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Abstract 
The establishment of female inflorescence morphology is of great significance to the formation of final maize 
yield. defective ear1 (dea1) is a novel maize mutant with developmental defect of female inflorescence caused 
by natural variation. Morphological analysis revealed that the mutant dea1 was characterized as a “scar-like” 
crack on the adaxial side of the top of the ear, accounting for 28.6-100.0% of the ear length, with an average of 
32.4%. The results of scanning electron microscope showed that there was collapse in the formation of paired 
spikelet primordium at the base of the axillary meristem. Most of investigated botanical and agronomical traits of 
dea1 were lower than those of wild type, except for ear length and hundred grain weight. The grain yield per ear 
of mutant dea1 was 35.93% lower than that of wild type, and the width of mutation crack contributed the most to 
the yield loss per ear. The identification of the mutant dea1 and the characteristically phenotypic analysis provide 
a theoretical basis for the study of the molecular regulation mechanism of ear development and the application of 
high-yield breeding in maize. 
Keywords: maize (Zea mays L.), inflorescence development, mutant, yield, spikelet pair meristems 

1. Introduction 
Maize is one of the most agriculturally important crops, due to the supply of food and industrial raw materials in 
the world. Moreover it has been severing as one of the model organisms for plant genetics research (Bennetzen 
et al., 2001; Schnable et al., 2009). Maize inflorescence is an important female reproductive organ, and it is well 
fitted for studying the mechanism of floral transformation, inflorescence morphogenesis, floral organ 
development and as well as seed development. Maize ear, the mature output of female inflorescence, is the main 
agricultural harvest organ, which directly determines the final yield in maize production. 

Maize ears, also known as female ears, belong to the fleshy inflorescence. The cobs are hypertrophy and covered 
with very compact and dense rachis nodes. Each node has two sessile spikelets, arranged in pairs in rows. The 
female inflorescence develops from leaf buds in the leaf axils and is attached to the top of the panicle stalk. The 
development of maize female inflorescence experience two stages: sex determination and inflorescence 
formation (Cheng et al., 1983; Li et al., 2018; Kitagawa & Jackson, 2019; Somssich et al., 2016; Vollbrecht & 
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Schmidt, 2009). In the vegetative growth stage, the shoot apical meristem (SAM) initiates leaf development, and 
there is an axillary meristem (AM) at each leaf axil. After a certain growth stage, maize is induced by light, 
temperature, nutrition and other factors to induce reproductive conversion. The apical meristem not only 
maintains itself, but also differentiates into axillary meristem. After a period of dormancy, the primordia of 
axillary meristem expanded and elongated to form female inflorescence meristem (IM). Three types of axillary 
meristems were produced successively by IM which finally formed maize spikelet pair meristems (SPM), 
spikelet meristem (SM) and floret meristem (FM) (Tanaka et al., 2013; Vollbrecht & Schmidt, 2009). In this 
process, the transformation from IM to SPM determines the final row number of corn ear. 

In this series of transformation, multiple gene family members and plant hormones are involved in the 
coordinated regulation of meristem activities. In recent years, with the continuous advancement of molecular 
genetic methods, the regulatory network of spikelet development has been initially identified (Vollbrecht and 
Schmidt, 2009). However, the mechanism of how some key genes finely regulate maize ear development is still 
unclear. 

In this study, a maize ear development defect mutant was identified. The mutation affected the number of rows at 
the top of ear, and ultimately affected the formation of final yield. The discovery of this mutant may lay a 
foundation for further elucidating the mechanism of ear morphogenesis in maize. 

2. Method 
2.1 Plant Materials and Growth Conditions 

One of progenies of a mating cross (LG14/Su95-1) was found to be defect in ear morphology. The line with 
defect ears was selfing maintained to nearly genetic purity. Finally the mutant line, named L19G108, and its wild 
type sister line (CK) were used in this study. B73, Zheng58 and Mo17 were used to construct segregation 
populations for genetic analysis. The most significant feature of L19G108 is that there is a “scar” like crack on 
the adaxial side of the top of the ear, and the number of rows in the top of the ear decreases greatly. The 
mutantion gene conferred in L19G108 was tentatively named defective ear1 (dea1). 

2.2 Investigation of Agronomic and Yield-Related Traits 

The mutant dea1and CK were sown in Hainan breeding station (Sanya, E109.00, N18.36) in winter of 2018, and 
in Luhe experimental base of Jiangsu Academy of Agricultural Sciences (Nanjing, E118.62, N32.48) in spring of 
2019. More than 30 plants were randomly selected and recorded from the mutant and CK for measurement of 
agriculturally important traits, such as plant height, ear height, leaf width, leaf length, leaf number, length of 
main tassel branch and number of tassel branch. The recorded plants were open pollinated in the field for further 
investigation of yield-related traits after harvest. The ear weight, grain weight, cob weight, total number of grains 
per ear and hundred grain weight were measured. Ten grains were randomly selected from the middle of the ear 
to measure the grain length, width and depth, and calculate the average value of each character. 

2.3 Mutation Phenotype Observation 

Vernier caliper was used to measure the length and maximum width of defect mutation site in maize ear, and the 
normal degree of every mutant ear was calculated as Equation 1.  

Normality (%) = 100 − (Mutant crack length/Ear length) × 100                  (1) 

2.4 Scanning Electron Microscope (SEM) Analysis 

The mutants and wild-type plants of about 2 cm in length at V7 stage were selected and fixed with 2% - 3% 
glutaraldehyde for 2 hours, then dehydrated in ethanol gradient and stored in 100% acetone. The samples were 
processed by critical point drying and gold spraying, and then imaged by scanning electron microscopy (Zeiss 
EVO-LS10, Germany). The experimental material processing and imaging were completed in the Central 
Laboratory of Jiangsu Academy of Agricultural Sciences (http://lab.jaas.ac.cn). 

