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Abstract 
Sugarcane intercropping with soybean [Glycine max (Linn.) Merr.], mung bean [Vigna radiata (Linn.) Wilczek] 
and peanut (Arachis hypogaea Linn.) as well as a sugarcane monoculture were conducted to study the impacts of 
intercropping on soil biological characteristics and bacterial diversity. The results showed that soil cultivable 
microorganisms, the activities of soil enzymes and microbial biomass carbon, nitrogen, and phosphorus were all 
significantly improved by intercropping with soybean and mung bean. Additionally, soil bacterial diversity and 
richness in sugarcane fields were also significantly enhanced by intercropping with soybean and mung bean. In 
addition, soil bacterial community structures in sugarcane fields can be altered by intercropping with different 
legumes. Proteobacteria, a high-nutrient-tolerant bacterial assemblage, became the dominant bacteria in the 
sugarcane-soybean and sugarcane-mung bean intercropped soils. Twenty four, 28, 26 and 27 dominant soil 
bacterial genera were found after the sugarcane-soybean, sugarcane-mung bean, sugarcane-peanut and sugarcane 
monoculture treatments, respectively. Sugarcane-mung bean intercropping being the most promising system for 
regaining and improving soil fertility and soil heath and facilitate agriculture intensification of sugarcane. 

Keywords: sugarcane (Saccharum officinarum L.), legume crop, soil enzymes, bacterial diversity 

1. Introduction 
Sugarcane (Saccharum officinarum L.) is the primary source of sugar and is also utilized as a major biofuel and 
bioenergy crop worldwide (Tomes et al., 2011; Chandel et al., 2012). China is the third largest sugar producing 
country in the world after Brazil and India. In China, approximately 90% of sugarcane crops are planted in the 
southern and southwest regions, which are mainly in Guangxi, Guangdong, and Yunnan Provinces. Among these 
provinces, Guangxi Province is the top sugarcane and sugar producer and accounts for more than 65% of the 
total sugar production in China (Li, 2004). In China, sugarcane production is largely confined to hilly terrain 
under rainfed conditions that result in relatively low yields. The problem is worsened by the long-term overuse 
of chemical fertilizers and pesticides to improve cane and sugar yields (Robinson et al., 2011). For example, 
higher amounts of N fertilizer, as high as 600-800 kg N ha-1 in some regions, are applied annually to sugarcane 
crops in China, while only 60-120 kg N ha-1 are applied in Brazil (Li & Yang, 2014). Long-term chemical 
fertilizer overuse negatively influences soil microbial ecology and terrestrial and aquatic ecosystem function 
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(Robertson & Vitousek, 2009). Therefore, minimal chemical fertilizer inputs for maintaining healthy soil and 
high crop productivity are urgently needed for commercial sugarcane production in China. 

Intercropping, which involves growing two or more crop species simultaneously in the same field, is an ancient 
cropping system that is practiced all around the world (Solanki et al., 2016). Intercropping contributes to the 
ecofunctional and sustainable intensification of crop production (Raseduzzaman & Jensen, 2017) and is 
considered an efficient way to achieve agriculture sustainability (Vandermeer, 2011). At present, intercropping is 
more common in developing countries than developed countries and is practiced mostly by small and subsistence 
farmers (Sileshi et al., 2012). Intercropping enables agricultural intensification, which delivers higher yields per 
unit area and increases resource use efficiency compared with monoculture crops (Hauggaard-Nielsen et al., 
2008). In particular, the application rates of synthetic nitrogen fertilizer can be reduced by legume intercropping 
owing to its capacity for biological nitrogen fixation. Moreover, intercropping promotes biodiversity in cropping 
systems and causes them to be more resilient when faced with environmental stresses, diseases and pests (Frison 
et al., 2011; Brooker et al., 2014). However, not all intercropping systems deliver yield benefits or other positive 
outcomes. For example, some cereal-legume intercropping methods produce lower biomass and nitrate 
accumulations in soil than that of monoculture crops (Li et al., 2001; Luo et al., 2016). Recently, some studies 
have compared intercropping to monocultures by focusing mainly on weed control, management factors, 
intercrop productivity, and resource use efficiency (Weerarathne et al., 2017; Yu et al., 2015, 2016; Pelzer et al., 
2014). However, little is known about the effects of different intercrops on soil quality, particularly soil biology 
and related processes in China.  

