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Abstract 
Coffee is the most traded commodity in the world. In Tanzania, Coffee is the second largest traditional 
commodity. However, several climate change studies have predicted that coffee production will be reduced as a 
result of climate change. Therefore, the study aimed to assess the impact of current climate change on Tanzania’s 
Arabica coffee production and determine the most significant climatic variables, which influence coffee 
production in the respective regions. Global interpolated climatic database (Worldclim dataset) and official 
historical coffee production data from Tanzania Coffee Board for a period of 40 years (1970-2018) were used. 
Climatic parameters and coffee production were compared through descriptive statistics, correlation analysis, 
and multiple regressions. The Mann-Kendall method was used to detect significant trends in climatic data. The 
minimum temperature has been increasing at a higher rate than the maximum temperature in the Northern and 
Southern Highlands zones. A 1 °C increase in minimum temperature (Tmin) during short rains and annual mean 
temperature (Tmean) resulted in a significant coffee production decrease (-6,041 and -4,450 tons) in Kilimanjaro 
and Arusha regions respectively. In the Southern Highlands zone coffee production positively correlated with 
temperature. A significant reduction in coffee production due to a decline in long rains was also observed in the 
Kilimanjaro region. The warming and drought trends are likely to continue with significant implications on 
coffee production and this, calls for the development of suitable adaptation strategies to sustain production. Such 
strategies may include, re-adapting the coffee agronomic practices to climate change, improving water and 
nutrient use efficiency in coffee trees, and developing genetically improved coffee cultivars that will tolerate the 
impact of climate change. 
Keywords: Coffea arabica, drought, temperature, East Africa 

1. Introduction 

Coffee is the second most important item in the world, in terms of trade, next to oil (Jayakumar et al., 2017). The 
crop is produced in about 80 tropical countries (National Coffee Association (NCA), 2017), with an estimated 
125 million people depending on it for their livelihoods in Latin America, Africa, and Asia (Osario, 2002). In 
Tanzania, coffee is the second-largest traditional commodity (Tanzania Coffee Board (TCB), 2021). It 
contributes 24% to the annual agricultural foreign exchange earnings and significantly contributes to tax revenue. 
The industry directly supports an estimated 2.4 million individuals in Tanzania (TCB, 2017) and several million 
more in similar agro-ecological conditions in neighboring Uganda, Kenya, Rwanda, and Burundi. Approximately 
70% of the coffee produced in Tanzania belongs to the species Coffea arabica and 30% is Coffea canephora; the 
former is produced mainly in Ruvuma, Mbeya, Songwe, Arusha, and Kilimanjaro regions, and the latter in the 
Kagera region (TCB, 2021). For the case of Coffea arabica, the commercial varieties grown in Tanzania are 
Bourbon (N39) and Kents (K 423). The main production constraints for the commercial varieties are, however, 
high susceptibility to major coffee diseases like Coffee Berry Disease (CBD) and Coffee Leaf Rust (CLR). Due 
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to the above problems, Tanzania Coffee Research Institute (TaCRI) has developed coffee hybrid varieties that are 
resistant to CLR and CBD (TaCRI, 2011). 

The production and productivity of both species largely depend on the climate to attain high yields and quality 
(Killeen & Harper, 2016). Arabica coffee grows well in an area with an optimum temperature range of 18-21 °C 
(Magrach & Ghazoul, 2015) and an optimum annual rainfall range of 1200-1800 mm (Alegre, 1959). Due to its 
narrow climatic requirements coffee crop, is expected to be the most affected by the increasing temperatures 
(Malyadri, 2016) and reduced rainfall (Wagner et al., 2021). According to IPCC (2014), the global climate has 
changed over the past century and is projected to continue changing throughout this century. Furthermore, global 
circulation models (GCMs) all point to higher mean temperatures and changes in precipitation regimes. Africa is 
one of the continent’s most severely affected by climate change due to its geographical characteristics of having 
the majority of land lying across the warming tropics (Filho & Rao, 2014). In this continent, the temperature is 
projected to rise faster than the rest of the world, which could exceed 2 °C by mid- 21st century and 4 °C by the 
end of the 21st century (Niang et al., 2014). East Africa will be increasingly affected by climate change in the 
coming decades, with temperatures already increasing and predicted to rise further (Adhikari et al., 2015; 
Craparo et al., 2015). Countries within East Africa are also experiencing reduced rainfall due to the shortening of 
long rains (Wainwright et al., 2019). As a part of the tropical region, Tanzania has experienced sustained 
warming particularly since 1970 (IPCC, 2007). Based on downscaled climate models, Tanzania is projected to 
experience a mean temperature increase of 2-4 °C by 2100 (IPCC, 2007; Läderach et al., 2012).  