2.5 Statistical Tests 

The P value based on a two-tailed t-test was used to compare the difference of phenotypic mean between wild 
type and mutant in R (R Core Team 2019; http://www.R-project.org/). Stepwise regression analysis was used to 
analyze the effect of traits on yield per ear. 

3. Results 
3.1 Discovery of Ear Development Defect Mutant 

We found a single ear with developmental defect among 5 harvested maize ears in F5 generation derived from a 
mating cross. The defective trait resembled as tip-barrenness resulted from unfertilized florets and/or premature 
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Table 3. Path analysis of four ear-related traits to yield 

Item Ear length 
X1→Y 

Hundred grain weight 
X2→Y 

Crack length 
X3→Y 

Crack width 
X4, 4→ 

Ear length X1, 1→ 0.283a 0.063 -0.152 -0.404 

Hundred grain weight X2, 2→ 0.093 0.190 a -0.196 -0.437 

Crack length X3, 3→ 0.136 0.118 -0.316 a -0.807 

Crack width X4, 4→ 0.136 0.099 -0.304 -0.841 a 

Note. a Direct path coefficient is underlined. 

 

4. Discussion 
The mutant dea1 was originally identified in a breeding population. The surprising defective ear once was 
mistakenly attributed to ear barren tip, which composed from aborted kernels and florets without fecundation at 
the tip of ear. Unlike ear barren tip, the mutants seem to be independent to environmental stress. Our SEM 
analysis showed that the mutantion is caused by the failure of SPM formation (Figure 2A), which occurs much 
earlier than florets formation or kernel filling in the process of female inflorescence development. Path analysis 
(Table 3) suggested that the earlier the mutation occurs, the longer the fracture length and the larger the fracture 
width of mutant ear is. The crack length reflects the start time and location of abrupt change when mutation 
begins. Reduced floret number is expected with partial reduction of the formation of SPM and then causes yield 
loss.  

In maize, ear formation is a signal transduction process involving a series of genes regulated by complex height 
levels in inflorescence meristem (Bortiri & Hake, 2007). The inflorescence meristem has the same stem cell 
properties as the stem apical meristem, which can maintain its own cell number and differentiate and proliferate 
cells at the same time (Doerner, 2001). Maintaining the dynamic balance of stem cell system requires 
WUS/CLV3 feedback signal regulation network (Schoof et al., 2000; Somssich et al., 2016) and WUS/AG 
feedback inhibition loop (Lenhard et al., 2002; Sablowski, 2007). Once the balance ring is destroyed by genetic 
factors or environmental factors, abnormal changes in plant morphology will occur. Our results showed that the 
cells under the tunica of the mutants in this study were sunken in the early stage of the development of the 
panicle, which may be due to the change in the expression of a gene involved in the signal regulation pathway, 
which destroyed the balance of stem cells and caused the development defect of the spikelet. It is speculated that 
the change of activity of meristem at the tip of female inflorescence may result in the lengthening of ear. Heavier 
grain weight in the mutant may be due to the influence of mutation on row arrangement, decrease of spikelet 
density and weak spatial competition among grains. 

In addition to the differences of ear, the dea1 mutants resemble a miniature wild type in plant architecture as 
shown in Table 1. There are three possible assumptions for the mutation causal gene: it might affect the 
development of maize plants throughout the growth period; it acts in the upstream of affected traits; it is a 
pleiotropic gene. Further genetic analysis and mapping for the dea1 mutantion needs be conducted. 

Previous studies have shown that genes related to inflorescence meristem are involved in auxin biosynthesis 
(Gallavotti et al., 2008a; Phillips et al., 2011), transportation (McSteen et al., 2007; Gallavotti et al., 2008b) and 
signal transduction (Skirpan et al., 2008) to regulated the morphological changes of maize inflorescence. SPI1 
encodes a Yucca like protein gene unique to monocotyledons, which mainly acts on auxin biosynthesis. SPI1 
mutant significantly reduces the number of grains per spike (Gallavotti et al., 2008a). The vt2 gene encodes 
tryptophan aminotransferase, which is related to auxin synthesis. In addition to reducing the number of rows per 
ear, the vt2 mutant also has a bald ear. In addition, vt2 mutant have severe developmental defects in both 
vegetative and reproductive growth (Phillips et al., 2011). The pinoid gene product of Arabidopsis thaliana is 
serine/threonine protein kinase, which may regulate auxin transport (Benjamin et al., 2001). In maize, bif2 is 
homologous to pinoid lineage, and the bif2 mutant does not produce any spikes (McSteen & Hake, 2001; 
Mcsteen et al., 2007); BIF1 and bif2 are very similar and also participated in the regulation of auxin transport. 
The BIF1 mutant does not produce spikes or produce spikes, and the number of grains decreases and grains are 
disorderly arranged (Barazesh and McSteen 2008; Galli et al., 2015). On the one hand, these mutants showed the 
characteristics of reduced rows per panicle and dwarfed plants. The surface types of the mutants in this study 
were similar to those of the mutants, suggesting that auxin plays an important role in the formation of ear 
morphology, especially in the differentiation of primordia of paired florets. On the other hand, the mutants in this 
study have special phenotypic characteristics. For example, the mutation occurred on the adaxial side of the ear, 
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which was obviously dorsal ventral, which may be related to the polar auxin transport (Shi et al., 2017). The ear 
length of the mutant indicated that the activity of inflorescence meristem was positively regulated. Therefore, the 
mutants found in this study may be a new class of regulatory genes involved in ear morphogenesis in maize. 
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