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Abstract 
Studies examining the variability in wild plant metabolic expression propose that environmental factors 
significantly influence the essential oil (EO) quality and quantity in a plant. Lantana camara is a widely 
distributed invasive plant species worldwide. However, its immense metabolites can become a source of novel 
compounds to produce biopesticides in the agricultural industry. Although, the quality aspect has to be 
considered due to the environmental influence on the metabolites synthesised. Therefore, this research aimed to 
understand the influence of environmental factors and how it shapes the plant’s metabolite profile in multiple 
populations of L. camara. Leaf samples were collected from six different geographic regions of Kenya and the 
corresponding monthly climatic data and soil samples. GC-MS data from leaf EO were analysed with 
environmental variables (climate and soil data) using unimodally unconstrained and constrained ordination 
methods for untargeted metabolomics analysis. Partial Least Squares-Discriminant Analysis (PLS-DA) and 
Random Forests (RF) were used to confirm the variability further. Seasonal and regional variability was 
observed for secondary metabolites (SMs) in the leaf EO, which correlated to climatic factors and soil attributes. 
We highlight the season-al-geographic metabolism relationship for L. camara and the combined analytical 
approach to obtain data that contributes to understanding the influence of environmental factors on the synthesis 
and accumulation of SMs. This research will have all-embracing implications for maximising phytochemical 
uniformity. 
Keywords: adaptation, environmental factors, Lantana camara, seasonality, secondary metabolites 

1. Introduction 
Lantana camara Linn. (Verbenaceae), commonly known as Lantana, is a plant species widely found growing in 
many parts of the world and produces essential oils (EOs). Lantana is described as an invasive weed in different 
ecosystems (Bhagwat, Breman, Thekaekara, Thornton, & Willis, 2012; Willis, 2017), which is related to 
problems of ecological imbalance in areas infested with this plant because of its ability to adapt to different 
climate and soil conditions (Aruna & Balasubramanian, 2015). The composition of the essential oils of L. 
camara collected from several parts of the world are characterised by the principle components being terpenes 
(monoterpenes and sesquiterpenes) and their oxygenated derivatives (Anjum et al., 2017; Patil, Kumbhar, & 
Ambhore, 2017). Cited among the common major constituents identified are the sesquiterpenes, caryophyllene, 
isocaryophyllene, germacrene D, bicyclogermacrene, caryophyllene oxide, and caryophyllene epoxide (Anjum et 
al., 2017; Khan, Mahmood, & Alkhathlan, 2016; Nea et al., 2020, 2017; Omoregie, Aliyu, Doris, Ehiabhi, & 
Folashade, 2016; Pereira et al., 2019; Semdé et al., 2018).  

Environmental and edaphic factors may influence the production and accumulation of secondary metabolites in 
plants of the same species growing wild in different regions. The respective group of secondary metabolites 
plays a significant role in the plant’s adaptation to the surrounding environment (Ncube, Finnie, & Van Staden, 
2012; Niinemets, 2015; D. P. Pavarini, S. P. Pavarini, Niehues, & Lopes, 2012; Pereira et al., 2019; Ramakrishna 
& Ravishankar, 2011; Sampaio & Da Costa, 2018). The environment influences the biosynthesis of secondary 
metabolites (SMs), facilitating the chemical interaction between plants, leading to the variations in metabolite 
profile of a plant, therefore, exerting their biological roles as a plastic adaptive response mechanism to their 
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environment (Ncube et al., 2012; Pavarini et al., 2012; Pereira et al., 2019; Sampaio & Da Costa, 2018; Sampaio, 
Edrada-Ebel, & Da Costa, 2016).  