The increase in temperatures and precipitation shortages has negative impacts on coffee flowering and fruiting. 
However, global studies indicate that precipitation factors such as annual and seasonal precipitation are of less 
importance compared with temperatures in determining suitability (Ovalle-Rivera et al., 2015; Rao, 2016). In 
Tanzania, research has shown that coffee yields are especially affected by elevated night temperatures (Craparo 
et al., 2015) and droughts due to a shift in seasons (Wagner et al., 2021). It is predicted that in Tanzania every 
1 °C increase in minimum temperature will result in annual yield losses of nearly 140 kg ha-1 (Craparo et al., 
2015). The severity of pests and disease spread is likely to increase with advancing climate change, a significant 
challenge in coffee production (Jaramillo et al., 2011). According to Ovalle-Rivera et al. (2015), generally, the 
influence of weather variations on coffee-producing countries is predicted to be negative. This will jeopardize 
coffee quantity and quality hence endangering coffee producers who occupy 90 percent of the population and 
their livelihoods mostly rely on coffee. 

Climate change projections also suggest that some areas would lose suitability for growing coffee while others 
would gain from temperature increases and possibly in rainfall (Ovalle-Rivera et al., 2015). According to Killeen 
and Harper (2016), there would be a change in coffee production areas because suitable areas will become too 
warm or prone to periodic drought. Furthermore, Ovalle-Rivera et al. (2015) in their study documented future 
global loss of Arabica coffee area by 2050 as follows: Mesoamerica (30%), South America (16-20%), and Africa 
(9-25%). They have also reported that Mexico from Mesoamerica and Brazil from South America would lose 
about 29% of its suitable Arabica coffee growing areas respectively. Pacific countries such as India and Vietnam 
will also experience a loss of suitability areas and be highly affected. Davis et al. (2012) proposed a substantial 
reduction in the area suitable for Indigenous Arabica varieties in Eastern Africa. Land suitable for Arabica coffee 
in East Africa is predicted to shift from 400-2000 m above sea level to 800-2500 m above sea level. Moreover, 
there would be a modest change in the suitability of the areas in Ethiopia, Kenya, Rwanda, and Burundi that 
currently grow Arabica coffee. Tanzania and Uganda would lose suitable areas at elevations below 1400 m above 
sea level. For the case of the Northern Highlands of Tanzania, the optimum coffee-producing zone would need to 
shift upwards attitudinally by 150-200 m, to sustain coffee quality and quantity (Craparo et al., 2015). However, 
this pushes coffee into a higher altitudinal zone that currently hosts substantial biodiversity of (mostly protected) 
forest species (Hemp, 2005), thus limiting upslope coffee expansion in northern Tanzania and indeed much of 
the coffee regions in tropical countries. 

Farmers at lower elevations will no longer be able to grow quality coffee and may have to abandon it (Läderach 
et al. (2017). This suggests that actors along the coffee supply chain will have to adapt to the changes that 
climate change will bring. According to Stafford et al. (2011), farmers can adjust by making incremental 
adaptations and innovations based on their experiences to deal with climate variability. Incremental adaptation 
occurs in a short timeframe at lower altitudes, whereas the same areas may undergo transformative adaptation in 
the long term. At higher altitudes incremental adaption may be needed in the long term based on two adaptation 
strategies to two levels of climate change (incremental adaptation for lower levels of progressive climate change 
and transformative adaptation for higher levels of progressive climate change). Läderach et al. (2017) has 
developed a two-dimensional adaptation framework in time and space for coffee production in Nicaragua. 
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According to the author the same principle and framework are applicable across coffee-growing regions around 
the world, as the patterns of decreasing exposure with higher altitudes are the same globally; only the magnitude 
and timeframe changes. In Vietnam, Phuong Le and Nguyen (2018), identified adaptation processes more 
broadly as long-term strategies and analyzes temporary coping responses to drought of coffee growers. 

Generally, different studies indicate that smallholder coffee farmers have been responding to climate change 
impacts through a range of interventions, including agronomic practices such as planting shade trees, pruning, 
planting drought-tolerant varieties, and application of organic fertilizers (Kajembe et al., 2016; Wagner et al., 
2018; Mbwambo et al., 2021). In the study by Pham et al. (2019), adaptation and management practices were 
identified by more than 70% of total studies (25 papers), of which agro forestry, either through intercropping or 
shading, was most common (18 papers), followed by irrigation and efficient use and management of water (12 
papers), development of new cultivars that are drought and heat-stress resistant and/or pest and disease tolerant 
(10 papers) and diversification of cropping patterns or livelihood activities (9 papers). Other measures included 
the relocation of coffee plantations to more bio-climatically suitable areas (6 papers), crop insurance (3 papers), 
off-farm livelihoods (2 papers), and shifts from Arabica to Robusta or cocoa (2 papers). According to Mbwambo 
et al. (2021) the adaptation measures used by smallholders coffee farmers in the Northern and Southern 
Highlands of Tanzania are in the order of; use of shade tree, use of mulching, use of organic manure, planting 
disease resistance varieties, use of cut-off drains, use of terraces and irrigation. However, according to Craparo et 
al. (2015), the increase in Tmin challenges the common notion that shade trees are always a beneficial aspect of 
climate change adaptation. Furthermore, responses towards adopting adaptations practices have been influenced 
by factors such as education level, farming experience, farm size, access to extension services, and time 
awareness of climate change information (Mbwambo et al., 2021).  

