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Abstract

Coffee is the most traded commodity in the world. In Tanzania, Coffee is the second largest traditional
commodity. However, several climate change studies have predicted that coffee production will be reduced as a
result of climate change. Therefore, the study aimed to assess the impact of current climate change on Tanzania’s
Arabica coffee production and determine the most significant climatic variables, which influence coffee
production in the respective regions. Global interpolated climatic database (Worldclim dataset) and official
historical coffee production data from Tanzania Coffee Board for a period of 40 years (1970-2018) were used.
Climatic parameters and coffee production were compared through descriptive statistics, correlation analysis,
and multiple regressions. The Mann-Kendall method was used to detect significant trends in climatic data. The
minimum temperature has been increasing at a higher rate than the maximum temperature in the Northern and
Southern Highlands zones. A 1 °C increase in minimum temperature (T,,;,) during short rains and annual mean
temperature (Tpean) resulted in a significant coffee production decrease (-6,041 and -4,450 tons) in Kilimanjaro
and Arusha regions respectively. In the Southern Highlands zone coffee production positively correlated with
temperature. A significant reduction in coffee production due to a decline in long rains was also observed in the
Kilimanjaro region. The warming and drought trends are likely to continue with significant implications on
coffee production and this, calls for the development of suitable adaptation strategies to sustain production. Such
strategies may include, re-adapting the coffee agronomic practices to climate change, improving water and
nutrient use efficiency in coffee trees, and developing genetically improved coffee cultivars that will tolerate the
impact of climate change.
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1. Introduction

Coffee is the second most important item in the world, in terms of trade, next to oil (Jayakumar et al., 2017). The
crop is produced in about 80 tropical countries (National Coffee Association (NCA), 2017), with an estimated
125 million people depending on it for their livelihoods in Latin America, Africa, and Asia (Osario, 2002). In
Tanzania, coffee is the second-largest traditional commodity (Tanzania Coffee Board (TCB), 2021). It
contributes 24% to the annual agricultural foreign exchange earnings and significantly contributes to tax revenue.
The industry directly supports an estimated 2.4 million individuals in Tanzania (TCB, 2017) and several million
more in similar agro-ecological conditions in neighboring Uganda, Kenya, Rwanda, and Burundi. Approximately
70% of the coffee produced in Tanzania belongs to the species Coffea arabica and 30% is Coffea canephora; the
former is produced mainly in Ruvuma, Mbeya, Songwe, Arusha, and Kilimanjaro regions, and the latter in the
Kagera region (TCB, 2021). For the case of Coffea arabica, the commercial varieties grown in Tanzania are
Bourbon (N39) and Kents (K 423). The main production constraints for the commercial varieties are, however,
high susceptibility to major coffee diseases like Coffee Berry Disease (CBD) and Coffee Leaf Rust (CLR). Due
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to the above problems, Tanzania Coffee Research Institute (TaCRI) has developed coffee hybrid varieties that are
resistant to CLR and CBD (TaCRI, 2011).

The production and productivity of both species largely depend on the climate to attain high yields and quality
(Killeen & Harper, 2016). Arabica coffee grows well in an area with an optimum temperature range of 18-21 °C
(Magrach & Ghazoul, 2015) and an optimum annual rainfall range of 1200-1800 mm (Alegre, 1959). Due to its
narrow climatic requirements coffee crop, is expected to be the most affected by the increasing temperatures
(Malyadri, 2016) and reduced rainfall (Wagner et al., 2021). According to IPCC (2014), the global climate has
changed over the past century and is projected to continue changing throughout this century. Furthermore, global
circulation models (GCMs) all point to higher mean temperatures and changes in precipitation regimes. Africa is
one of the continent’s most severely affected by climate change due to its geographical characteristics of having
the majority of land lying across the warming tropics (Filho & Rao, 2014). In this continent, the temperature is
projected to rise faster than the rest of the world, which could exceed 2 °C by mid- 21st century and 4 °C by the
end of the 21st century (Niang et al., 2014). East Africa will be increasingly affected by climate change in the
coming decades, with temperatures already increasing and predicted to rise further (Adhikari et al., 2015;
Craparo et al., 2015). Countries within East Africa are also experiencing reduced rainfall due to the shortening of
long rains (Wainwright et al., 2019). As a part of the tropical region, Tanzania has experienced sustained
warming particularly since 1970 (IPCC, 2007). Based on downscaled climate models, Tanzania is projected to
experience a mean temperature increase of 2-4 °C by 2100 (IPCC, 2007; Léderach et al., 2012).

The increase in temperatures and precipitation shortages has negative impacts on coffee flowering and fruiting.
However, global studies indicate that precipitation factors such as annual and seasonal precipitation are of less
importance compared with temperatures in determining suitability (Ovalle-Rivera et al., 2015; Rao, 2016). In
Tanzania, research has shown that coffee yields are especially affected by elevated night temperatures (Craparo
et al., 2015) and droughts due to a shift in seasons (Wagner et al., 2021). It is predicted that in Tanzania every
1 °C increase in minimum temperature will result in annual yield losses of nearly 140 kg ha™ (Craparo et al.,
2015). The severity of pests and disease spread is likely to increase with advancing climate change, a significant
challenge in coffee production (Jaramillo et al., 2011). According to Ovalle-Rivera et al. (2015), generally, the
influence of weather variations on coffee-producing countries is predicted to be negative. This will jeopardize
coffee quantity and quality hence endangering coffee producers who occupy 90 percent of the population and
their livelihoods mostly rely on coffee.