The metabolites reported from L. camara growing in different regions have shown marked differences in 
composition and concentration. Several chemotypes have been described, including a 
sabinene/cineole/b-caryophyllene chemotype from Algeria (Zoubiri & Baaliouamer, 2012); β-caryophyllene 
(9.8%), 1,8-cineole (9.4%), and β-pinene (8.2%) from Egypt; β-caryophyllene (23.3%), α-humulene (11.5%), 
germacrene D (10.9%) or davanone β-caryophyllene/bicyclogermacrene from India (Rana, Prasad, & Blazquez, 
2005) and bicyclogermacrene (19.4%), isocaryophyllene (16.7%), valencene (12.9%), and germacrene D (12.3%) 
from Brazil (Costa et al., 2010). These results have demonstrated that the environmental and edaphic factors 
influence plays a significant role in producing and accumulating secondary metabolites.  

The variation in secondary metabolites’ production influenced by environmental conditions can characterise one 
species’ plant populations. In this context, the metabolites may be used as a chemical marker to differentiate 
species found in specific geographical zones and seasons (De Souza, Ferri, Fiuza, Borges, & Paula, 2018; Khan 
et al., 2016; Pereira et al., 2019). Plants that produce essential oils vary considerably in their quality and quantity 
(composition and concentration of their constituents) due to their interaction with the natural environment.  

The vast array of compound synthesis in the L. camara plant points out the adaptive significance for such a 
diversity of compounds. The variability for the essential oil (EO) composition of L. camara can be related to 
geographical distribution and pressures (Agil & Hosseinian, 2012; Benites et al., 2009; Javier, Ocampo, Ceballo, 
& Javier, 2017; Khan et al., 2016; Murugesan, Senthilkumar, Suresh Babu, & Rajasugunasekar, 2016; Pereira et 
al., 2019; Zoubiri & Baaliouamer, 2012). The metabolism and accumulation of secondary metabolites reflect the 
integrated influences of multiple ecological factors on the plant during their developmental and growth periods 
in addition to genetic factors (Liu et al., 2016). Some metabolites are synthesised only under specific 
environments, or their contents significantly increase under specific environments. Moreover, previous studies 
have demonstrated that medicinal plants growing in different regions and environments produce different SMs 
resulting in differences in their qualities (W. Liu, J. Liu, Yin, & Zhao, 2015). Therefore, studies examining the 
diversity in the production of SMs of L. camara will explain the influence of abiotic and biotic pressures on the 
EO quality found in a species.  

Many studies investigating the influence of environmental factors on plant SM biosynthesis consider these 
factors’ effects on individual compounds. However, individual compounds rarely happen in isolation 
(Gershenzon, Fontana, Burow, Wittstock, & Degenhardt, 2012). Instead, any compound’s influence depends on 
conditions within the prevailing environment since a single factor cannot be extrapolated from a combination of 
environmental factors in plants growing in the natural environment (Berini et al., 2018). Thus, understanding 
how environmental factors will influence a plant’s metabolic profile is vital for interpreting how these changes 
influence the abundance of individual compounds.  

Considering the wide distribution and adaptive capacity of L. camara, and the lack of studies covering this 
subject, as well as the pesticidal properties of this plant, we proposed to carry out a comparative study with 
samples of EO from leaves of L. camara obtained from samples collected from six different climatic zones of 
Kenya and collected in different seasons. The approach involves comparing the data obtained by chemical 
profiles of these oils from six regions. To assess the influence of seasonal and geographical location on the 
production of SMs and determine the underlying factors responsible for the variations in SMs in L. camara, 
feasibly suggest the best harvesting seasons and regions for this wild species and promote its reasonable 
exploitation for specific compounds for biopesticide production.  

2. Method 
2.1 Sampling Locations 

Natural populations of L. camara plant, the first four leaves of the stem from the top (Figure 1A) were sampled 
from six representative climatic zones (Lower Highland-Njoro (LH-NJ), Upper Midland 1-Kakamega 
(UM1-KK), Upper Midland 2-Kandara (UM2-KA), Upper Midland 3-Embu (UM3-EM), Lower 
Midland-Kiboko (LM-KI) and Coastal Lowland-Mtwapa (CL-MT)) located in six counties of Kenya during the 
wet and dry seasons (2018, 2019 and 2020) (Figure 1B). Each region consisted of four collection sites (each 
population was separated geographically by at least 30 km and 5 m for adjacent individuals). 