Even though, in Tanzania, the general feeling is that the climate has been changing over the years and may be 
responsible for current low production and productivity (Craparo et al., 2015; Wagner et al., 2021; Mbwambo et 
al., 2021), this perception has largely remained anecdotal, with limited assessment covering the whole country's 
coffee-growing areas. Studies by Craparo et al. (2015) and Wagner et al. (2021) dealt with specific 
coffee-growing zones and pointed to the possible future climatic trajectories in those zones. Nevertheless, 
climate change studies are necessary for the formulation of climate change adaptation strategies for coffee 
farming in Tanzania, which does not exist yet. This study used official historical coffee production data to 
understand whether the general production patterns have any bearing on the historical climatic trends in major 
Arabica coffee growing areas in Tanzania.  

2. Materials and Methods 
2.1 Description of the Study Area 

The study area is comprised of two major Arabica coffee growing zones. The Northern Highland zone involved the 
Kilimanjaro region (Hai, Moshi rural, Siha, and Rombo Districts) and Arusha Region (Arumeru, Longido, 
Monduli, and Karatu Districts). The Southern Highland zone included the Songwe region (Mbozi and Ileje 
districts), Mbeya (Mbeya and Rungwe districts), and Ruvuma (Mbinga, Songea, and Nyasa districts) (Figure 1). In 
these zones, Arabica coffee production is exclusively rain-fed. The Northern Highlands zone is characterized by a 
bimodal rainfall pattern, while the Southern Highland zone experiences a unimodal rainfall pattern.  
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Table 1. Comparison of observed and gridded climatic data using Mean Bias (MB) 

Dataset 
Northern Highlands zone Southern Highlands zone 

Kilimanjaro Arusha Mbeya and Songwe Ruvuma 

Rainfall (mm) -0.205 2.227 0.979 2.979 

Tmin -4.823 0.823 -1.652 1.7034 

Tmax 0.380 2.783 0.865 2.474 

Note. Tmax = Maximum temperature; Tmin = Minimum temperature. 

 

Descriptive statistics (frequencies and percentiles), correlation analysis, and multiple regressions were performed 
in STATA 13.0 (StataCorp LP, College Station, TX, USA) and SPSS 21.0 (IBM-SPSS Inc, Chicago, IL, USA) 
software. The rank-based nonparametric Mann-Kendall (Mann, 1945; Kendall, 1975) method was applied to the 
long-term climatic data to detect statistically significant trends. In this test, the null hypothesis (H0) was that 
there has been no trend in rainfall and temperature over time; the alternative hypothesis (H1) was that there has 
been a trend (increasing (+) or decreasing (-) over time. In the Northern Highlands zone, correlation analysis was 
used to examine the relationship of long rains, short rains, and annual rainfall with coffee production. Tmin (°C), 
Tmax (°C), and Tmean (°C), both in the long rains, short rain seasons, and annually were also correlated with coffee 
production. In the Southern Highlands zone the climatic parameters (rainfall, Tmin (°C), Tmax (°C), and Tmean (°C) 
were also correlated with coffee production in the growing season and annually. On the other hand, a multiple 
regression model was used to see the effect of independent variables (amount of rainfall and temperature) on the 
dependent variable (amount of coffee produced in tons). The model with the best statistical quality and highest 
adjusted R-squared was chosen. Regressors with higher p-values (smaller t-statistic values) were excluded one 
by one. If the exclusion of a regressor produced a positive change in the adjusted R squared value, it was left out 
and subsequently tried with the next regressor that had the highest p-value. Regressors with the highest p-values 
were excluded until the change in the adjusted R-squared was negative (Gay et al., 2006). Mbeya and Songwe 
were one region (Mbeya) before they split in 2015. Therefore, to have a 40-year coffee production data, these 
two regions (Mbeya and Songwe) were combined. The regression equation is represented as; 

Y = Bo + B1X1 + B2X2 + … + BnXn                          (2) 

Where, Y = Dependent variable (Coffee (t)); Bo = Intercept; B(1-n) = Coefficients of regression line; X(1-n) 
Predictor variables (rainfall and temperature parameters). 
3. Results 
3.1 Monthly, Seasonal and Annual Analyses of Temperature and Rainfall 

3.1.1 Northern Highlands Zone 

The average annual total rainfall for the past 40 years (1979-2018) in Kilimanjaro and Arusha regions was found to 
be 1435.77 mm and 733.4 mm respectively (Appendix A). In the Kilimanjaro region, the highest amount of rainfall 
was 2131.5 mm observed in 2006, which is higher than the long-term average of 1979-2018 by 695.73 mm. 
Nevertheless, out of 40 years, 22 years were below the average annual rainfall. In the Arusha region, the highest 
amount of rainfall was 1033 mm in 1988 which is higher than the long average of 1979-2018 by 299.6 mm. In 
addition, in the Arusha region, 23 years were below the average annual rainfall. Tmean in Kilimanjaro and Arusha 
regions were observed to be 19.67 °C and 20.3 °C respectively (Appendix A).  

