
Journal of Agricultural Science; Vol. 14, No. 2; 2022 
ISSN 1916-9752   E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

36 

Fitting Volume Models for Parana Pine With a Nonlinear Regression, 
Genetic Algorithm and Simulated Annealing

Emanuel Arnoni Costa1, Cristine Tagliapietra Schons1, César Augusto Guimarães Finger1 & André Felipe Hess2 
1 Forest Science, Federal University of Santa Maria, Brazil 
2 Forest Science, State University of Santa Catarina, Brazil 

Correspondece: Emanuel Arnoni Costa, Forest Science, Federal University of Santa Maria, Brazil. E-mail: 
emanuelarnonicost@hotmail.com 

 

Received: December 7, 2021      Accepted: January 4, 2022      Online Published: January 15, 2022 

doi:10.5539/jas.v14n2p36        URL: https://doi.org/10.5539/jas.v14n2p36 

 

Abstract 
Improving volumetric quantification of Parana pine (Araucaria angustifolia) in Mixed Ombrophilous Forest is a 
constant need in order to provide accurate and timely information on current and future growing stock to ensure 
forest management. Thus, the present study aimed to evaluate and compare the volume estimates obtained 
through Nonlinear Regression (NR), Genetic Algorithm (GA) and Simulated Annealing (SA) in order to generate 
accurate volume estimates. Volumetric equations were developed including the independent variables diameter at 
breast height (dbh), total height (h) and crown rate (cr) and from the fit through the NR, GA and SA approaches. 
The GA and SA approaches evaluated proved to be a reliable optimization strategy for parameter estimation in 
Parana pine volumetric modelling, however, no significant differences were found in comparison with the NR 
approach. This study therefore contributes through the generation of robust equations that could be used for 
accurate estimates of the volume of the Parana pine in southern Brazil, thus supporting the planning and 
establishment of management and conservation actions. 

Keywords: Metaheuristic algorithms, parameter estimation, araucaria, optimization methods 

1. Introduction 
Timber valuation is a prime requirement to ensure forest management. In this regard, forest managers constantly 
resort to estimating forest attributes in order to provide accurate and timely information on current and future 
growing stock and to assess the economic benefits of their forests, not only at large scale industrial forests but 
also at small scale forests (Tiryana et al., 2021). Therefore, the development of accurate prediction tools is 
crucial to support forest management decisions, which have to be adapted to suit the particular circumstances 
(Özçelik et al., 2010). 

Parana pine (Araucaria angustifolia), a characteristic species of the Mixed Ombrophilous Forest (MOF) of the 
Atlantic Forest biome, is an important coniferous species in southern Brazil of considerable economic 
importance due to its exceptional wood quality and its high-value edible seeds (Hess et al., 2019, Costa et al., 
2020). The species’ trunk is highly cylindrical, straight and, rarely, branched into two or more shafts, its bark is 
thick and resinous, and it also has a unique crown structure (Narvaes et al., 2005; Rodrigues, 2016). In the early 
1900s, it is estimated that this species covered approximately 200,000 km² in the south of the country (Hueck 
1972).  

Due to unsustainable logging and agricultural expansion in past decades, MOF typology have experienced a 
significant reduction in its original area, culminating in the development of legal barriers for the cutting of 
Parana pine (Eisfeld et al., 2020). However, several researches have pointed out that these restrictions has not 
been effective to improve the state of conservation of the species (IUCN, 2021), since the the lack of 
management in this typology has led to a great increase in competition between trees, impeding natural 
regeneration and stagnating growth (Beckert et al., 2014; Costa et al., 2020; Hess et al., 2020, 2018a, 2018b). 
Therefore, studies that contribute to the planning of sustainable forest management and conservation of this 
species are crucial. 

Regression models are commonly used to model forest attributes. However, the fitting of nonlinear equations is 
more difficult than for linear models, since traditional regression methods for nonlinear models, in some cases, 
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require initial parameter estimates to start the optimization and often the quality of the final solution is dependent 
upon the position of this starting point in the search space (Roush & Branton, 2005). Another difficulty with 
nonlinear models fitting is determining if a given minimum is the best (global) minimum or a suboptimal (local) 
minimum (R. L. Haupt & S. E. Haupt, 2004). 