2.2 Plant and Soil Material Collections 

The first four leaves of the stem from the top were picked up from four directions (north, south, east, and west), 
obtaining as many individuals as possible. The leaves from each sampling site were harvested and mixed to 
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study. Each sample (1 μL) was injected into the GC-MS with an autosampler (Agilent Technologies). The 
injections of the volatile oil were conducted with a splitless injector at 220 °C. The compounds were then 
separated on a nonpolar capillary HP column at an average linear flow rate of 35 cm s-1 with helium as the carrier 
gas. The oven temperature was held at 35 °C for 5 minutes and then increased to 280 °C by 10 °C/min and held 
for 10 minutes. The collected volatile compounds were then identified by comparing their mass spectra and 
retention times with the National Institute of Standards and Technology (NIST) 2017 library of mass spectra. 

2.5 Related Data of Climatic Factors 

The environmental data were divided into climate and soil data. The climate data consisted of Monthly average 
temperature (aT), maximum temperature (maxT) and minimum temperature (minT), average precipitation (P), 
sunshine duration (SD), and UV index for the collection month were collected from local meteorological stations 
for the six study sites and were pre-treated in MS Excel© and used for further analysis. 

2.6 Data Processing and Analysis 

The data for the study of seasonal and geographical variation in the composition and accumulation of SMs of the 
essential oil of L. camara (chemical profiles and environmental data) were divided into two sets of variables: 
chemical (secondary metabolites (SMs) and environmental (climate and soil data) variables. The data was 
obtained and used for further analysis after analysing the essential oils by GC-MS (chemical data).  

The R software (version 3.6.3; R Core Team, 2020) and the RStudio graphical user interface (version 1.2.5033) 
were used to perform all the analyses. The total area of peak data was normally distributed (Shapiro-Wilk test: p > 
0.05), and their variance was homogeneous (Barlet test: p > 0.05); therefore, we used an unpaired t-test to 
compare the amount SMs synthesised by L. camara between the rainy and dry seasons. For the same reason, we 
used the analysis of variance (ANOVA) followed by the Student-Neuman-Keuls (SNK) post hoc test to compare 
the amount of SM synthesised by L. camara across the different localities during a specific season using the R 
software package ‘Agricolae’ (de Mendiburu, 2020). We performed the one-way analysis of similarity (ANOSIM) 
using the Bray-Curtis dissimilarity matrix to compare the chemical profiles of the different compounds 
synthesised by L. camara between the seasons and across the different localities. Based on the similarity 
percentage (SIMPER) analysis, we identified the 10 most influential SMs contributing to L. camara EO’s 
diversity between the seasons and across the different localities. To visualise this difference, we first used the 
non-metric multidimensional scaling (NMDS) plot, overlaid the physicochemical and environmental variables to 
the plot to see whether these parameters were related to SM profile diversities.  

To better confirm the variation of L. camara EO SM composition between seasons and locations, we used two 
supervised machine learning algorithms, namely: Random Forest (RF) analysis (Breiman, 2001) and Partial 
Least Squares-Discriminant Analysis (PLS-DA) (Liland & Indahl, 2009). Helped by the R package called 
Random Forest (Liaw & Wiener, 2002), we ran the RF analysis using 10000 iterations (ntree) with 12 SM 
randomly selected at each split (mtry = √q, where q is the total number of SM (150)). Based on the function 
“importance ()”, we generated the mean decrease in accuracy (MDA) for each compound selected. The 
compound with the highest MDA value was considered the most significant for L. camara EO’s diversity 
between the seasons and regions. To visualise these differences, we generated the multidimensional scaling 
(MDS) ordination plot using the function “MDSplot ()” based on the proximity matrix from the RF analysis. 
Using the function “PLS-DA ()” embedded in the R package called mixOmics (Rohart, Gautier, Singh, & 
Kim-Anh, 2017), we performed the PLS-DA analysis. We visualised the difference using the function “plotIndiv 
()”. With this technic, we identified the most significant compounds for differentiating L. camara EO using the 
function “PLS-DA.VIP ()” found in RVAideMemoire R package (Maxime, 2020). All statistical results were 
considered significant when P < 0.05.  