Soil quality depends on a large number of physical, chemical, biological, biochemical and microbiological 
parameters (Chaer et al., 2009). In particular, the latter two are the most sensitive indicators and respond rapidly 
to changes (Bastida et al., 2008). Soil enzyme activity is capable of reflecting ecosystem processes (Doran & 
Zeiss, 2000). In addition to enzymatic activity, soil microbial biomass carbon (MBC), microbial biomass 
nitrogen (MBN) and microbial biomass phosphorus (MBP) are also used to monitor soil quality (Pandey et al., 
2014). Soil microorganisms play an important role in soil biogeochemical processes, such as nitrogen, 
phosphorus and other element cycles (Urbanová et al., 2015). It is now recognized that soil microbial community 
composition and diversity determine soil health and crop productivity to a great extent (Mangan et al., 2010).  

Therefore, in the present study, we investigated soil fertility and soil bacterial diversity under different 
sugarcane-legume intercropping systems, which are an important but overlooked aspect of the very promising 
crop diversification systems in China. 

2. Method 
2.1 Field Site Description and Experimental Designs 

Field experiments were carried out in the 2016-17 and 2017-18 crop seasons at the experimental farm of the 
Guangxi South Sub-tropical Agricultural Science Research Institute, Longzhou (106°47′34″E and 22°19′42″N). 
The experimental site locates in southern subtropical monsoon climate zone, which is rich in sunshine and 
abundant rainfall. And it is slightly cold in winter and spring, hot and rainy in summer, warm and cool in autumn, 
distinct dry and wet seasons. The average annual temperature is around 22 °C, and the annual precipitation is 
around 1273.6 mm. Experiments were conducted using a randomized block design with three replications to 
study the performances of a sugarcane monoculture as control and sugarcane intercropping treatments with 
soybean [Glycine max (Linn.) Merr.], mung bean [(Vigna radiata (Linn.) Wilczek], or peanut (Arachis hypogaea 
Linn.) with a 2:2 design (two rows of soybean, mung bean or peanut planted between each sugarcane row). Total 
of 4 treatments, each treatment set up 3 replications, a total of 12 plots, each plot 5 rows, row length 7 m, 
sugarcane cultivation row spacing 1.8 m, plot area 63 m2. The experimental land was plowed and harrowed using 
a tractor to open rows and then planted. Soya beans (variety name: Gui Chun 10), mung beans (variety name: 
Medium Green 8) and peanuts (variety name: Gui Hua 1026) were planted between the sugarcane (variety name: 
ROC 22) rows. All intercropping treatments were all managed in the same conventional method.  

2.2 Soil Sampling and Soil Biological Properties Analysis 

Soil samples were collected in July 2018 from 12 plots that represented all the treatments in the intercropping 
experiments. To collect soil samples, the auger was sprayed with 75% ethanol for disinfection firstly, and then 
soil samples were collected by sterilized auger with the same depth of 40 cm in each treatment plot. From each 
plot, soil samples were collected from 12 random sites and mixed well. These soil samples were collected in 
sterile plastic bags and placed on ice in an ice box. The samples were immediately transferred to the laboratory, 
where they were sieved through a 2-mm mesh stainless steel sieve, and then stored in a refrigerator at 4 °C for 
immediate analysis or were stored at -80 °C for later use. Meanwhile, portions of the soil samples were air dried 
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for soil chemical analyses. The sample soils had an average pH of 6.2, while the organic matter, total nitrogen, 
available phosphorus and potassium contents were 23.3 g kg-1, 1.77 g kg-1, 12.4 mg kg-1 and 66.1 mg kg-1, 
respectively. 