Over the 40 years, Tmax in the Northern Highlands zone has been increasing significantly (P < 0.001) at the rate 
of 0.018 °C year-1 and 0.017 °C year-1 in Kilimanjaro and Arusha regions respectively (Figures 2a and 2b). 
Arusha and Kilimanjaro regions have also experienced a significant (P < 0.01) increase of Tmax during the long 
rain season at the rate of 0.01 °C season-1. The short rains season, on the other hand, has been characterized by 
significant (P < 0.01) increases of Tmax (0.02 °C season-1) in Kilimanjaro and Arusha regions. The study has also 
revealed a significant (P < 0.01) increase in Tmin at the rate of 0.023 °C year-1 in the Kilimanjaro and Arusha 
regions (Figures 2c and 2d). Furthermore, a significant (P < 0.01) increase in Tmin during the short rain season 
was observed at Kilimanjaro and Arusha regions at the rate of 0.03 °C season-1. Significant (P < 0.01) increase in 
Tmin during the long rain season was also observed in the Arusha region only at the rate of 0.02 °C season-1. The 
results from the Mann-Kendall trend analysis for the Kilimanjaro region indicate statistically significant positive 
trends (P < 0.05) for Tmax in all months while for Tmin only two months (March and April) showed insignificant 
trends (P > 0.05). In the Arusha region, significant positive trends for Tmax were observed in most of the months 
except for February. For the case of Tmin, only two months (April and November) did not show positive 
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significant trends. Mean warming for the Arabica growing regions of Northern Tanzania over the 40 years 
(1979-2018) has been + 0.819 °C (Kilimanjaro) and + 0.702 °C (Arusha).  

 

    

(a)                                             (b) 

    

(c)                                           (d) 

Figure 2. Annual temperature trends (°C) for (a) Tmax in Kilimanjaro (b) Tmax in Arusha region; (c) Tmin in 
Kilimanjaro and (d) Tmin in Arusha regions from 1979-2018 

 

The box plots below (Figures 3 and 4) indicate that the highest Tmax was observed in the Arusha region (30.67 °C) 
followed by the Kilimanjaro region (30 °C) in February. Furthermore, the months of June, July, and August had 
the lowest Tmax (20-22 °C). The highest Tmin was observed in April in Kilimanjaro (17.4 °C) and Arusha (17.7 °C) 
regions while the lowest Tmin was in July and August (12 °C). The long rains season in Kilimanjaro and Arusha 
regions has experienced lower Tmax (26.5 °C) as compared to Tmax in the short rains (27.5 °C).  
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(a)                                            (b) 

    

(c)                                            (d) 

Figure 8. Annual temperature trend (°C) for ( a) Tmax in Songwe-Mbeya regions (b) Tmax in Ruvuma regions (c) 
Tmin in Songwe-Mbeya regions and (d) Tmin in Ruvuma regions; from 1979-2018 

 

Seven months in the Mbeya and Songwe regions have shown significant positive trends in Tmax (P < 0.05). 
However, only the months of August and October exhibited significant positive trends in Tmin (P < 0.05). In the 
Ruvuma region, seven months exhibited a significant upward trend in Tmax and Tmin. In this zone, October and 
November have been the hottest months in terms of Tmax (Figures 9a and 9b). The months of June and July on 
the other hand had the lowest Tmax up to 22 °C. The highest Tmin (17 °C) was also observed in January and 
February in Mbeya and Songwe regions while in the Ruvuma region the Tmin of above 20 °C was also observed 
in the same months. On the other hand, Mbeya and Songwe regions had the lowest Tmin (8 °C) in July followed 
by the Ruvuma region (11 °C) in the same month (Figures 10a and 10b).  
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Table 2. Analysis of coffee production trend from 1979 to 2018 in the Northern and Southern Highlands Zones 

 

Northern Highlands Southern Highlands 

Kilimanjaro Arusha Mbeya/Songwe Ruvuma 

Annual Production (t) 9040.01 4933.63 8683.23 8113.26 

Minimum production (t) 2847 421.5 2022 2022 

Maximum production (t) 27077 11974 15826 16104 

Trend (tons/ year)  -415.4 -177.2 54.21 158.9 

Total change calculated from the trend (t/40 years) 16185 6910.8 6197.1 2114.19 

Total change calculated from the trend (%) 94.52 82.37 55 21 

Note. Total change is the difference between the trend line value of the first and last year. 