3. Results 
3.1 Seasonal Variation in Essential Oil Composition of L. camara 

The GC-MS chromatograms from L. camara essential oil showed that the plant synthesised many Secondary 
Metabolites (SMs) for both rainy and dry seasons (Figure 2). The number of SMs synthesised by L. camara 
varied significantly between the seasons, except for Kiboko (p = 0.68; Figure 2C) and Njoro (p = 0.64; Figure 
1F). The number of compounds was lower in Mtwapa (Figure 2E) but higher in Embu (Figure 2A), Kandara 
(Figure 1B) and Kakamega (Figure 2D) during the rainy season. In comparison, there was a tremendous increase 
in the number of compounds observed in the plants sampled from Embu (Figure 2A) and Mtwapa (Figure 2E) 
and a reduction in Kandara (Figure 2B) and Kakamega (Figure 2D) during the dry season. Independently to the 
site, when we ran the analysis of similarity based on the Bray-Curtis distance matrix, we consistently found a 
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significant difference of L. camara EO SM composition between rainy and dry season (ANOSIM: p < 0.0001, R 
= 0.465). This difference was depicted by the Non-metric multidimensional Scaling (NMDS) plot (Figure 3A), 
with an excellent dissimilarity representation (Figure 3B; Stress: 0.199). This plot distinguished L. camara EO 
obtained during the rainy season from those obtained during the dry season. The similarity percentage (SIMPER) 
analysis identified trans-cadina-1(6),4-diene, (E-)-Caryophyllene, and 1,8-cineole as the three significant 
compounds responsible for the distinction of L. camara essential oil between the rainy and dry season (Figure 
3C). 
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3.3 Regional Variation of L. camara EO Secondary Metabolites (SMs) During Dry Season 

We also found qualitative and quantitative variations in L. camara EO across the locations during the dry season. 
The total SMs synthesised by L. camara significantly varied across the different localities (Figure 5A). L. camara 
plants sampled from Embu synthesised significantly more SMs than those sampled from Mtwapa, Njoro, Kandara, 
Kiboko, and Kakamega. According to their origin, there was a significant difference in L. camara EO SM 
composition as determined by the ANOSIM test and the NMDS plot (Figure 5B). Based on the SIMPER analysis, 
we identified (E)-Caryophyllene, δ-3-Carene, and 1,8-Cineole as the most critical compounds contributing to L. 
camara differentiation in the dry season across the different (Figure 5D). When we associated the physiochemical 
and the environmental parameters of each site to the NMDS plot (Figure 5E), we found that the synthesis of SMs 
by L. camara varied from region to region and was primarily related to sunshine, rainfall, humidity, temperature, 
soil pH, nitrogen, and phosphorous (Figure 5E).  
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3.4 Confirmation of L. camara SMs Profile Changes in the Function of Seasons and Locations Based on 
Supervised Machine Learning Algorithms 

Results from Random Forest (RF) analysis and Partial Least Squares-Discriminant Analysis (PLS-DA) 
consistently confirmed the change of L. camara EO SMs in the function of seasons and localities. When we ran the 
multidimensional scaling analysis based on the RF analysis’s proximity matrix, this technic differentiated L. 
camara oil SM based on their seasons (Figure 5Ai) and location (Figure 6Aii, 6Aiii) of collections. Based on the 
mean decrease in accuracy (MDA), this analysis identified Camphor (with a classification accuracy of 83.33%) as 
the most influential SM for differentiating L. camara oil between rainy and dry season (Figure 6Bi). Similarly, this 
analysis respectively identified 14-hydroxy-(Z)-Caryophyllene (with a classification accuracy of 65%) and 
Eugenol (with a classification accuracy of 80%) as the most significant SM for distinguishing L. camara oil across 
the different localities during rainy (Figure 6Bii) and dry (Figure 6Biii) seasons.  