2.2.1 Soil Physical and Chemical Properties Analysis 

Soil pH was measured using a pH meter (soil water ratio 1:2.5) (Reijonen et al., 2016). Soil organic matter was 
determined by potassium dichromate-sulfate colorimetric method (Walkley, 1935). Total nitrogen was 
determined by the Kjeldahl method (Tsiknia et al., 2014). Available phosphorus, and available potassium were 
subjected to the double acid method and flame photometry respectively (Bao, 2013). 

2.2.2 Soil Microbial Numbers 

Microbial numbers were determined using the agar plate dilution method modified with cycloheximide (100 μg 
L-1) as described by Martin (1950). Rose Bengal-streptomycin agar medium and starch casein medium were used 
to determine the fungi and actinomycetes numbers in fresh soil samples as described by Miyashita (1997). The 
pH levels of the media were adjusted to 6.8 with HCl or NaOH. Microbial counts were determined for 5 
replicates. 

2.2.3 Soil Microbial Biomass 

The soil microbial biomass N (MBN) and soil microbial biomass C (MBC) contents were determined using the 
chloroform fumigation-extraction method as described by Brookes et al. (1985) and Vance et al. (1987). The 
contents of soil microbial biomass P (MBP) contents were determined by the phosphorus molybdenum blue 
colorimetric method (Powlson et al., 1987). 

2.2.4 Soil Enzyme Activities 

β-Glucosidase (EC.3.2.1.21) assays were based on ρ-nitrophenol (pNP) release after cleavage of a synthetic 
substrate (Hayano, 1973). In brief, the color of the released ρ-nitrophenol was measured at 400 nm using a 
spectrophotometer (UV-1700, Shimadzu, Japan). A standard curve was plotted using 0-80 μg mL-1 
concentrations of ρ-nitrophenol. Enzyme activities are expressed as nmol pNP released per g dry soil per minute 
(nmol pNP g-1 min-1).  

Acid phosphatase activity in soils was estimated by measuring the amount of ρNP released after incubating the 
samples with ρ-nitrophenyl-phosphate (Alef et al., 1995). In a reaction tube, 0.25 mL of toluene, 4.0 mL of 
modified universal buffer (5x MUB, pH 6.0, which was made by dissolving 12.1 g of Tris, 11.6 g of maleic acid, 
14.0 g of citric acid and 6.3 g of boric acid in 500 mL of 1 M NaOH to make a volume of 1 L), and 1.0 mL 
ρ-nitrophenyl-phosphate (15 mmol L-1) were added to 1.0 g of soil sample and incubated at 37 °C for 1 h. The 
reaction was terminated by adding 1.0 mL of 0.5 mol CaCl2 and 4.0 mL of 0.5 mol NaOH to the mixture prior to 
filtration. The absorbance of the released ρNP was measured at 400 nm using a spectrophotometer (UV-1700, 
Shimadzu, Japan), and the phosphatase activity is expressed in mg ρ-NP g-1 h-1. 

Aminopeptidase activity was measured using the method described by Pansombat et al. (1997) with 0.002 M 
N-benzoyl-Lxycarbonylglycyl L-phenylalanine (ZGP). The absorbance at a wavelength of 570 nm was measured 
using a spectrophotometer (UV-1700, Shimadzu, Japan). All analyses were conducted with 5 replicates. 

2.3 Analysis of Soil Microbial Diversity 

Microbial community genomic DNA was extracted from samples using the E.Z.N.A.® soil DNA Kit (Omega 
Bio-tek, Norcross, GA, U.S.) according to the manufacturer’s instructions. The DNA extract was checked on a 1% 
agarose gel, and the DNA concentrations and purity were determined with a NanoDrop 2000 UV-vis 
spectrophotometer (Thermo Scientific, Wilmington, USA). PCR amplification and sequencing of the total DNA 
extracted from the rhizosphere soil samples were performed by Shanghai Majorbio Bio-pharm Technology Co., 
Ltd. (Shanghai, China), while PCR amplification was performed using an ABI GeneAmp 9700 instrument (ABI, 
USA), and the PCR products were recovered using 2% agar-gel electrophoresis. The products were purified by 
using an AxyPrep DNA Gel Extraction Kit (Axygen, USA) and quantified using a Quantus Fluorometer 
(Promega, USA). The purified amplicons were pooled in equimolar quantities and were paired-end sequenced 
(2×300) on the Illumina MiSeq platform (Illumina, San Diego, USA) according to the standard protocols of the 
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). Raw reads were deposited in the NCBI Sequence 
Read Archive (SRA) database (Accession Number: SRP284471). 