 
3.3 Relationship Between Climatic Data and Coffee Production 

3.3.1 Correlation Analysis 

The relationship between the amounts of coffee (t) produced and the amount of rainfall (mm) was positively 
significant (P < 0.05) during the long rain season at Kilimanjaro and Arusha region. Results also showed a 
significant negative relationship (P < 0.05) between the amount of coffee produced and average Tmin long and 
short rain season and average Tmin in Kilimanjaro and Arusha regions. Furthermore, the analysis indicates a 
significant negative relationship (P < 0.05) between the annual average Tmax and the amount of coffee produced 
in both regions. Average Tmax had also a significant relationship (P < 0.05) with coffee production during short 
rain in the Kilimanjaro region and during long rain in the Arusha region. Pearson correlation analysis also 
resulted in the negative correlation between Annual mean temperature and coffee production in Arusha and 
Kilimanjaro regions (Table 3). 

 

Table 3. Pearson correlation values for the amount of coffee (t) and climatic data in the Northern Highlands zone 

Coffee production in Kilimanjaro Coffee production in Arusha 

Tmin short rain 

Pearson correlation 

-0.694** -0.558** 

Tmin long rain -0.472** -0.427** 

Average Tmin -0.700** -0.628** 

Tmax short rain -0.321** -0.440** 

Average Tmax -0.518**** -0.553** 

Tmean -0.654** -0.708** 

Long rains 0.347* 0.320* 

Note. *: Significant at 0.05 level; **: Significant at 0.01 level; Tmin = Minimum temperature, Tmax = Maximum 
temperature, Tmean = Average temperature. 

 

Table 4 indicated a significant positive relationship (P < 0.05) between average Tmin rain season, annual average 
Tmin, Tmean, and the amount of coffee produced at Songwe-Mbeya and Ruvuma regions. The analysis also shows 
the positive relationship between the annual averages Tmax and the amount of coffee produced in the Ruvuma 
region. No significant correlation between coffee production and rainfall (P > 0.05). 

 

Table 4. Pearson correlation values for the amount of coffee (t) and climatic data in the Southern Highlands zone 

Coffee production in Mbeya -Songwe Coffee production in Ruvuma 

Tmin rain season 

Pearson correlation 

0.316* 0.334* 

Average Tmin 0.457** 0.464** 

Average Tmax 0.216 0.360* 

Tmean 0.351* 0.434** 

Annual rainfall -0.228 -0.231 

Rain season -0.216 -0.235 

Note. Tmin = Minimum temperature, Tmax = Maximum temperature, Tmean = Average temperature. *: Significant at 0.05 level; 
**: Significant at 0.01 level. 
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3.3.2 Regression Analysis 

(1) Northern Highlands Zone 

In the Kilimanjaro region, three independent variables were significantly predictive of coffee production 
according to ANOVA statistics [F (3, 37) = 21.04, P < 0.01]. The model’s percent of explaining the variance in 
coffee production in the Kilimanjaro region was found to be 63% (R2 = 0.63). In the regression analysis results, 
the absolute value of Beta indicates the order of importance of the independent variables. The variable with the 
highest beta value is the relatively most important independent variable. Therefore, analyzing the contributions 
made by the independent variables in the model, it was found that Tmin short rain season made the biggest 
contribution with the value of (Beta = 0.473). It was followed by the average Tmin and long rains respectively 
(Table 5).  

 

Table 5. The relationship between coffee production (t) and temperature range (°C) in the Kilimanjaro region 

 
Un standardized Coefficients Stand. Coefficients

t Sig. 
B Std. Error Beta 

(Constant) 162367.523 24283.425 6.686 0.000 
Long rains 6.794 2.716 0.263 2.502 0.017 
Tmin short rain -6040.778 1853.899 -0.473 -3.258 0.002 
Average Tmin -4761.400 2356.505 -0.302 -2.021 0.051 

Note. B = Un standardized Beta; t = Statistical T; Tmin: Minimum temperature. 

 

Based on the regression analysis results, the regression equation is represented as, 

Coffee (t) in Kilimanjaro region =  
162367.5 + 6.79 (long rains) − 6040.78 (Tmin short rain) − 4761.4 (Average Tmin)           (3) 

The regression relationship between climatic data and coffee production in the Arusha region was also highly 
significant and the model a good fit for the data [F (5, 32) = 9.454, P < 0.01]. Five independent variables were 
found to predict coffee production significantly in the region. Analyzing the relationship it was found that the 
model’s degree of explaining the variance in the dependent variable was 58% (R2 = 0.57.5). The contribution of 
the independent variables to the model was in the order of Tmean > average Tmin > Tmin long rains > Tmax short 
rain > long rains. Although the contribution made by Tmean was the only one significant, the contribution made by 
other independent variables entered the model due to the property of regression analysis, and they were found to 
make the smallest contributions to the model (Table 6). 

 

Table 6. The relationship between coffee production (tons) and temperature range (°C) in the Arusha region 

 
Un standardized Coefficients Standardized Coefficients

t Sig. 
B Std. Error Beta 

(Constant) 124095.221 27647.361 4.489 0.000 
Tmin long rain 2326.180 1320.826 .374 1.761 0.087 
Average Tmin -3160.907 2082.941 -.440 -1.518 0.138 
Tmax short rain -757.535 581.811 -.159 -1.302 0.201 
Tmean -4450.107 2035.176 -.486 -2.187 0.036 
Long rains 3.090 2.807 .136 1.101 0.279 

Note. B = Un standardized Beta; T = Statistical T; Tmin: Minimum temperature; Tmax = Maximum temperature; 
Tmean = Average temperature.  