As an alternative to solve these problems, it is possible to resort to more robust optimization methods, such as 
metaheuristic algorithms approaches (Bonilla-Petriciolet et al., 2005). These methods present several advantages 
over traditional nonlinear regression (NR), such as the possibility of specifying only the range of the model 
parameters (Kapanoglu et al., 2007; Moreira et al., 2013). In addition, metaheuristic approaches are more 
appropriate to deal with ill-conditioned optimization problems than is nonlinear regression (Hadi & 
Gonzalez-Andujar, 2009). 

In this regard, genetic algorithm (GA) is a computational method modeled on the theory of biological 
evolutionary processes that can be used to find optimal solutions (Roush & Branton 2005). The success of the 
algorithm is attributed to various factors including its powerful parallel search capability, computational 
simplicity, robustness and focus on global rather than local search space (Hadi & Gonzalez-Andujar, 2009; 
Pohjankukka et al., 2018; Zeng et al., 2007). Simulated annealing (SA) is another notable heuristic approach 
based on neighborhood search technique (Dong et al., 2015). It has analogy with annealing of a metal from 
which the name comes and the central idea of the method is to avoid local optima by accepting probabilistically 
moves to worse solutions (Packalén et al., 2012). 

Thus, the present study expected to contribute to the increase of information on the volumetry of the Araucaria 
angustifolia in southern Brazil, with the objective of evaluating and comparing the volume estimates obtained 
through Nonlinear Regression (NR), Genetic Algorithm (GA) and Simulated Annealing (SA). 

2. Material and Methods 
2.1 Study Site 
The data were collected in an 84-hectare uneven-aged natural forest located in the municipality of Lages, SC 
(27°48′S; 50°19′W). The region’s climate is mesothermic humid (1,360 to 1,600 mm), with no defined dry 
season (Cfb), with an average annual temperature between 13.8 and 15.8 ºC and a relative humidity of 80% 
(Alvares et al., 2013). The predominant soils in the region are humic nitosols and humic cambisols developed 
from basaltic rocks. 

2.2 Data Collection 
A total of 308 araucaria trees were selected in the forest by an entirely random sampling process within diameter 
classes (see the relative sampling error in the Table 1), covering the range of diametric distribution previously 
established by (Hess et al., 2010). In each tree were measured: the diameter at breast height (dbh) with a 
diametric tape; the total height (h) and the crown insertion height (hic) with a Vertex IV hypsometer. To obtain 
the diameters along the trunk, Hohenadl’s rigorous cubing method was considered with the relative diameters (di) 
measured at specific heights (hi) of 10%, 30%, 50%, 70% of the h, as well as the diameter at the crown insertion 
(dic), thus allowing the determination of the commercial volume (v) of the trees.  

To determine the di and hi values, the electronic dendrometer Criterion RD 1000 by laser technology® was used, 
which allowed the cubing of standing trees. In this case, the destructive method was not applied due to the 
restrictive legislation for cutting trees of this species, even for research purposes. The diameter at 90% of the 
height was not considered because it is located inside the canopy and the presence of branches hinder its 
determination in the forest.  

The crown rate (cr) was obtained considering the ratio between the crown length (cl) and the total height (h). The 
cl was calculed by the difference between the total height (h) and the height at the crown insertion (hic) of the 
tree. The characteristics of the trees evaluated are shown in Table 1. 
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Table 1. Characteristics of measured trees 

Variables Unit Minimun Mean Median Maximum S.D. Rse% 
dbh cm 9.8 37.8 37.2 86.0 15.7 4.66 
h m 7.2 16.6 16.7 25.0 3.6 2.43 
hic m 3.0 12.1 12.8 19.0 3.7 3.43 
h/dbh % 24.1 48.8 45.9 102.4 14.8 3.40 
cr % 5.1 28.2 25.3 75.0 13.3 5.29 
v m³ 0.0248 1.2118 0.8589 6.2624 1.1815 10.93 

Note. dbh = diameter at breast height (cm); h = total height (m); hic = crown insertion height; h/d = ratio between 
height and diameter (%); cr = crown rate (%); v = tree commercial volume (m³); S.D. = standard deviation; Rse 
= relative sampling error (%). 