Climate change projections also suggest that some areas would lose suitability for growing coffee while others
would gain from temperature increases and possibly in rainfall (Ovalle-Rivera et al., 2015). According to Killeen
and Harper (2016), there would be a change in coffee production areas because suitable areas will become too
warm or prone to periodic drought. Furthermore, Ovalle-Rivera et al. (2015) in their study documented future
global loss of Arabica coffee area by 2050 as follows: Mesoamerica (30%), South America (16-20%), and Africa
(9-25%). They have also reported that Mexico from Mesoamerica and Brazil from South America would lose
about 29% of its suitable Arabica coffee growing areas respectively. Pacific countries such as India and Vietnam
will also experience a loss of suitability areas and be highly affected. Davis et al. (2012) proposed a substantial
reduction in the area suitable for Indigenous Arabica varieties in Eastern Africa. Land suitable for Arabica coffee
in East Africa is predicted to shift from 400-2000 m above sea level to 800-2500 m above sea level. Moreover,
there would be a modest change in the suitability of the areas in Ethiopia, Kenya, Rwanda, and Burundi that
currently grow Arabica coffee. Tanzania and Uganda would lose suitable areas at elevations below 1400 m above
sea level. For the case of the Northern Highlands of Tanzania, the optimum coffee-producing zone would need to
shift upwards attitudinally by 150-200 m, to sustain coffee quality and quantity (Craparo et al., 2015). However,
this pushes coffee into a higher altitudinal zone that currently hosts substantial biodiversity of (mostly protected)
forest species (Hemp, 2005), thus limiting upslope coffee expansion in northern Tanzania and indeed much of
the coffee regions in tropical countries.

Farmers at lower elevations will no longer be able to grow quality coffee and may have to abandon it (Ldderach
et al. (2017). This suggests that actors along the coffee supply chain will have to adapt to the changes that
climate change will bring. According to Stafford et al. (2011), farmers can adjust by making incremental
adaptations and innovations based on their experiences to deal with climate variability. Incremental adaptation
occurs in a short timeframe at lower altitudes, whereas the same areas may undergo transformative adaptation in
the long term. At higher altitudes incremental adaption may be needed in the long term based on two adaptation
strategies to two levels of climate change (incremental adaptation for lower levels of progressive climate change
and transformative adaptation for higher levels of progressive climate change). Laderach et al. (2017) has
developed a two-dimensional adaptation framework in time and space for coffee production in Nicaragua.
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According to the author the same principle and framework are applicable across coffee-growing regions around
the world, as the patterns of decreasing exposure with higher altitudes are the same globally; only the magnitude
and timeframe changes. In Vietnam, Phuong Le and Nguyen (2018), identified adaptation processes more
broadly as long-term strategies and analyzes temporary coping responses to drought of coffee growers.

Generally, different studies indicate that smallholder coffee farmers have been responding to climate change
impacts through a range of interventions, including agronomic practices such as planting shade trees, pruning,
planting drought-tolerant varieties, and application of organic fertilizers (Kajembe et al., 2016; Wagner et al.,
2018; Mbwambo et al., 2021). In the study by Pham et al. (2019), adaptation and management practices were
identified by more than 70% of total studies (25 papers), of which agro forestry, either through intercropping or
shading, was most common (18 papers), followed by irrigation and efficient use and management of water (12
papers), development of new cultivars that are drought and heat-stress resistant and/or pest and disease tolerant
(10 papers) and diversification of cropping patterns or livelihood activities (9 papers). Other measures included
the relocation of coffee plantations to more bio-climatically suitable areas (6 papers), crop insurance (3 papers),
off-farm livelihoods (2 papers), and shifts from Arabica to Robusta or cocoa (2 papers). According to Mbwambo
et al. (2021) the adaptation measures used by smallholders coffee farmers in the Northern and Southern
Highlands of Tanzania are in the order of; use of shade tree, use of mulching, use of organic manure, planting
disease resistance varieties, use of cut-off drains, use of terraces and irrigation. However, according to Craparo et
al. (2015), the increase in T, challenges the common notion that shade trees are always a beneficial aspect of
climate change adaptation. Furthermore, responses towards adopting adaptations practices have been influenced
by factors such as education level, farming experience, farm size, access to extension services, and time
awareness of climate change information (Mbwambo et al., 2021).

Even though, in Tanzania, the general feeling is that the climate has been changing over the years and may be
responsible for current low production and productivity (Craparo et al., 2015; Wagner et al., 2021; Mbwambo et
al., 2021), this perception has largely remained anecdotal, with limited assessment covering the whole country's
coffee-growing areas. Studies by Craparo et al. (2015) and Wagner et al. (2021) dealt with specific
coffee-growing zones and pointed to the possible future climatic trajectories in those zones. Nevertheless,
climate change studies are necessary for the formulation of climate change adaptation strategies for coffee
farming in Tanzania, which does not exist yet. This study used official historical coffee production data to
understand whether the general production patterns have any bearing on the historical climatic trends in major
Arabica coffee growing areas in Tanzania.

2. Materials and Methods
2.1 Description of the Study Area

The study area is comprised of two major Arabica coffee growing zones. The Northern Highland zone involved the
Kilimanjaro region (Hai, Moshi rural, Siha, and Rombo Districts) and Arusha Region (Arumeru, Longido,
Monduli, and Karatu Districts). The Southern Highland zone included the Songwe region (Mbozi and Ileje
districts), Mbeya (Mbeya and Rungwe districts), and Ruvuma (Mbinga, Songea, and Nyasa districts) (Figure 1). In
these zones, Arabica coffee production is exclusively rain-fed. The Northern Highlands zone is characterized by a
bimodal rainfall pattern, while the Southern Highland zone experiences a unimodal rainfall pattern.