 

Based on the regression analysis results, the regression equation is represented as, 

Coffee (t) in Arusha region = 124095.221 + 2326.180 (Tmin long rain) – 3160.907 (Average Tmin) 
− 757.535 (Tmax short rain) − 4450.107 (Tmean) + 3.090 (long rains)            (4) 

(2) Southern Highlands Zone 

The regression relationship for Mbeya-Songwe regions was highly significant and a good fit of the data [F (2, 38) 
= 6.05, P < 0.01]. The regression model showed that 24% (R2 = 0.241) of the changes in the coffee production in 
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the Mbeya-Songwe regions are explained by the combined effect of Tmin rain season and average Tmin, Among 
the two independent variables, average Tmin made the biggest contribution to the model as compared to Tmin 
during the rainy season (Table 7).  

 

Table 7. The relationship between coffee production (t) and temperature range (°C) in Mbeya and Songwe 
regions 

 
Un standardized Coefficients Standardized Coefficients

t Sig. 
B Std. Error Beta 

(Constant) -47650.738 28393.560 -1.678 0.102 
Tmin rain season -5324.462 4177.780 -.377 -1.274 0.210 
Average Tmin 10191.939 3825.841 .789 2.664 0.011 

Note. B = Un standardized Beta; t = Statistical T; Tmin: Minimum temperature.  

 

Based on the regression analysis results, the regression equation is represented as; 

Coffee (t) in Mbeya-Songwe regions = 
-47650.738 − 5324.462 (Tmin rain season) − 10191.939 (Average Tmin)            (5) 

The regression model for Ruvuma region was also highly significant and a good fit for the data [F (2, 38) = 7.52, 
P < 0.01]. The model showed that 28% (R2 = 0.284) of the changes in the coffee production are explained by the 
combined effect of Tmin rain season and average Tmin. As observed in the Mbeya-Songwe regions, the average 
Tmin resulted in the biggest contribution as compared to Tmin long rains in Ruvuma region (Table 8).  

 

Table 8. The relationship between coffee production (tons) and temperature range (°C) in the Ruvuma region 

 
Un standardized Coefficients Standardized Coefficients 

t Sig. 
B Std. Error Beta 

(Constant) -33352.587 25688.607 -1.298 0.202 
Tmin rain season -6891.895 3627.193 -.700 -1.900 0.065 
Average Tmin 9949.119 3289.968 1.113 3.024 0.004 

Note. B = Un standardized Beta; t = Statistical T; Tmin: Minimum temperature. 

 

Based on the regression analysis results, the regression equation is represented as, 

Coffee (t) in Ruvuma region = 
-33352.587 − 6891.895 (Tmin rain season) − 9949.119 (Average Tmin)               (6) 

4. Discussion 
4.1 Climate Variability 

The decline in long rain in the Northern Highlands zone of Tanzania is characterized by the shortening of the 
rainy season which is caused by earlier cessation as the result of a decline of rainfall in April and May. Other 
studies also show a decline in the March-to-May seasonal rainfall over eastern Africa (Rowell and Booth 2015; 
Maidment et al., 2015; Wainwright et al., 2019), however, with drying in March, April, and May (Niang et al., 
2014). Contrary to our findings, the study by Wagner et al. (2021) indicated a significant increase in the amount 
of rainfall during May and a reduction of rainfall in April around Mt. Kilimanjaro over the last 19 years 
(2001-2019). On the other hand, according to Wainwright et al. (2019), the observed decline in Eastern African 
long rains is characterized by shortening of the rainy season (with late-onset and earlier cessation) rather than by 
a decrease in the peak daily rainfall. Different observations observed in different studies can be explained by 
large regional and local variability in precipitation (Dai, 2018; Macleod & Caminade, 2019), and therefore 
changes observed in other parts of Tanzania or East Africa do not necessarily contest with what is experienced in 
Arusha and Kilimanjaro regions.  

The suggested link to the decrease in rainfall is the rapid warming of the Indian Ocean which causes an increase 
in convection and precipitation over the tropical Indian Ocean, contributing to the decrease in rainfall over the 
continental land surface (Lemma & Megersa, 2021). Over the last three decades rainfall has decreased by around 
15% over eastern Africa, in the main growing season (March and May/June) (Williams et al., 2012). On the other 
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hand, the increase in short rain observed in the Arusha region (Northern Highlands zone) could be the result of 
extreme Indian Ocean Dipole (IOD) events which affect the short rainy season from October to December 
(Shelleph Limbu et al., 2019). With increasing global mean temperature, the frequency of extreme positive IOD 
is expected to significantly increase (Cai et al., 2018). The increase in short rains in the Arusha region (Northern 
Highlands zone) conform with projections from different General Circulation Models (GCMs) which are broadly 
indicating increases in annual rainfall in Ethiopia (Niang et al., 2014), but these increases are largely due to 
increased rainfall in the October-December period in southern Ethiopia (McSweeney et al., 2010). 