2.4 Statistical Analyses 

The experimental data were analyzed using Excel 2019 and Statistical Product and Service Solutions (SPSS) 
Statistics 21, and the results are shown as means with their standard deviations (mean±SD). Online data analysis 



jas.ccsenet.org Journal of Agricultural Science Vol. 13, No. 8; 2021 

57 

was conducted using the free online platform of the Majorbio Cloud Platform (http://www.majorbio.com) of the 
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). 

3. Results 
3.1 Soil Enzyme Activities 

The activities of soil β-glucosidase in the treatments using sugarcane-soybean and sugarcane-mung bean 
intercropping were significantly higher than those in the monoculture and sugarcane/peanut intercropping 
treatment (Table 1). No significant difference in soil β-glucosidase activity was observed between 
sugarcane-peanut intercropping and the monoculture. The highest β-glucosidase activity was found in the 
sugarcane-mung bean system, which was significantly greater than that in sugarcane-soybean treatment (Table 1). 
Acid phosphatase activity showed nearly the same trend as that of β-glucosidase except that there were no 
significant differences between the sugarcane-soybean and sugarcane-mung bean intercropping treatments. 
Aminopeptidase activity was significantly different among all treatments, with the sugarcane-peanut system 
showing slightly lower activity than that of the monoculture (Table 1). 

 

Table 1. Soil enzyme activities (nmol g-1 min-1 at 30 °C) in the sugarcane monoculture and different 
sugarcane-legume intercropping systems 

Treatments β-Glucosidase Aminopeptidase Phosphatase 

Sugarcane-soybean 1.21±0.21b 10.15±0.54 b 1.58±0.09 a 

Sugarcane-mung bean 1.39±0.41 a 11.32±0.27 a 1.62±0.14 a 

Sugarcane-peanut 0.97±0.08 c 8.77±0.21 d 1.15±0.09 b 

Monoculture  1.01±0.22 c 9.87±0.41 c 1.14±0.09 b 

Note. All data are presented as means±SD (standard deviation). Different letters in the same column indicate 
significant differences among treatments at P < 0.05. 

 

3.2 Soil Microbial Biomass 

As shown in Table 2, the soil microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) 
contents were highest in the sugarcane-mung bean intercropping treatments. All of these three parameters were 
significantly higher in the sugarcane-soybean and sugarcane-mung bean intercropping systems than those of the 
sugarcane-peanut and monoculture treatments. The soil microbial biomass C content in the sugarcane-peanut 
treatment was significantly lower than that in the monoculture, but the opposite trend was observed for MBP 
(Table 2). The soil microbial biomass N contents in the sugarcane-peanut and monoculture treatments remained 
similar with those of MBN.  

 

Table 2. Soil microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) (mg kg-1) in the 
sugarcane monoculture and different sugarcane-legume intercropping systems 

Treatments MBC MBN MBP 

Sugarcane-soybean 161.5±7.84 b 14.8±0.41 b 227.8±5.46 b 

Sugarcane-mung bean 184.2±6.55 a 18.7±0.89 a 255.6±9.63 a 

Sugarcane-peanut 111.9±5.63 d 13.4±0.56 c 199.3±4.53 c 

Monoculture  137.7±9.05 c 13.5± 0.36 c 180.4 ±3.47 d 

Note. All data are presented as means±SD (standard deviation). Different letters in the same column indicate 
significant differences among treatments at P < 0.05.  