80



jas.ccsenet.org Journal of Agricultural Science Vol. 14, No. 3;2022

UGANDA

Lake :
Victorig, KENYA W E

“ _.«,
|l
“ . [NORTHERN ZONE|

-

- g
Indian

TANZANLA QO

od .«

)

x X MBE YA/SONGWE

DR.C

%

ZAMBIA
7
7
7, | ..
.
Laks
Ns;aa MOZAMBIQUE

300 0 300 600 Kilometers

Figure 1. Map of Tanzania indicating study locations (callouts)

2.2 Data Collection

Monthly minimum temperature (T,,;), maximum temperature (Tp.x), and precipitation for the period between
1979-2018 were collected from the global interpolated climatic database (Worldclim dataset). The Worldclim
dataset was cropped using the Tanzania country boundary layer mask. Tanzania map was also masked with the
boundaries from the major Arabica coffee growing areas and served into shapefiles, which were then used to clip
Worldclim datasets on the Tanzania mask. The dataset is available at a spatial resolution of 2.5 minutes
(equivalent to 21 km? at the equator). Each download is a “zip” file containing 120 GeoTiff (.tif) files, for each
month of the year for 10 years (Fick & Hijmans, 2017). The observed station dataset (rainfall and temperature)
were also acquired from Lyamungo and Burka Coffee estate (Northern Highland zone) and Mbimba and Mbinga
(Southern Highlands Zone). Data from Lyamungo, Mbimba, and Mbinga were acquired from the offices of the
Tanzania Meteorological Authority (TMA), while data from the Burka Coffee estate were acquired from a
private operator. The observed station dataset was used to evaluate the performance of gridded climatic data.
Coffee production (tons per region) for five regions (Ruvuma, Mbeya, Songwe, Kilimanjaro, and Arusha) for 40
years (1979-2018) was obtained from official records of the Tanzania Coffee Board.

2.3 Data Analysis

Missing values in the rainfall and temperature dataset from TMA were determined according to the “3/5” rule
(WMO, 1989). The temperature data set had missing values ranging between 5 and 19%, while that of rainfall
ranged between 1 and 5%. They were estimated using the multiple imputation method due to its characteristics
to account for uncertainty about the imputed values. The performance of gridded datasets (Worldclim) was
evaluated statistically using Mean Bias (MB). Mean Bias Error (MBE) shows bias from the mean, thus the
approach to zero of this parameter indicates that the method simulates reality well and far from zero shows high
deviation and inaccuracy (Hassan et al., 2020).

Mean Bias = 1/n )] yi- 0; (1

Where, y and o represent observed and predicted values respectively and n is the number of targeting data used
for testing. The results in Table 1 indicate that the Worldclim dataset performed well in depicting the study areas
dataset.
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Table 1. Comparison of observed and gridded climatic data using Mean Bias (MB)

Dataset Northern Highlands zone Southern Highlands zone
Kilimanjaro Arusha Mbeya and Songwe Ruvuma
Rainfall (mm) -0.205 2227 0.979 2.979
Thnin -4.823 0.823 -1.652 1.7034
Trnax 0.380 2.783 0.865 2.474

Note. Tp,x = Maximum temperature; T,,;, = Minimum temperature.

Descriptive statistics (frequencies and percentiles), correlation analysis, and multiple regressions were performed
in STATA 13.0 (StataCorp LP, College Station, TX, USA) and SPSS 21.0 (IBM-SPSS Inc, Chicago, IL, USA)
software. The rank-based nonparametric Mann-Kendall (Mann, 1945; Kendall, 1975) method was applied to the
long-term climatic data to detect statistically significant trends. In this test, the null hypothesis (Hy) was that
there has been no trend in rainfall and temperature over time; the alternative hypothesis (H;) was that there has
been a trend (increasing (+) or decreasing (-) over time. In the Northern Highlands zone, correlation analysis was
used to examine the relationship of long rains, short rains, and annual rainfall with coffee production. T, (°C),
Tiax (°C), and Tpean (°C), both in the long rains, short rain seasons, and annually were also correlated with coffee
production. In the Southern Highlands zone the climatic parameters (rainfall, Ty, (°C), Tiax (°C), and Tyean (°C)
were also correlated with coffee production in the growing season and annually. On the other hand, a multiple
regression model was used to see the effect of independent variables (amount of rainfall and temperature) on the
dependent variable (amount of coffee produced in tons). The model with the best statistical quality and highest
adjusted R-squared was chosen. Regressors with higher p-values (smaller t-statistic values) were excluded one
by one. If the exclusion of a regressor produced a positive change in the adjusted R squared value, it was left out
and subsequently tried with the next regressor that had the highest p-value. Regressors with the highest p-values
were excluded until the change in the adjusted R-squared was negative (Gay et al., 2006). Mbeya and Songwe
were one region (Mbeya) before they split in 2015. Therefore, to have a 40-year coffee production data, these
two regions (Mbeya and Songwe) were combined. The regression equation is represented as;

Y =B, + BiX; + BX, + ... + B)X, 2)

Where, Y = Dependent variable (Coffee (t)); B, = Intercept; B(.,y = Coefficients of regression line; X
Predictor variables (rainfall and temperature parameters).

3. Results
3.1 Monthly, Seasonal and Annual Analyses of Temperature and Rainfall
3.1.1 Northern Highlands Zone

The average annual total rainfall for the past 40 years (1979-2018) in Kilimanjaro and Arusha regions was found to
be 1435.77 mm and 733.4 mm respectively (Appendix A). In the Kilimanjaro region, the highest amount of rainfall
was 2131.5 mm observed in 2006, which is higher than the long-term average of 1979-2018 by 695.73 mm.
Nevertheless, out of 40 years, 22 years were below the average annual rainfall. In the Arusha region, the highest
amount of rainfall was 1033 mm in 1988 which is higher than the long average of 1979-2018 by 299.6 mm. In
addition, in the Arusha region, 23 years were below the average annual rainfall. Ty, in Kilimanjaro and Arusha
regions were observed to be 19.67 °C and 20.3 °C respectively (Appendix A).