Moreover, despite the prediction that annual precipitation will increase in East Africa (Wainwright et al., 2019; 
Adhikari et al., 2015), our findings indicate a decrease (not significant) in annual rainfall in the coffee-growing 
areas of the Northern Highlands zone for the four past decades (1979-2018). The decrease of long rains in the 
Northern Highlands zone has a direct link with the decline in annual rainfall over the area. According to 
Liebmann et al. (2014) “long rains” season [March-May (MAM)] is a manifestation of a long-term decline in 
rainfall totals. In addition, there has been no such downward trend in the “short rains” [October-December 
(OND)], but this season has continued to exhibit large year-to-year variability, which at times has exacerbated 
the impact of the long rains decline. This explains why coffee farmers in the Northern Highlands zone perceived 
drought increase (Mbwambo et al., 2021) despite the short rain increase. This is where successful adaptation 
measures are critical (Wagner et al., 2019). Furthermore, coffee-growing farmers, in the Southern Highlands 
zone are also confronted with reduced rainfall which occurs during the growing season and annually. As in 
Craparo et al. (2015), the decrease in rainfall in the Southern Highlands zone was not statistically significant. 
Moreover, the study revealed that half of the study period has been experiencing low rainfall (rainfall below 
long-term annual average). However, even though there has been low rainfall in the coffee-growing area, 
irrigation has been used at a low scale. The study conducted by Mbwambo et al., 2021 found that over 40 years 
(1979-2018), only about 17% of coffee farmers in the Northern and 5% in the Southern Highlands zone used 
irrigation practices in their coffee fields. Other adaptation practices used by coffee farmers in the Northern 
Highlands zone were in the order of shade trees (96%) > Mulching (94%) > cut-off drains (28%) and Terraces 
(14%). In the southern Highlands zone, adaptation practices were in the order of shade trees (70%) > Mulching 
70%) > Terraces (46%) and cut-off drains (37%) (Mbwambo et al., 2021).  

The study revealed further that, there have been increasing trends in monthly, seasonal, and annual temperature 
in the two zones with Tmin increasing at a higher rate than Tmax. These findings are in agreement with those from 
the Northern part of Tanzania (Craparo et al., 2015), Ethiopia (Mekasha et al., 2014), Kenya (Omondi et al., 
2014), and Uganda (Nsubuga et al., 2014) which reported that mean warming is primarily driven by substantial 
increases in the daily minima composition compared with daily maxima. According to Niang et al. (2014), this is 
an indicator of continued warming. Additionally, according to the observed results, the Tmean in the Northern and 
Southern Highlands zone of Tanzania seems to have reached the upper limit of the mean temperature bracket 
(18-21 °C) suitable for coffee cultivation (Alègre, 1959).  

4.2 Effect of Climate Change on Coffee Production 

The decline of coffee production in the Northern Highlands zone is linked to the decrease in long rains and the 
increase of Tmin. Generally, both, long and short rains are very important in the reproductive phase of the coffee 
plant. On one hand, the short rains in October trigger flowering in coffee plants after the dry spell period 
(Jassogne et al., 2013), and on the other hand, long rainy season (March to May) if delayed and inadequate will 
negatively affect the expansion stage, during which rainfall is required to sustain berry development. Normally, 
in the Northern Highlands zone coffee crop enters the reproductive phase during the short rain season 
(October-December) and so the crop becomes more sensitive to temperature during this period. Generally, high 
night temperatures increase the rate of respiration so the assimilates which could be used for growth and yield 
are reduced (Nagarajan et al., 2010; Bapuji Rao et al., 2014). Drought and high temperatures during this period 
in the Kilimanjaro region will cause fruit abortions, increased bean defects, reduced berry growth, and 
acceleration of ripening, leading to a reduction in coffee yield and quality (Craparo et al., 2020; Wagner et al., 
2021). The study of Craparo et al. (2015), reported similar findings that yield in the Northern Highlands zone is 
decreasing as the results of the increase in Tmin, however, in their study, there was no relationship between yield 
decrease and decrease in long rains as observed in this study. 

Additionally, although Tmean affected coffee production in the Arusha region, it was Tmin that accelerated the 
increase of Tmean Therefore, the decrease in coffee production observed in the Northern Highlands zone which is 
experiencing reduced rainfall is aggravated by higher Tmin in the area. The inclusion of more shade trees might 
help to reduce heat stress (Kajembe et al., 2016), however, conservation of heat during the night challenges the 
common notion that shade trees are always a beneficial aspect of climate change adaptation (Craparo et al., 
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2015). Other strategies may include, re-adapting the coffee agronomic practices to climate change, use of 
technologies that will improve water and nutrient use efficiency in coffee trees, and developing genetically 
improved coffee varieties that will tolerate the impact of climate change. 