 

The nonlinear trend between the volume variable (v) and the diameter variable (dbh) can be seen through (Figure 
1).  

 

 
Figure 1. Dispersion of volume data as a function of dbh 

 

2.3 Volume Modeling 
The following volumetric models (i, ii and iii) were selected to be fitted through Nonlinear Regression, Genetic 
Algorithm and Simulated Annealing methods. 

v	=	β0dbhβ1                                        (i) 

v	=	β0dbhβ1hβ2                                      (ii) 

v	=	β0dbhβ1hβ2crβ3                                    (iii) 

Where, v = estimated tree volume (m3); dbh = diameter at breast height (cm); h = total height (m); cr = crown 
rate (%); β0; β1; β2; β3 = parameters to be estimated. 

The fitting of the models through nonlinear regression was performed using the Gauss-Newton algorithm. For 
the optimization through Genetic Algorithm, the R package ‘GA’ was used, setting the following parameters: 
population size = 2500; maximum number of iterations = 50,000; crossover probability = 0.8; mutation 
probability = 0.1. For the Simulating Annealing implementation, the R package ‘likelihood’ was used and the 
following parameters were assumed: initial temperature = 3; cooling rate = 0.95; maximum number of iterations 
= 50,000. 

Both GA & SA have the advantages of defining only a range of the equation parameters in the search space (R. L. 
Haupt & S. E. Haupt, 2004), which is not possible in the case of nonlinear regression in some specific programs 
that require starting points. Table 2 shows the start values for the fitting of each method. 
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Table 2. Starting points for nonlinear regression and parameter ranges for genetic algorithm and simulated 
annealing fitting 

Type Models β0 β1 β2 β3 

NLS 
i 0.0001 2.25   
ii 0.0001 2.25 0.75  
iii 0.0001 2.25 0.75 -0.25 

GA 
i 0-2 2-3   
ii 0-2 2-3 0.5-1  
iii 0-2 2-3 0.5-1 -0.5-0 

SA 
i 0-1 2-3    
ii 0-1 2-3 0.5-1  
iii 0-1 2-3 0.5-1 -0.5-0 

Note. NLS = nonlinear regression; GA = genetic algorithm and SA = simulated annealing. 

 

2.4 Relationships of Variables 
The adjustment of the models of h and cr were possible by the following expressions: 

h = β0 exp ൬-β1

dbh
൰                                 (iv) 

cr	=	β0dbhβ1                                    (v) 

Where, h = total height (m); cr = crown rate (%); dbh = diameter at breast height (cm); β0; β1
 = parameters to be 

estimated. 

The relationship between the variables (v, dbh, h and cr) were analyzed using the three-dimensional 
representation with the response surface.  

2.5 Statistical Analysis 
In the evaluation of the models generated by the different approaches, we considered as goodness-of-fit criteria 
the root mean square error (RMSE) (Expression vi), the Bias (B) (Expression vii), the Akaike’s information 
criterion (AIC) (Expression viii) and the graphical analysis of the residuals. 

RMSE = ඨቈ∑ ൫yi	- yොi൯2n
i=1

n
቉                                 (vi) 

B = 
∑ ൫yi	- yො൯n

i=1

n
                                     (vii) 

AIC = n·ln ቈ∑ ൫yi	- yොi൯2n
i=1

n
቉ 	+	2k	                            (viii) 

Where, RMSE = root mean square error; B = Bias; AIC = Akaike’s information criterion; yi = observed value for 
the ith observation; yොi = predicted value for the ith observation; n = number of observations in the dataset; k = 
number of parameters. 

To verify significant differences among the different fitting approaches, was tested the equality of variances, the 
F test was applied at the 5% level of significance. The non-linear extra sum of squares method was used to 
compare the models (i, ii and iii) (Bates & Watts, 1988). In this method, the fitting of full and reduced models is 
required. The significance of the comparison between full and reduced models is based on the F-test, according 
to the following expression: 

F = 

൫SSER	-	SSEF൯
 ቀdfR	-	dfFቁ

SSEF
dfF

                                     (ix) 

Where, SSER = is the sum square error of the reduced model; SSEF = is the sum square error of the full model; dfR 
= is the degrees of freedom for the reduced model; dfF = and is the degrees of freedom for the full model. The 
non-linear extra sum of squares follows an F-distribution. F-test was considered significant if the Pr-value for the 
test is less than 0.05. All the statistical analyses were processed using software R 3.4.4. 
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3. Results 

The sample trees covered a wide range of diameter (9.8-86.0 cm) and height (7.2-25.0). In addition, from very 
large crown trees to trees with shorter crowns were included in the sample (5.1-75.0%). On average, the trees 
volume was 1.2118 m³ (Table 1 and Figure 1). Relative sampling error values were below or very close to 10% 
for all evaluated variables. 