Also, the PLS-DA score plots separated L. camara EO in the function of seasons (Figure 7Ai) and locations 
(Figure 7Aii, iii). As with the RF analysis, the separation of L. camara SM synthesised during the rainy and dry 
seasons identified Camphor as the most influential compound (Figure 7Bi). The nPLS-DA analysis identified 
2-Cyclopenten-1-one, 3-methyl-2-(1,3-pentadienyl)-,(E, Z)- as the most significant SMs responsible for the 
differentiation of L. camara EO across the localities during rainy (Figure 7Bii) and dry (Figure 7Biii) seasons, 
respectively. 
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Striking variation in the EO of L. camara leaf metabolic profile was observed from the samples collected from six 
different climatic zones in Kenya, dry and rainy seasons. The variability between the L. camara plant populations 
was compared using the ANOSIM test based on differences in the abundance and composition of multiple 
metabolites. Seasonal specificity is observed in this study, with variability in the number of SMs observed for both 
dry and rainy season in each region. Kakamega, Kiboko, and Kandara showed an increased metabolites number 
compared to the other regions in the rainy season. This increase in metabolic variation can be attributed to the 
plant’s interaction with the prevailing condition at that particular season. These regions received adequate rainfall 
and maximum sunshine hours and UV index compared to the other regions where sunshine was reduced during the 
rainy seasons. The results agree with other researchers that the metabolite synthesis of essential oil-producing 
plants is strongly influenced by the slightest changes and how they interact with the natural environment without 
detrimental effects leading to newly formed compounds that could be advantageous during the prevailing 
conditions. 

Ten dominant variable compounds contributed to shaping the seasonal variation of the L. camara plant 
populations. For the samples of L. camara evaluated in this work, we propose two chemotypes according to the 
season: a chemotype for the samples collected in the dry season (chemotype I) and another for the rainy season 
(chemotype II). Based on the NMDS test results and SIMPER analysis, the chemotype I is discriminated by the 
higher proportion of (E-)-caryophyllene, 1,8-cineole, spathulenol bicyclogermacrene, α-humulene, caryophyllene 
(II), and δ-3-carene in the leaf EO. The chemotype II is discriminated by the higher proportion of 
trans-cadina-1(6),4-diene, α-muurolene, and Iso-sylvestrene, as the dominant compounds. Overall, three 
significant compounds, trans-cadina-1(6),4-diene, (E-)-Caryophyllene, and 1,8-cineole, contributed significantly 
to the seasonal variability in the SM profile of the L. camara EO.  

The environmental factors are the mechanism involved in influencing the accumulation and biosynthesis of L. 
camara SMs, and it is related to seasonal induction stress factors in the plant, such as changes in temperatures, 
humidity, rainfall and soil conditions (Guo et al., 2013; Pavarini et al., 2012; Ramakrishna & Ravishankar, 2011; 
Selmar & Kleinwächter, 2013; Yang et al., 2018). For example, plants collected during the dry season may have 
encountered high temperatures influencing an increase in (E-)-caryophyllene production, while low temperatures 
in the rainy season influenced an increase in trans-cadina-1(6),4-diene. This result agrees with De Almeida et al. 
(2016), who reported an increase in (E-)-caryophyllene in the EO composition of Copaifera langsdorffii during the 
dry season as compared to the wet season. There is no official report in the literature regarding the influence of 
seasonal change on trans-cadina-1(6),4-diene accumulation. This variability can be attributed to the plants’ 
relationship with the environmental conditions during plant growth and productivity at that particular season, 
changing the biosynthetic pathway of secondary metabolites toward metabolites’ production. Therefore, different 
prevailing environmental pressures between the two seasons played a significant role in the diversity of the SMs of 
L. camara leaf EO. Our results corroborate with Nea et al. (2020), Pereira et al. (2019) and Dos Santos et al. (2019) 
reported fluctuation patterns of SMs produced by L. camara to correlate to seasonal changes. Collectively these 
results revealed that the seasonal variation predominantly influences the SM profile composition in wild plant 
populations. Therefore, this work provides new insight into understanding the response of L. camara plant 
populations SMs biosynthesis to the seasonal variation.  