On the other hand, coffee production in the Southern Highlands zone positively correlated with temperature even 
though Tmean is already out of the optimum range. The observed positive correlation could be explained by the 
fact that there was no significant decrease in rainfall during the growing season (November to May) and annually. 
Moreover, the Southern Highlands zone is also characterized by very low Tmin and Tmax in June, July, and August. 
The low temperature in these months can reduce the negative impact of high temperature during the growing 
seasons. However, from all climatic parameters, it was only the average Tmin that resulted in a significant 
increase in coffee production in the Southern Highlands zone. Nevertheless, the findings from this study revealed 
further that, if Tmin during the growing season will continue to increase in the Southern Highlands zone, coffee 
production will also be affected, as the inclusion of this parameter improved the model in both regions of the 
Southern Highlands zone. Generally, the findings from this study conform to the perceptions of farmers in the 
Northern and Southern Highlands zone reported by Mbwambo et al. (2021), that reduced rainfall and/or increase 
in temperature have resulted in coffee production decline. Other non-climatic factors may have contributed to the 
increase in coffee production in the Southern Highlands zone as discussed below. 

4.3 Other Factors Affecting Production 

Despite the positive relationship between low coffee productions with weather-related problems, the sharp 
decrease in coffee production noted in the Northern Highlands zone is likely to have been magnified by factors 
other than climate change per se. Bureau for Agricultural Consultancy and Advisory Service (BACAS) (2005) 
noted that the nationalization of estate farms in the Northern Highlands zone contributed to the decline in coffee 
production in the zone, which used to produce 50% of total coffee in 1972/73 due to the dismal performance 
under primary cooperatives. Another possible factor is the farmers’ disincentive to invest in coffee due to the 
historic price slump of 1980-2002. The slump, from an average of 5 USD lb-1 in 1980 to 0.77 USD lb-1 in 2002 
(Drip Beans, 2020) caused a lot of problems to those who depend on coffee for their livelihoods, including 
farmers. They could barely meet the cost of production and as a result, production fell steadily, with the area 
under coffee also declining.  

Another area for consideration is land holding per small holder family. BACAS (2005) reported that households 
owning less than 2 ha in the Northern zone were almost 70% of the sampled households while in the Southern 
zone they were only 32%, implying that land is scarcer in the northern zone, particularly so in Kilimanjaro. 
Mbwambo et al. (2021) also reported that the majority of the smallholder coffee farmers from the Northern 
Highlands zone possess farm sizes between 0.5 and 1ha, while those from the Southern Highlands zone had farm 
sizes between 1 and 2 ha. Due to land scarcity, coffee farmers may opt to intercrop coffee with other crops and 
this can reduce the number of coffee trees per area, hence low production. Also, the rate of planting new trees in 
the Northern Highlands zone is reported to be less than that of the Southern Highlands zone, because the aging 
coffee trees are owned by the elderly who are naturally risk-averse. These indicate that may be the increase in 
coffee production observed in the Southern Highlands zone, apart from being favored by climatic factors, has 
been further boosted by the replanting of new coffee trees and adoption of new, high-yielding varieties. 

5. Conclusion and Recommendations 
There has been a decline in long rains and a rise in Tmin which ultimately affected coffee production in the 
Northern Highlands zone. The Southern Highlands zone, on the other hand, has not yet suffered from the impact 
of climate change. Nevertheless, Tmin is increasing at a higher rate in the area and it may affect the production of 
coffee shortly. Therefore, without sufficient adaptation measures, coffee production in the Northern Highlands 
zone will be reduced and the famous brand of Kilimanjaro Coffee will disappear from the Market. This calls for 
public and private sectors to invest in climate change adaptation strategies that will better sustain this important 
industry and the livelihoods of millions of smallholder farmers who depend on it. The emphasize should also be 
given by the Arabica coffee growing region which may have already suffered yield losses due to climate change. 
Such strategies may include, re-adapting the coffee agronomic practices to climate change, improving water and 
nutrient use efficiency in coffee trees, and developing genetically improved coffee cultivars that will tolerate the 
impact of climate change. 
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Appendix A 
Summary of seasonal and annual rainfall and temperature statistics for study regions 

 

Regions 

Kilimanjaro Arusha Mbeya and Songwe Ruvuma 

Rainfall (mm) 
Mean 1435.77 733.4 1306.09 1203.74 

STD 333.93 171.55 203.79 166.2 

Temperature (o C) 

Mean 19.67 20.3 19.44 21.44 

STD 0.329 0.285 0.301 0.319 

Tmax 24.78 26.04 25.25 26.62 

STD 0.346 0.442 0.442 0.414 

Tmin 14.56 14.73 13.04 16.00 

STD 0.36 0.362 0.292 0.32 

Note. STD = Standard deviation, Tmin = Minimum temperature, Tmax = Maximum temperature.  
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