Over the 40 years, Ty, in the Northern Highlands zone has been increasing significantly (P < 0.001) at the rate
of 0.018 °C year” and 0.017 °C year" in Kilimanjaro and Arusha regions respectively (Figures 2a and 2b).
Arusha and Kilimanjaro regions have also experienced a significant (P < 0.01) increase of Ty, during the long
rain season at the rate of 0.01 °C season™. The short rains season, on the other hand, has been characterized by
significant (P < 0.01) increases of Ty (0.02 °C season™) in Kilimanjaro and Arusha regions. The study has also
revealed a significant (P < 0.01) increase in Ty, at the rate of 0.023 °C year” in the Kilimanjaro and Arusha
regions (Figures 2¢ and 2d). Furthermore, a significant (P < 0.01) increase in Ty, during the short rain season
was observed at Kilimanjaro and Arusha regions at the rate of 0.03 °C season™. Significant (P < 0.01) increase in
Tmin during the long rain season was also observed in the Arusha region only at the rate of 0.02 °C season™. The
results from the Mann-Kendall trend analysis for the Kilimanjaro region indicate statistically significant positive
trends (P < 0.05) for Ty« in all months while for T,,;, only two months (March and April) showed insignificant
trends (P > 0.05). In the Arusha region, significant positive trends for Ty, were observed in most of the months
except for February. For the case of Ty, only two months (April and November) did not show positive
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significant trends. Mean warming for the Arabica growing regions of Northern Tanzania over the 40 years
(1979-2018) has been + 0.819 °C (Kilimanjaro) and + 0.702 °C (Arusha).
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Figure 2. Annual temperature trends (°C) for (a) Tmax in Kilimanjaro (b) Tmax in Arusha region; (c) Tmin in
Kilimanjaro and (d) Tmin in Arusha regions from 1979-2018

The box plots below (Figures 3 and 4) indicate that the highest T,,,x was observed in the Arusha region (30.67 °C)
followed by the Kilimanjaro region (30 °C) in February. Furthermore, the months of June, July, and August had
the lowest Ty, (20-22 °C). The highest T, was observed in April in Kilimanjaro (17.4 °C) and Arusha (17.7 °C)
regions while the lowest T,,;, was in July and August (12 °C). The long rains season in Kilimanjaro and Arusha
regions has experienced lower Ty, (26.5 °C) as compared to Ty, in the short rains (27.5 °C).
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Note. MAM = long rain season made up of March, April, and May; OND = Short rain season made up of
October, November, and December; Ya = Annually.

Annual rainfall has been decreasing at a higher rate in the Kilimanjaro region (-7.77 mm year") than in the
Arusha region (-2.14 mm year) (Figures 5a and 5b). However, annual rainfall decrease in the Northern
Highlands zone, were not statistically significant (P > 0.05). Nevertheless, a significant decrease in rainfall (P <
0.05) has been observed during the long rain season in the Kilimanjaro region (14.65 mm season™) and the

Arusha region (-3.29 mm season™'). Short rains, on the other hand, have been increasing significantly (P < 0.05)
in the Arusha region only at the rate of 2.2 mm season".
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Figure 5. Yearly total rainfall (mm) in (a) Kilimanjaro (b) Arusha regions from 1979-2018

Kilimanjaro region received a higher amount of rainfall in April and May while the Arusha region received a
higher amount of rainfall in March and April (Figures 6a and 6b). On the other hand, of all the months it was the
month of April that had less rainfall variability in Kilimanjaro (Coefficient of variation (CV) = 39.53%) and
Arusha (CV = 44.34%) regions. In the Kilimanjaro region, the monthly highest CV was in the order of
September (94.9%) > August (87.6%) > July (81.2%) > October (73%) > January (72%). The highest CVs in
Arusha were in the order of September (87.8%) > August (85.3%) > October (78%) > July (76%) > June (70%).
On the other hand, short rains in Kilimanjaro and Arusha regions had higher CV (44.11% and 45.76%) as
compared to long rains (29.36% and 31.29%) respectively. When the CV for the annual rainfall was calculated, it
was the least in the Kilimanjaro region (23.26%) followed by the Arusha region (23.39%) (Figure 7).
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Figure 6. Box and Whisker plot of monthly rainfall (mm) in (a) Kilimanjaro (b) Arusha region from 1979 to 2018

Note. MAM = long rain season made up of March, April, and May; OND = Short rain season made up of October,
November, and December; Ya = Annually.
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3.1.2 Southern Highlands Zone

The average annual total rainfall for the past 40 years (1979-2018) in Mbeya-Songwe and Ruvuma regions was
found to be 1306.09 mm and 1203.74 mm respectively (Appendix A). In the Mbeya-Songwe region, the highest
amount of rainfall was 2036.51 mm observed in 1979, which is higher than the long-term average of 1979-2018
by 730.42 mm. On the other hand in the Ruvuma region, the highest amount of rainfall was 1588.55 mm in 1979
which is higher than the long average of 1979-2018 by 384.81 mm. Furthermore, more than half of the years in
the Southern Highlands zone received rainfall that was below the average annual rainfall. The Ty, in the
Mbeya-Songwe and Ruvuma regions was 19.44 °C and 21.44 °C respectively (Appendix A).

Tmax has been increasing significantly (P < 0.01) at a rate of 0.011 °C and 0.014 °C year in Mbeya-Songwe and
Ruvuma regions respectively (Figure 8a and 8b). Moreover, Ty, significantly (P < 0.01) increased at the rate of
0.005 °C per rainy season in the Mbeya and Songwe regions. Ruvuma region has also experienced a significant
increase (P > 0.01) of T, at the rate of 0.008 °C season’’. Significant (P < 0.01) increases in Ty, at the rate of
0.016 °C and 0.017 °C year" have also been observed in Mbeya-Songwe and Ruvuma regions respectively
(Figures 8c and 8d). However, T,,;, increased insignificantly (P > 0.05) during the growing season in the Mbeya,
Songwe, and Ruvuma regions. Mean warming for the Arabica growing regions in the Southern Highlands zone
over the last 40-year period (1979-2018) has been +0.507 °C (Mbeya and Songwe) and +0.624 °C (Ruvuma).
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Figure 8. Annual temperature trend (°C) for (@) T.x in Songwe-Mbeya regions (b) Tp.x in Ruvuma regions (c)
Tmin in Songwe-Mbeya regions and (d) T,,;, in Ruvuma regions; from 1979-2018

Seven months in the Mbeya and Songwe regions have shown significant positive trends in T, (P < 0.05).
However, only the months of August and October exhibited significant positive trends in Ty, (P < 0.05). In the
Ruvuma region, seven months exhibited a significant upward trend in Ty, and Ty, In this zone, October and
November have been the hottest months in terms of Ty« (Figures 9a and 9b). The months of June and July on
the other hand had the lowest Ty,x up to 22 °C. The highest T, (17 °C) was also observed in January and
February in Mbeya and Songwe regions while in the Ruvuma region the T,,;, of above 20 °C was also observed
in the same months. On the other hand, Mbeya and Songwe regions had the lowest Ty, (8 °C) in July followed

by the Ruvuma region (11 °C) in the same month (Figures 10a and 10b).
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(b) Ruvuma region from 1979 to 2018
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Figure 10. Box and Whisker plot of minimum temperature (°C) in (a) Mbeya and Songwe regions (b) Ruvuma
region from 1979 to 2018

Note. Ya = Annual.