Our precedent results revealed seasonal variability in the synthesis of SM in the L. camara wild population plants. 
We further aimed to determine whether this variability is regional and what environmental factors drive the 
variation. This study observed significant variability in L. camara EO’s chemical profile across the different 
regions where samples were collected during the dry and rainy season as determined by the ANOSIM test and 
NMDS plot. Three significant compounds trans-cadina-1(6),4-diene, caryophyllene (II) and lavandulyl isovalerate 
were identified that contribute significantly to the regional variability in the rainy season, while 
(E-)-Caryophyllene, δ-3-carene and 1,8-cineole contributed to the differentiation during the dry season across the 
regions. These results are consistent with previous reports (Murugesan et al., 2016; Pereira et al., 2019; Sena Filho 
et al., 2012). Recently, Nea et al. (2020), and Pereira et al. (2019) confirmed high variability in SM composition of 
the EO of L. camara from Bregbo South of Côte d’Ivoire and samples collected from 21 municipalities 
representing three regions in Brazil respectively. Geographical location is a crucial factor that affects plant 
growth’s prevailing conditions, having significant effects on secondary metabolic processes in a plant species (Liu 
et al., 2015)—Consequently, the cause of the relationship between the SM composition and contents in their 
growing locations.  

The number of synthesised compounds variability across the regions in both seasons were more or less the same in 
the region of Njoro and Kiboko with a p-value of 0.64 and 0.68 respectively but differed significantly in Mtwapa, 
Embu, Kandara, and Kakamega with a p-value of < 0.0001, < 0.01, 0.017 and 0.002 respectively. Overall, Mtwapa 



jas.ccsenet.org Journal of Agricultural Science Vol. 13, No. 11; 2021 

100 

showed high variability in the number of compounds synthesised as compared to the other regions. The number of 
compounds synthesised was very high during the dry season as compared to the rainy season. The significant 
difference in SM content is climatic factors of temperature, rainfall, UV index, and pH property. These changes in 
the environmental conditions may explain the differentiation of SMs in the Mtwapa region, located in the coastal 
areas and dominated with a more considerable climatic seasonal variability, particularly temperature, compared to 
Njoro and Kiboko that had a reasonably stable climatic condition. Temperature change is known to substantially 
affect SM synthesis since areas with more considerable climatic changes are faced with more variation and could 
lead to more significant variability in their SM profile (Allevato et al., 2019). Furthermore, Molina-Montenegro 
and Naya (Molina-Montenegro & Naya, 2012) argue that locations with slight seasonal variations and constant 
warm temperatures lead to a low environmental plasticity capacity. Subsequently, stability in the environment 
would reduce the plant’s overall pressures, therefore reducing metabolite variation.  

The significant differences in climatic conditions and soil characteristics among the six regions and other 
explanations are the determinant factors for the variability in SM profile observed in L. camara EO of the same 
species growing in Kenya’s diverse regions. It is observed that L. camara wild plants population responds 
differently to environmental variations, therefore variability in the production and accumulation of SMs. Ncube et 
al. (2012) explain that these variabilities are due to the physiological characteristics associated with genetic 
conditions, which arise probably with the prevailing climate in both seasons in the regions under study. Plant 
metabolism is influenced in many ways by those conditions. Factors such as temperature, humidity, rainfall, 
sunshine duration directly respond to these variations. These factors jointly influence the biosynthesis and 
accumulation of SMs and correlate with each other and do not act in isolation (Gobbo-Neto & Lopes, 2007).  