The coefficients fitted through NR, GA and SA, followed by their respective values RMSE, B and AIC, are 
presented in the Table 3, considering each based volumetric model. First, considering only the different models 
used, a gain in precision was observed with the inclusion of the height variable (h) in relation to only the 
diameter (dbh) [NLS-ii. Model]. Likewise, the inclusion of the crown rate variable (cr) brings an important 
contribution, with reduction in the RMSE, B and AIC. Thus, regardless of the fitting approach, [NLS-iii. Model] 
showed better performance among those evaluated for the volumetric estimates. All the coefficients of the 
equations fitted presented significance (Pr < 0.0001, see Appendix A). Significant differences observed between 
models (i and ii; i and iii; ii and iii) based on the F-test using the non-linear extra sum of squares method, which 
allows the comparison between equations with different amount of coefficients, corroborate with the precision 
statistics and confirm the superiority of the model iii (Appendix B). Negative values for the b3 coefficient were 
found due to the fact that a reduction in the percentage of crown rate reflects an increase in volume.  

 

Table 3. Coefficients and statistics of the adjusted equations for volume estimation 

Type Models b0 b1 b2 b3 RMSE B AIC 

NLS 
i 0.000164 2.3835   0.1783 -0.0031 -1058.3 
ii 0.000053 2.1290 0.7267  0.1248 -0.0031 -1276.1 
iii 0.000075 2.1400 0.8114 -0.2042 0.0440 -0.0006 -1916.7 

GA 
i 0.000165 2.3819   0.1783 -0.0035 -1058.3 
ii 0.000049 2.1441 0.7311  0.1250 -0.0016 -1274.9 
iii 0.000076 2.1402 0.8109 -0.2041 0.0440 -0.0006 -1916.7 

SA 
i 0.000164 2.3835   0.1783 -0.0031 -1058.3 
ii 0.000053 2.1290 0.7268  0.1248 -0.0031 -1276.1 
iii 0.000075 2.1400 0.8116 -0.2043 0.0440 -0.0006 -1916.7 

Note. NLS = nonlinear regression; GA = genetic algorithm and SA = simulated annealing. 

 

Additionally, regarding to the different fitting approaches, small differences in the adjusted values of the 
parameters were observed among nonlinear regression, genetic algorithm and simulated annealing (Table 3), 
resulting in very similar precision statistics. The comparative F test between the different volumetric estimation 
approaches proved that there was no significant difference between the approaches, at the 5% level of 
significance (Table 4). 

 

Table 4. Statistical results for comparing residuals the different volumetric estimation approaches 
Comparing Models df F value p-value 
NLS-GA 

i 
307 1.0007 0.9954 

NLS-AS 307 1.0001 0.9995 
GA-AS 307 1.0006 0.9958 
NLS-GA 

ii 
307 1.0441 0.7058 

NLS-AS 307 1.0002 0.9989 
GA-AS 307 1.0439 0.7069 
NLS-GA 

iii 
307 1.0008 0.9947 

NLS-AS 307 1.0007 0.9952 
GA-AS 307 1.0014 0.9899 

Note. NLS = nonlinear regression; GA = genetic algorithm and SA = simulated annealing. 
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Therefore, considering the non-significant differences observed between the different approaches, for the data set 
and the models assessed in this study, it can be observed that non-linear regression proved to be a suitable 
approach for adjusting the variable volume as other approaches. Consequently, taking into account the simplicity, 
in this study we chose to select the non-linear regression approach for the application. 

The box plots in Figure 2 illustrate the residual distributions of each model evaluated through nonlinear 
regression. Residual dispersion presents a shorter range and a small interquartile difference, especially regarding 
[NLS-iii. Model] (Figure 2), which also showed mean and median values centered close to zero. 