The findings from this study also revealed an insignificant decrease of rainfall by 2.59 and 2.06 mm year in the
Mbeya-Songwe and Ruvuma regions respectively (P > 0.05) (Figures 11 a and 11b). Significant negative trends
(P < 0.05) in the monthly rainfall were detected in March and July in the Ruvuma region. An insignificant
decrease of rainfall (P > 0.05) has also been observed during the rainy season at Mbeya and Songwe regions
(-2.54 mm season™") and Ruvuma region (-2.14 mm season™).
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Figure 11. Yearly total rainfall (mm) in (a) Songwe-Mbeya (b) Ruvuma regions from 1979-2018

Figures 12a and 12b indicate that Mbeya-Songwe and Ruvuma regions received a higher amount of rainfall
during December, February, and March. On the other hand, the amount of rainfall received in April and May in
the Mbeya-Songwe regions was higher as compared to the amount of rain received in the Ruvuma region.
Furthermore, January had less rainfall variability both in Mbeya-Songwe regions (CV = 19.4%) and Ruvuma
region (CV = 21%) (Figure 13). Five months with higher CV in Mbeya and Songwe regions were in the order of
October (CV = 79.6%) > September (CV = 73.2%) > May (CV = 62.7%) > November (CV = 60.2%) > June (CV
=57.9%). In Ruvuma region the five months with higher CV were in the order of June (CV = 95.3%) > July (CV
= 87.1%) > October (74.4%) > September (73.5%) > May (64.7%). The findings also revealed higher rainfall
variability in the rain season in Mbeya (CV = 15.6%) than in the Ruvuma region (CV = 13.8%). When the CV

for the annual rainfall was calculated, it was highest in Mbeya and Songwe regions (15.8%) followed by the
Ruvuma region (13.8%).
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Figure 12. Box and Whisker plot of monthly rainfall (mm) in (a) Mbeya and Songwe regions (b) Ruvuma region
from 1979 to 2018 (indicate in terms of months the rainy season)

Note. Ya = Annually.
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Southern Highlands zone

3.2 Coffee Production Records

Based on the 40 years (1979 to 2018), coffee production data from Tanzania Coffee Board (TCB), a decreasing
trend has been observed in the Northern Highlands zone (Figure 14a and Table 2) while the Southern Highlands
zone has shown an increasing trend (Figure 14b and Table 2). The maximum coffee production in the Songwe
region was 15,826 t in the year 2012 while in Ruvuma the maximum production was 16,104 t, in 2017 (Figure
14b). On the other hand, maximum coffee production in Kilimanjaro and Arusha region was 27,077 to and
11,974 t respectively in 1980 and since then the production has fallen (Figure 14a).
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Figure 14. (a) Northern and (b) Southern Highlands zones yearly coffee production trends 1979 to 2018
Source: Tanzania Coffee Board (TCB).

Total percentage change calculated from the trends of coffee production in the Northern zone indicates that over
the 40 years coffee production has been declining at about 94.52% and 82.37% in Kilimanjaro and Arusha
regions, respectively. On the other hand, coffee production in Ruvuma and Mbeya-Songwe regions has been
increasing at about 55% and 21% respectively (Table 2).
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Table 2. Analysis of coffee production trend from 1979 to 2018 in the Northern and Southern Highlands Zones

Northern Highlands Southern Highlands

Kilimanjaro ~ Arusha Mbeya/Songwe  Ruvuma
Annual Production (t) 9040.01 4933.63 8683.23 8113.26
Minimum production (t) 2847 421.5 2022 2022
Maximum production (t) 27077 11974 15826 16104
Trend (tons/ year) -415.4 -177.2 54.21 158.9
Total change calculated from the trend (t/40 years) 16185 6910.8 6197.1 2114.19
Total change calculated from the trend (%) 94.52 82.37 55 21

Note. Total change is the difference between the trend line value of the first and last year.

3.3 Relationship Between Climatic Data and Coffee Production
3.3.1 Correlation Analysis

The relationship between the amounts of coffee (t) produced and the amount of rainfall (mm) was positively
significant (P < 0.05) during the long rain season at Kilimanjaro and Arusha region. Results also showed a
significant negative relationship (P < 0.05) between the amount of coffee produced and average T,,, long and
short rain season and average Ty, in Kilimanjaro and Arusha regions. Furthermore, the analysis indicates a
significant negative relationship (P < 0.05) between the annual average T, and the amount of coffee produced
in both regions. Average T,,,x had also a significant relationship (P < 0.05) with coffee production during short
rain in the Kilimanjaro region and during long rain in the Arusha region. Pearson correlation analysis also
resulted in the negative correlation between Annual mean temperature and coffee production in Arusha and
Kilimanjaro regions (Table 3).

Table 3. Pearson correlation values for the amount of coffee (t) and climatic data in the Northern Highlands zone

Coffee production in Kilimanjaro Coffee production in Arusha

Tmin short rain -0.694** -0.558**
T min long rain -0.472" -0.427**
Average T, -0.700** -0.628**
Tpnax short rain Pearson correlation  -0.321*" -0.440%*
Average Tnax -0.518%*" -0.553%*
Tinean -0.654** -0.708**
Long rains 0.347* 0.320*

Note. *: Significant at 0.05 level; **: Significant at 0.01 level; Ty,;, = Minimum temperature, T,,,x = Maximum
temperature, T, = Average temperature.

