester head from the same manufacturer. 

To calculate the mechanical availability, the model used by the company was adopted, which can be expressed 
by the following expression:  

2.3 Mechanical Availability 

MA (%)	=	 SH - MS

MS
 × 100                                 (1) 

Where, MA (%) = Mechanical availability in %; SH = Scheduled hours; MS = Maintenance hours. 

2.4 Networks Used 

The trained networks were the Multilayer Perceptron (MLP) type. MLPs consisto f two layers of artificial 
neurons that process data from intermediate and output layers, in addition to a layer of artificial input neurons 
(Figure 1). The Neuro version 4.0.6 software was used to obtain the neural networks. 
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dispersion of data in relation to their average, 81.01±2.43 trees/vg/hour and 0.35±0.02 m³, the other variables 
presented a dispersion medium or high, this variability in relation to the average is important to provide greater 
assertiveness in the configuration of networks and in the models generated. 

 

Table 2. Characteristics and accuracy of artificial neural networks (ANN) selected to estimate the MA 
(mechanical availability) of mechanized forest harvesting equipment (harvester) 

Neurons in the 
hidden layer 

Training algorithim No. of cycles
Activation function Training  Validation 

Training Validation R² RQME  R² RQME

7 

Backpropagation 3000 Sigmoidal Sigmoidal 0.8843 0.0756  0.8402 0.1049

Resilient propagation 3000 Sigmoidal Sigmoidal 0.9969 0.0081  0.9993 0.0077

Quick propagation 3000 Sigmoidal Sigmoidal 0.9885 0.0248  0.9885 0.0298

8 

Backpropagation 3000 Logistics Logistics 0.8900 0.0746  0.8375 0.1058

Resilient propagation 3000 Logistics Logistics 0.9982 0.0086  0.9994 0.0067

Quick propagation 3000 Logistics Logistics 0.9895 0.0237  0.9888 0.0300

9 

Backpropagation 3000 Logistics Logistics 0.8881 0.0751  0.8332 0.1070

Resilient propagation 3000 Sigmoidal Sigmoidal 0.9985 0.0080  0.9995 0.0065

Quick propagation 3000 Sigmoidal Sigmoidal 0.9891 0.0241  0.9904 0.0276

10 

Backpropagation 3000 Logistics Logistics 0.8911 0.0741  0.8387 0.1054

Resilient propagation 3000 Sigmoidal Sigmoidal 0.9984 0.0083  0.9994 0.0067

Quick propagation 3000 Logistics Logistics 0.9905 0.0225  0.9902 0.0275

11 

Backpropagation 3000 Logistics Logistics 0.8882 0.0747  0.8348 0.1066

Resilient propagation 3000 Logistics Logistics 0.9987 0.0083  0.9995 0.0061

Quick propagation 3000 Logistics Logistics 0.9877 0.0257  0.9884 0.0297

12 

Backpropagation 3000 Logistics Logistics 0.8873 0.0753  0.8316 0.1075

Resilient propagation 3000 Logistics Logistics 0.9966 0.0082  0.9994 0.0067

Quick propagation 3000 Logistics Logistics 0.9888 0.0245  0.9889 0.0290

13 

Backpropagation 3000 Sigmoidal Sigmoidal 0.8869 0.0751  0.8326 0.1073

Resilient propagation 3000 Logistics Logistics 0.9976 0.0084  0.9996 0.0060

Quick propagation 3000 Sigmoidal Sigmoidal 0.9874 0.0259  0.9847 0.0340

14 

Backpropagation 3000 Logistics Logistics 0.8883 0.0746  0.8343 0.1067

Resilient propagation 3000 Logistics Logistics 0.9976 0.0082  0.9995 0.0062

Quick propagation 3000 Logistics Logistics 0.9881 0.0252  0.9845 0.0343

15 

Backpropagation 3000 Logistics Logistics 0.8891 0.0741  0.8380 0.1056

Resilient propagation 3000 Logistics Logistics 0.9963 0.0091  0.9994 0.0067

Quick propagation 3000 Logistics Logistics 0.9878 0.0255  0.9855 0.0334

16 

Backpropagation 3000 Sigmoidal Sigmoidal 0.8871 0.0746  0.8355 0.1064

Resilient propagation 3000 Logistics Logistics 0.9971 0.0082  0.9995 0.0063

Quick propagation 3000 Logistics Logistics 0.9882 0.0251  0.9861 0.0326

17 

Backpropagation 3000 Logistics Logistics 0.8901 0.0742  0.8372 0.1059

Resilient propagation 3000 Logistics Logistics 0.9966 0.0086  0.9995 0.0061

Quick propagation 3000 Logistics Logistics 0.9864 0.0274  0.9865 0.0328

18 

Backpropagation 3000 Logistics Logistics 0.8908 0.0742  0.8344 0.1067

Resilient propagation 3000 Logistics Logistics 0.9980 0.0084  0.9995 0.0061

Quick propagation 3000 Logistics Logistics 0.9862 0.0272  0.9868 0.0317

19 

Backpropagation 3000 Logistics Logistics 0.8907 0.0742  0.8369 0.1059