 

 
Figure 2. Residual analysis of the each model fit through the nonlinear regression approach 

 
After confirming the best performance of [NLS-iii. Model] in predicting the volume variable, we then proceeded 
with the adjustment of the variables h [NLS-iv. Model] and cr [NLS-v. Model] according to the dbh. The fitted 
coefficients and the goodness-of-fit criteria RMSE, B and AIC are presented in the Table 5. 

 

Table 5. Coefficients and statistics of the adjusted equations for h and cr estimation according to the dbh variable 

Models Variables b0 b1 RMSE B AIC 
iv h 24.1732 12.3517 2.2988 5.27E-03 516.7 
v cr 69.9343 -0.2583 12.9106 1.52E-02 1579.8 

 

The trend of height (h) and crown rate (cr) as a function of the diameter (dbh) can be seen through (Figure 3). 
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Figure 3. Dispersion data of height (h) and crown rate (cr) as a function of the diameter at breast height (dbh) 

 

The three-dimensional volume data is shown in Figure 4a. Additionally, the relation among the independent 
variables cr, dbh and h can also be seen in Figure 4b. The generated equation (NLS-iii. Model) is the main result 
of the present study, which represents accurate volumetric estimates for individual trees of Araucaria 
angustifolia.  

4. Discussion 

This study investigates different approaches in adjusting volume models for the species Araucaria angustifolia 
in uneven-aged forest in southern Brazil, introducing new possibilities for parameter optimization through 
genetic algorithm and simulated annealing. Valuable contribution are delivered in the scope of improving 
volumetric estimates for the Brazilian pine species, covering in its sample trees in a wide diametric range, by 
including individuals from approximately 10 cm dbh to almost 90 cm (Table 1), which characterize the 
formations most commonly seen in southern Brazil. 

The non-significant difference observed in the present study between the regression and metaheuristic algorithm 
approaches (Table 4) may have been verified due to the fact that we are working with simple models and with a 
maximum of three variables (Expression i, ii and iii). In this context, when ill-conditioned optimization is not an 
issue and the definition of the starting points’ values are reasonable, the simplest method could be used to 
estimate the volume of Parana pine in southern Brazil, obtaining a good performance with the use of nonlinear 
regression (see Table 3—lower values of RMSE, bias and AIC). 

It is to be expected, however, that for more complex problems, these metaheuristics alternatives can become 
quite viable.  In this sense, given the advantages they can present, we point out to the importance of additional 
investigations related to these approaches in the context of forest attributes estimates, as they are still very 
scarce. 

Some other authors have based studies with the application of metaheuristic approaches in the forest context, but 
in particular with the approach of selecting variables for the composition of the models (feature selection). 
Garcia-Gutierrez et al. (2014) compare the results of two classical procedures (stepwise and best-subset) and a 
novel GA regression procedure for the selection of variables when multiple linear regression is applied on 
LiDAR data for the estimation of the main forest stand variables. The results indicated that GAs statistically 
outperformed the rest of the methods and the authors suggested that the parametric conditions in field data could 
be the main reason for the better performance of GA. 
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In addition, genetic algorithms and simulated annealing also have their consolidated use in the context of forest 
planning, at all levels: strategic, tactical, and operational (Sessions et al. 2007). For example, Dong et al. (2015) 
concentrated on tactical forest spatial harvest scheduling problems through the use of the simulated annealing 
algorithm. Similarly, Zeng et al. (2007) explored heuristic optimization in risk management of wind damage in 
forest planning, testing simulated annealing, genetic algorithms and tabu search. In this study, tabu search 
performed slightly better than simulated annealing and genetic algorithms, addressing another important 
optimization algorithm. 

Specifically for the volumetric modeling of the Parana pine, other authors have also been trying to increase the 
reliability of the estimation tools for the species. Martins et al. (2017) tested the performance of artificial 
intelligence techniques to assess their contribution in the estimation of stem form of Araucaria angustifolia and 
identified that artificial neural networks provided the best estimates. Similarly, mixed nonlinear models fitting 
techniques were also evaluated by Costa (2014) to describe the taper of Parana pine stems, which showed 
flexibility and efficiency. 