Table 4 indicated a significant positive relationship (P < 0.05) between average Ty, rain season, annual average
Tinin, Tmeans and the amount of coffee produced at Songwe-Mbeya and Ruvuma regions. The analysis also shows
the positive relationship between the annual averages Ty, and the amount of coffee produced in the Ruvuma
region. No significant correlation between coffee production and rainfall (P > 0.05).

Table 4. Pearson correlation values for the amount of coffee (t) and climatic data in the Southern Highlands zone

Coffee production in Mbeya -Songwe  Coffee production in Ruvuma

Tpmin rain season 0.316* 0.334*

Average T, 0.457%* 0.464%*

Average T pax . 0.216 0.360*
Pearson correlation

T mean 0.351* 0.434%*

Annual rainfall -0.228 -0.231

Rain season -0.216 -0.235

Note. T, = Minimum temperature, Ty, = Maximum temperature, T .., = Average temperature. *: Significant at 0.05 level;
**: Significant at 0.01 level.
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3.3.2 Regression Analysis
(1) Northern Highlands Zone

In the Kilimanjaro region, three independent variables were significantly predictive of coffee production
according to ANOVA statistics [F (3, 37) = 21.04, P < 0.01]. The model’s percent of explaining the variance in
coffee production in the Kilimanjaro region was found to be 63% (R? = 0.63). In the regression analysis results,
the absolute value of Beta indicates the order of importance of the independent variables. The variable with the
highest beta value is the relatively most important independent variable. Therefore, analyzing the contributions
made by the independent variables in the model, it was found that T,;, short rain season made the biggest
contribution with the value of (Beta = 0.473). It was followed by the average Tmin and long rains respectively
(Table 5).

Table 5. The relationship between coffee production (t) and temperature range (°C) in the Kilimanjaro region

Un standardized Coefficients Stand. Coefficients

B Std. Error Beta Sig.
(Constant) 162367.523 24283.425 6.686 0.000
Long rains 6.794 2.716 0.263 2.502 0.017
Tinin short rain -6040.778 1853.899 -0.473 -3.258 0.002
Average T, -4761.400 2356.505 -0.302 -2.021 0.051

Note. B = Un standardized Beta; t = Statistical T; Ty,;,,: Minimum temperature.

Based on the regression analysis results, the regression equation is represented as,

Coffee (t) in Kilimanjaro region =
162367.5 + 6.79 (long rains) — 6040.78 (T, short rain) — 4761.4 (Average Tpi,) 3)

The regression relationship between climatic data and coffee production in the Arusha region was also highly
significant and the model a good fit for the data [F (5, 32) = 9.454, P < 0.01]. Five independent variables were
found to predict coffee production significantly in the region. Analyzing the relationship it was found that the
model’s degree of explaining the variance in the dependent variable was 58% (R” = 0.57.5). The contribution of
the independent variables to the model was in the order of T, > average Tpin > Thin long rains > T, short
rain > long rains. Although the contribution made by T,,.., Was the only one significant, the contribution made by
other independent variables entered the model due to the property of regression analysis, and they were found to
make the smallest contributions to the model (Table 6).

Table 6. The relationship between coffee production (tons) and temperature range (°C) in the Arusha region

Un standardized Coefficients Standardized Coefficients Sig

B Std. Error Beta ’
(Constant) 124095.221 27647.361 4.489 0.000
Tmin long rain 2326.180 1320.826 374 1.761 0.087
Average T -3160.907 2082.941 -.440 -1.518 0.138
Tmax short rain -757.535 581.811 -.159 -1.302 0.201
Tmean -4450.107 2035.176 -.486 -2.187 0.036
Long rains 3.090 2.807 136 1.101 0.279

Note. B = Un standardized Beta; T = Statistical T; Tp;,: Minimum temperature; T, = Maximum temperature;
Tmean = Average temperature.

Based on the regression analysis results, the regression equation is represented as,

Coffee (t) in Arusha region = 124095.221 + 2326.180 (T, long rain) — 3160.907 (Average tmin)
— 757.535 (Tpax short rain) — 4450.107 (Tyean) + 3.090 (long rains) 4

(2) Southern Highlands Zone

The regression relationship for Mbeya-Songwe regions was highly significant and a good fit of the data [F (2, 38)
=6.05, P < 0.01]. The regression model showed that 24% (R* = 0.241) of the changes in the coffee production in
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the Mbeya-Songwe regions are explained by the combined effect of T, rain season and average Ty,;,, Among
the two independent variables, average T, made the biggest contribution to the model as compared to Ty,
during the rainy season (Table 7).

Table 7. The relationship between coffee production (t) and temperature range (°C) in Mbeya and Songwe
regions

Un standardized Coefficients Standardized Coefficients Sig.
B Std. Error Beta
(Constant) -47650.738 28393.560 -1.678 0.102
T min rain season -5324.462 4177.780 =377 -1.274 0.210
Average Tpin 10191.939 3825.841 789 2.664 0.011

Note. B = Un standardized Beta; t = Statistical T; Ty,;,,: Minimum temperature.

Based on the regression analysis results, the regression equation is represented as;
Coffee (t) in Mbeya-Songwe regions =
-47650.738 — 5324.462 (T, rain season) — 10191.939 (Average Tin) 5)

The regression model for Ruvuma region was also highly significant and a good fit for the data [F (2, 38) = 7.52,
P <0.01]. The model showed that 28% (R* = 0.284) of the changes in the coffee production are explained by the
combined effect of Ty, rain secason and average Tp;,. As observed in the Mbeya-Songwe regions, the average
Tumin resulted in the biggest contribution as compared to Ty, long rains in Ruvuma region (Table 8).