Resilient propagation 3000 Logistics Logistics 0.9967 0.0081  0.9994 0.0069

Quick propagation 3000 Logistics Logistics 0.9845 0.0287  0.9803 0.0388

 

The predicted values were very close to the desired values and were uniformly distributed throughout. Although 
the results of the training phase were generally better than the test phase, there was a trend towards the Resilient 
Propagation algorithm, where among all the trained ANNs, those that obtained the best R2 correlation values 
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In the test phase, we use the selected topology with adjusted weights. The objective of this step was to test the 
network and its generalization properties to assess the competence of the trained network. Therefore, the network 
was evaluated by data, outside the training set. Table 2 contains some statistical properties of the data used in the 
testing phase and the corresponding prediction values associated with different training algorithms. 

The ANN selected in the training and validation to estimate of mechanical availability, presented correlation 
coefficient values above 0.89 and RQME values lower than 0.075, indicating a strong correlation and high 
accuracy between the estimates and the observed values. The ANN configured with 13 neurons in the hidden 
layer and the “resilient propagation” training algorithm presented the best results of R² (0.9905 and 0.09902) and 
RQME (0.0225 and 0.0275), in training and in validation respectively. These networks were of the MLP type and 
used all available categorical and numerical input variables. Rohani et al. (2011), Vendruscolo et al. (2015), Reis 
et al. (2019), and Almeida et al. (2021) in studies related to productivity of agricultural tractors and operations 
related to forest harvesting found similar configurations, thus estimates close to the observed values, concluded 
that artificial neural networks can be used to estimate parameters related to forest harvesting. 

The resilien propagation training algorithm and quickpropagation presented correlation coefficients between the 
estimated values and observed values considered high, 0.9967 and 0.9908, respectively. This shows that 
networks trained with these configurations are reliable. In turn, the Backpropagation training algorithm obtained 
a lower result, with only 75.77% of the variation of estimated mechanical availability being explained by the 
observed mechanical availability. The graphs of the reiduals corroborate the results of the correlation graphs, 
whereas the quickpropagation algorithm showed lower percentage variation of errors. 

Although both configurations (resilient propagation and quickpropagation) presented very similar statistical 
indicators, it is worth mentioning that, differently from the backpropation configuration, data stratification was 
not used for the training of networks, which is the major variability of ANNs. The possibility of inserting 
numerical variables with high variability in the adjustment generated accurate results.  

Regarding the performance of the statistical criteria for the different configurations, with the use of the 
configuration with the Backpropagation algorithm, it is remarkable the performance decline, evidenced in the 
graph by the quality statistics. The difference can be explained by the configuration of the number of neurons in 
the hidden layer (Martins et al., 2020). Therefore, it is extremely necessary to use a network with the ideal 
number of neurons in the hidden layer, thus allowing the model to be parsimonious and not generate problems 
such as overfitting and underfitting (Cunha Neto et al., 2019). 

5. Conclusions 

It was concluded from the network training that the Resilient Propagation training algorithm, presented the most 
reliable values according to the trained networks, and from the statistical analysis, it was found that at a 95% 
confidence level (with p-values greater than 0.9) the actual and predicted test data are similar. 

It can be said that the application of artificial neural networks offers a practical solution to the problem of 
estimating mechanical availability quickly and accurately. 
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