In the present study, the possibility of including the crown rate variable (cr) in the model proved to be of great 
contribution, representing gains in precision in the adjustments (Table 3, Appendices A and B), regardless of the 
approach considered (Table 4). Testing the contribution of crown variables to volume models is particularly 
relevant in a current context of forest inventory via remote imaging (Dalponte et al., 2014; Y. Li et al., 2017; 
Puliti et al., 2015, 2020). In this perspective, the combination of laser scanning technologies and the use of 
Unmanned Aerial Vehicles (UAV) have increasingly advanced in the direction of individual tree crowns 
identification and delineation (Guerra-Hernández et al., 2019; Puliti et al., 2020), therefore, the studied 
relationship between volume and crown variable represents a differential of the present study and a useful tool 
for future studies using UAV. 

Furthermore, the volume determination obtained with a non-destructive method (Criterion RD1000) also proved 
to be feasible, allowing the sampling of 308 A. angustifolia trees without felling. Indirect volume measurement 
have been used satisfactorily in other recent studies (de Oliveira et al., 2018; He et al., 2016; Marchi et al., 2020), 
proven to be a cheaper and desirable method. de Oliveira et al. (2018) reached non-significant differences 
between volumes determined by direct and indirect methods for Khaya ivorensis A. Chev. plantations in Brazil, 
assuring precision for indirect measurements. Rodriguez et al. (2014) also compared the volume estimations 
obtained with destructive methods against the volume estimation obtained with the electronic dendrometer 
Criterion RD1000 and the laser hypsometer TruPulse, for Pinus nigra Arn. and Pinus pinaster Ait. Mesogeensis 
trees. These authors highlight the need for measurements to always be taken from a distance approximately equal 
to the tree height, considering this as an ‘‘accurate position’’. For A. angustifolia, this alternative is especially 
important in the current context of cutting restrictions established by legislation, even for research purposes. In 
this way it was possible to take a robust sample, leading to reliable results. 

Finally, we consider that the final application of this study is the delivery of robust volume equations, which 
covers a large data amplitude and with multiple-entry (dbh, h and cr), that could be used for accurate estimates of 
the volume of the Parana pine in southern Brazil. 

5. Conclusion 

The genetic algorithm and simulated annealing approaches evaluated proved to be a reliable optimization 
strategy for parameter estimation in Parana pine volumetric modelling. 

No significant differences were found between the volumes estimated by the different approaches, indicating that 
the simplest method, nonlinear regression, can be used to estimate the volume of Parana pine. In addition, the 
inclusion of the crown rate variable demonstrated a gain in model accuracy. 

This study contributes by generating robust equations that could be used for accurate estimates of the volume of 
Parana pine, thus contributing to species management and conservation strategies. 
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Appendix A 
Estimate and significance of the coefficients fitted through nonlinear regression equations 

Type Models Coefficients  Estimate Std. Error t value Pr(>|t|) 

NLS 

i 
b0 0.000164 1.654E-05 9.90 <0.0001 

b1 2.3835 2.460E-02 96.90 <0.0001 

ii 

b0 0.000053 5.237E-06 10.06 <0.0001 

b1 2.1290 2.181E-02 97.62 <0.0001 

b2 0.7267 4.146E-02 17.52 <0.0001 

iii 

b0 0.000075 2.732E-06 27.63 <0.0001 

b1 2.1400 7.628E-03 280.55 <0.0001 

b2 0.8114 1.497E-02 54.20 <0.0001 

b3 -0.2042 4.467E-03 -45.71 <0.0001 

iv 
b0 24.1732 0.4747 50.92 <0.0001 

b1 12.3517 0.6570 18.80 <0.0001 

v 
b0 69.9343 13.8788 5.04 <0.0001 

b1 -0.2583 0.0572 -4.52 <0.0001 

 

Appendix B 
Comparison between volume equations (i, ii and iii) fitted through nonlinear regression 

Type Comparisons Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) 

NLS 

i 306 9.7876     

ii 305 4.7945 1 4.9931 317.6 <0.0001 

i 306 9.7876     

iii 304 0.5951 2 9.1925 2348.0 <0.0001 

ii 305 4.7945     

iii 304 0.5951 1 4.1995 2145.3 <0.0001 
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