Table 8. The relationship between coffee production (tons) and temperature range (°C) in the Ruvuma region

Un standardized Coefficients Standardized Coefficients Si
B Std. Error Beta &

(Constant) -33352.587 25688.607 -1.298 0.202

T nin Tain season -6891.895 3627.193 -.700 -1.900 0.065

Average T, 9949.119 3289.968 1.113 3.024 0.004
Note. B = Un standardized Beta; t = Statistical T; Ty,;,,: Minimum temperature.
Based on the regression analysis results, the regression equation is represented as,

Coffee (t) in Ruvuma region =
-33352.587 — 6891.895 (T, rain season) — 9949.119 (Average Tp,) (6)

4. Discussion
4.1 Climate Variability

The decline in long rain in the Northern Highlands zone of Tanzania is characterized by the shortening of the
rainy season which is caused by earlier cessation as the result of a decline of rainfall in April and May. Other
studies also show a decline in the March-to-May seasonal rainfall over eastern Africa (Rowell and Booth 2015;
Maidment et al., 2015; Wainwright et al., 2019), however, with drying in March, April, and May (Niang et al.,
2014). Contrary to our findings, the study by Wagner et al. (2021) indicated a significant increase in the amount
of rainfall during May and a reduction of rainfall in April around Mt. Kilimanjaro over the last 19 years
(2001-2019). On the other hand, according to Wainwright et al. (2019), the observed decline in Eastern African
long rains is characterized by shortening of the rainy season (with late-onset and earlier cessation) rather than by
a decrease in the peak daily rainfall. Different observations observed in different studies can be explained by
large regional and local variability in precipitation (Dai, 2018; Macleod & Caminade, 2019), and therefore
changes observed in other parts of Tanzania or East Africa do not necessarily contest with what is experienced in
Arusha and Kilimanjaro regions.

The suggested link to the decrease in rainfall is the rapid warming of the Indian Ocean which causes an increase
in convection and precipitation over the tropical Indian Ocean, contributing to the decrease in rainfall over the
continental land surface (Lemma & Megersa, 2021). Over the last three decades rainfall has decreased by around
15% over eastern Africa, in the main growing season (March and May/June) (Williams et al., 2012). On the other
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hand, the increase in short rain observed in the Arusha region (Northern Highlands zone) could be the result of
extreme Indian Ocean Dipole (IOD) events which affect the short rainy season from October to December
(Shelleph Limbu et al., 2019). With increasing global mean temperature, the frequency of extreme positive IOD
is expected to significantly increase (Cai et al., 2018). The increase in short rains in the Arusha region (Northern
Highlands zone) conform with projections from different General Circulation Models (GCMs) which are broadly
indicating increases in annual rainfall in Ethiopia (Niang et al., 2014), but these increases are largely due to
increased rainfall in the October-December period in southern Ethiopia (McSweeney et al., 2010).

Moreover, despite the prediction that annual precipitation will increase in East Africa (Wainwright et al., 2019;
Adhikari et al., 2015), our findings indicate a decrease (not significant) in annual rainfall in the coffee-growing
areas of the Northern Highlands zone for the four past decades (1979-2018). The decrease of long rains in the
Northern Highlands zone has a direct link with the decline in annual rainfall over the area. According to
Liebmann et al. (2014) “long rains” season [March-May (MAM)] is a manifestation of a long-term decline in
rainfall totals. In addition, there has been no such downward trend in the “short rains” [October-December
(OND)], but this season has continued to exhibit large year-to-year variability, which at times has exacerbated
the impact of the long rains decline. This explains why coffee farmers in the Northern Highlands zone perceived
drought increase (Mbwambo et al., 2021) despite the short rain increase. This is where successful adaptation
measures are critical (Wagner et al., 2019). Furthermore, coffee-growing farmers, in the Southern Highlands
zone are also confronted with reduced rainfall which occurs during the growing season and annually. As in
Craparo et al. (2015), the decrease in rainfall in the Southern Highlands zone was not statistically significant.
Moreover, the study revealed that half of the study period has been experiencing low rainfall (rainfall below
long-term annual average). However, even though there has been low rainfall in the coffee-growing area,
irrigation has been used at a low scale. The study conducted by Mbwambo et al., 2021 found that over 40 years
(1979-2018), only about 17% of coffee farmers in the Northern and 5% in the Southern Highlands zone used
irrigation practices in their coffee fields. Other adaptation practices used by coffee farmers in the Northern
Highlands zone were in the order of shade trees (96%) > Mulching (94%) > cut-off drains (28%) and Terraces
(14%). In the southern Highlands zone, adaptation practices were in the order of shade trees (70%) > Mulching
70%) > Terraces (46%) and cut-off drains (37%) (Mbwambo et al., 2021).

The study revealed further that, there have been increasing trends in monthly, seasonal, and annual temperature
in the two zones with T,,;, increasing at a higher rate than T,,,,. These findings are in agreement with those from
the Northern part of Tanzania (Craparo et al., 2015), Ethiopia (Mekasha et al., 2014), Kenya (Omondi et al.,
2014), and Uganda (Nsubuga et al., 2014) which reported that mean warming is primarily driven by substantial
increases in the daily minima composition compared with daily maxima. According to Niang et al. (2014), this is
an indicator of continued warming. Additionally, according to the observed results, the Ty, in the Northern and
Southern Highlands zone of Tanzania seems to have reached the upper limit of the mean temperature bracket
(18-21 °C) suitable for coffee cultivation (Alégre, 1959).