Among the environmental conditions, soil characteristics represent a complicated biological system that strongly 
influences the plant’s ability to produce SMs (Muscolo et al., 2019; Ramakrishna & Ravishankar, 2011). The 
nutritional elements (e.g., N, P, K) of soil are required for medicinal plants’ growth and are actively involved in 
plants’ metabolic activities (Al-Humaid, 2005; Chrysargyris, Xylia, Botsaris, & Tzortzakis, 2017; Muscolo et al., 
2019; Yadegari, 2015). Correctly, soil characteristics play a crucial role in diverse soil conditions that causes 
significant differences in biosynthesis and SM accumulation in plants of the same species. The SM profile 
variation response of L. camara to the soils with diverse characteristics was in agreement with the findings of 
Ormeño and Fernandez (2012), and Muscolo et al. (2019), showing that soil, with its intrinsic characteristics, is 
directly responsible for plant metabolite production.  

This study established a relationship between soil properties and metabolic profile to be regionally specific. 
Extrapolating these results at the regional and seasonal scale suggests that any alteration of the soil properties leads 
to changes in SMs accumulation in the L. camara plant population, affecting its quality and quantity. The plant 
material analysed in this study was collected from plants growing under diverse natural conditions. Therefore, it 
was not easy to separate the effects of individual factors from the environment’s multifactorial influence (Climatic 
and soil variables). Therefore, we conclude that different climatic factors (rainfall, temperature, UV, humidity) 
have different effects and intensities on the accumulation of SMs in the EO of L. camara. At the same time, 
different SMs are affected by different kinds of soil properties in the soil to a different extent, where the 
physicochemical properties including N, P, K, TOC, EC and pH in the soil all have a relatively significant strong 
effect on plant secondary metabolism. Thus the correlation differs significantly with SM composition from region 
to region.  

Besides, further identifying the compounds through PLS-DA and RF confirmed SMs variability as a season and 
geographical location. The results indicated that SMs composition and contents were near related to the growing 
locations of L. camara, and environmental factors influenced the production of the SMs. The SMs synthesis and 
accumulation in medicinal plants are complex processes affected by many environmental factors comprising a 
multivariate system. The variability in chemical profile was expected because the soil factors were significantly 
different due to the different growing regions and the climatic factors changed with geographical conditions. Local 
adaptation depends on both genetic, soil properties and environmental factors; Thus, the high chemical variability 
reflects the need for the plant to adapt to such different environments (Ncube et al., 2012; Pereira et al., 2019; 
Sampaio & Da Costa, 2018; Sampaio et al., 2016).  

This difference observed could lead to a more targeted analysis and understanding of biological pathways. 
Although determining the plasticity of a species is difficult without a conventional garden experiment. Our study 
used only ordination methods to associate climatic and soil variables with variation in chemical profiles of L. 
camara, and correlation does not imply a relationship. Many laboratory and greenhouse experiments are needed to 
confirm the effect of climatic and soil variables on the SM profile. Greenhouse experiments with the different 
species in the exact location could help detect whether chemical variation differences are due to environmental, 
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soil, or genetic differences. The result would be beneficial for the production of EO with unique active ingredients. 
One could choose the location of plant growth for a particular compound, or one could add/omit nutrients to 
modify the EO quality and quantity. Therefore this exploratory analysis in wild populations of L. camara is 
advantageous and essential as it has reduced the environmental and soil variables and will allow for a more guided 
experimental analysis such as greenhouse experiments. 

5. Conclusions 
This study provides information on seasonal and regional variations of the quality and quantity of SMs of L. 
camara EO from the leaves. The results showed that environmental conditions in the drier season favour the 
production of more dominant compounds than in the rainy season. The optimum time to achieve the highest 
quantity of (E-) caryophyllene is during the drier period, while the trans-cadina-1(6), 4-diene is more abundant in 
rainy seasons. We can highlight the relationship between the environment and the metabolic profile of L. camara, 
and the variation in SMs is a direct response to fluctuations in conditions in the surrounding environment. 
Therefore, the knowledge gathered from this study on the influence of seasonal and regional variation on L. 
camara EO composition can help decide the best period to harvest the plant according to the desired compound for 
exploitation in the agricultural industry. The analysis of wild populations of L. camara has provided us with 
potential environmental variables that require more follow up with greenhouse experiments to determine their 
importance in SM biosynthesis.  
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