4.2 Effect of Climate Change on Coffee Production

The decline of coffee production in the Northern Highlands zone is linked to the decrease in long rains and the
increase of Ty, Generally, both, long and short rains are very important in the reproductive phase of the coffee
plant. On one hand, the short rains in October trigger flowering in coffee plants after the dry spell period
(Jassogne et al., 2013), and on the other hand, long rainy season (March to May) if delayed and inadequate will
negatively affect the expansion stage, during which rainfall is required to sustain berry development. Normally,
in the Northern Highlands zone coffee crop enters the reproductive phase during the short rain season
(October-December) and so the crop becomes more sensitive to temperature during this period. Generally, high
night temperatures increase the rate of respiration so the assimilates which could be used for growth and yield
are reduced (Nagarajan et al., 2010; Bapuji Rao et al., 2014). Drought and high temperatures during this period
in the Kilimanjaro region will cause fruit abortions, increased bean defects, reduced berry growth, and
acceleration of ripening, leading to a reduction in coffee yield and quality (Craparo et al., 2020; Wagner et al.,
2021). The study of Craparo et al. (2015), reported similar findings that yield in the Northern Highlands zone is
decreasing as the results of the increase in Ty, however, in their study, there was no relationship between yield
decrease and decrease in long rains as observed in this study.

Additionally, although T,.., affected coffee production in the Arusha region, it was T, that accelerated the
increase of Ty,e.n Therefore, the decrease in coffee production observed in the Northern Highlands zone which is
experiencing reduced rainfall is aggravated by higher T,;, in the area. The inclusion of more shade trees might
help to reduce heat stress (Kajembe et al., 2016), however, conservation of heat during the night challenges the
common notion that shade trees are always a beneficial aspect of climate change adaptation (Craparo et al.,
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2015). Other strategies may include, re-adapting the coffee agronomic practices to climate change, use of
technologies that will improve water and nutrient use efficiency in coffee trees, and developing genetically
improved coffee varieties that will tolerate the impact of climate change.

On the other hand, coffee production in the Southern Highlands zone positively correlated with temperature even
though T, is already out of the optimum range. The observed positive correlation could be explained by the
fact that there was no significant decrease in rainfall during the growing season (November to May) and annually.
Moreover, the Southern Highlands zone is also characterized by very low T, and T, in June, July, and August.
The low temperature in these months can reduce the negative impact of high temperature during the growing
seasons. However, from all climatic parameters, it was only the average T, that resulted in a significant
increase in coffee production in the Southern Highlands zone. Nevertheless, the findings from this study revealed
further that, if T,,;, during the growing season will continue to increase in the Southern Highlands zone, coffee
production will also be affected, as the inclusion of this parameter improved the model in both regions of the
Southern Highlands zone. Generally, the findings from this study conform to the perceptions of farmers in the
Northern and Southern Highlands zone reported by Mbwambo et al. (2021), that reduced rainfall and/or increase
in temperature have resulted in coffee production decline. Other non-climatic factors may have contributed to the
increase in coffee production in the Southern Highlands zone as discussed below.

4.3 Other Factors Affecting Production

Despite the positive relationship between low coffee productions with weather-related problems, the sharp
decrease in coffee production noted in the Northern Highlands zone is likely to have been magnified by factors
other than climate change per se. Bureau for Agricultural Consultancy and Advisory Service (BACAS) (2005)
noted that the nationalization of estate farms in the Northern Highlands zone contributed to the decline in coffee
production in the zone, which used to produce 50% of total coffee in 1972/73 due to the dismal performance
under primary cooperatives. Another possible factor is the farmers’ disincentive to invest in coffee due to the
historic price slump of 1980-2002. The slump, from an average of 5 USD Ib™ in 1980 to 0.77 USD Ib"" in 2002
(Drip Beans, 2020) caused a lot of problems to those who depend on coffee for their livelihoods, including
farmers. They could barely meet the cost of production and as a result, production fell steadily, with the area
under coffee also declining.

Another area for consideration is land holding per small holder family. BACAS (2005) reported that households
owning less than 2 ha in the Northern zone were almost 70% of the sampled households while in the Southern
zone they were only 32%, implying that land is scarcer in the northern zone, particularly so in Kilimanjaro.
Mbwambo et al. (2021) also reported that the majority of the smallholder coffee farmers from the Northern
Highlands zone possess farm sizes between 0.5 and lha, while those from the Southern Highlands zone had farm
sizes between 1 and 2 ha. Due to land scarcity, coffee farmers may opt to intercrop coffee with other crops and
this can reduce the number of coffee trees per area, hence low production. Also, the rate of planting new trees in
the Northern Highlands zone is reported to be less than that of the Southern Highlands zone, because the aging
coffee trees are owned by the elderly who are naturally risk-averse. These indicate that may be the increase in
coffee production observed in the Southern Highlands zone, apart from being favored by climatic factors, has
been further boosted by the replanting of new coffee trees and adoption of new, high-yielding varieties.

5. Conclusion and Recommendations

There has been a decline in long rains and a rise in Ty, which ultimately affected coffee production in the
Northern Highlands zone. The Southern Highlands zone, on the other hand, has not yet suffered from the impact
of climate change. Nevertheless, T, is increasing at a higher rate in the area and it may affect the production of
coffee shortly. Therefore, without sufficient adaptation measures, coffee production in the Northern Highlands
zone will be reduced and the famous brand of Kilimanjaro Coffee will disappear from the Market. This calls for
public and private sectors to invest in climate change adaptation strategies that will better sustain this important
industry and the livelihoods of millions of smallholder farmers who depend on it. The emphasize should also be
given by the Arabica coffee growing region which may have already suffered yield losses due to climate change.
Such strategies may include, re-adapting the coffee agronomic practices to climate change, improving water and
nutrient use efficiency in coffee trees, and developing genetically improved coffee cultivars that will tolerate the
impact of climate change.
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Appendix A
Summary of seasonal and annual rainfall and temperature statistics for study regions
Regions
Kilimanjaro Arusha Mbeya and Songwe Ruvuma
. Mean 1435.77 733.4 1306.09 1203.74
Rainfall (mm)
STD 333.93 171.55 203.79 166.2
-~ Meamn 1967 203 1944 2144
STD 0.329 0.285 0.301 0.319
Tinax 24.78 26.04 25.25 26.62
Temperature (°C)
STD 0.346 0.442 0.442 0.414
Toin 14.56 14.73 13.04 16.00
STD 0.36 0.362 0.292 0.32

Note. STD = Standard deviation, T,,;, = Minimum temperature, T,,.x = Maximum temperature.
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