 

3.3 Soil Cultivable Microorganisms 

The relative numbers of cultivable bacteria, fungi and actinomycetes in the soils of the sugarcane-soybean, 
sugarcane-mung bean and sugarcane-peanut treatments and the sugarcane monoculture followed a somewhat 
similar pattern, as the MBC, MBN and MBP contents (Table 3). In particular, the sugarcane-soybean and 
sugarcane-mung-bean systems were superior to the other two treatments. Notably, the abundances of cultivable 
fungi and actinomycetes in the sugarcane-peanut and sugarcane monoculture systems did not show any 
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significant variations, but the cultivable bacterial population was lower in the sugarcane-peanut intercropped soil 
than those in the monoculture (Table 3). 

 

Table 3. Soil enzyme activities (nmol g-1 min-1 at 30 °C) in the sugarcane monoculture and different 
sugarcane-legume intercropping systems 

Treatment Bacteria (106 CFU·g-1) Fungi (104 CFU·g-1) Actinomycetes (106 CFU·g-1) 

Sugarcane-soybean 24.31±0.16 b 5.84±0.58 b 24.87±0.66 b 

Sugarcane-mung bean 29.92±0.22 a 6.14±0.67 a 27.75±1.22 a 

Sugarcane-peanut 15.96±0.47 d 4.24±0.64 c 15.89±0.74 c 

Monoculture (CK) 18.54±0.57 c 4.49±0.23 c 15.54±0.85 c 

Note. All data are presented as means±SD (standard deviation). Different letters in the same column indicate 
significant differences among treatments at P < 0.05. 

 

3.4 Soil Bacterial Diversity and Richness 

The Shannon index, which describes bacterial diversity, was highest for the soil from sugarcane-mung bean 
intercropping compared to the other three treatments (Table 4). For the other parameters described so far, the 
bacterial diversities of the soils from the sugarcane-soybean and sugarcane-mung bean intercrops were 
significantly higher than those of the sugarcane-peanut and sugarcane monoculture systems. In addition, the 
bacterial richness indices, such as Ace and Chao1, showed that sugarcane-mung bean and sugarcane-soybean did 
not differ in bacterial richness but were richer than those of other treatments. Our data indicate increased 
bacterial abundance in the sugarcane-peanut treatment compared to the sugarcane monoculture (Table 4). 

 

Table 4. Richness and diversity at a similarity level of 97% for soil bacteria in the sugarcane monoculture and 
different sugarcane-legume intercropping systems 

Treatments Shannon index Ace index Chao1 index Coverage 

Sugarcane-soybean 6.15±0.07ab 2395.2±20.2a 2411.4±36.0a 0.98 

Sugarcane-mung bean 6.34±0.02a 2429.6±114.4a 2453.2±95.7a 0.98 

Sugarcane-peanut 5.92±0.23b 1860.2±83.0b 1892.3±52.7b 0.99 

Monoculture 5.95±0.04b 1639.6±22.5c 1683.9±17.3c 0.99 

Note. All data are presented as means±SD (standard deviation). Different letters in the same column indicate 
significant differences among treatments at P < 0.05. 

 

3.5 Compositions of Soil Bacterial Communities in the Sugarcane Monoculture and Sugarcane-Legume 
Intercropping Systems  

At the phylum level, the dominant soil bacteria (i.e., relative abundances greater than 1%) in fields of sugarcane 
intercropping or monoculture systems can be divided into ten (sugarcane-soybean and sugarcane-mung bean 
intercrops), nine (sugarcane monoculture) and eight (sugarcane-peanut intercrop) phyla (Figure 1). In the 
sugarcane monoculture, the proportions of the dominant bacterial groups (ordered from large to small) were 
Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Bacteroidetes, 
Gemmatimonadetes and the others group. Their relative proportions were 25.05%, 22.20%, 21.53%, 11.49%, 
11.45%, 2.68%, 1.28%, 1.06%, and 1.95%, respectively. In contrast, the relative abundances (shown in 
parentheses) of the dominant bacteria in the sugarcane-soybean treatment (Figure 1A) were Proteobacteria 
(25.99%), Actinobacteria (23.30%), Chloroflexi (17.74%), Firmicutes (14.72%), Acidobacteria (9.59%), 
Planctomycetes (2.04%), Gemmatimonadetes (1.85%), Bacteroidetes (1.56%), Nitrospirae (1.05%) and others 
(1.27%). In the sugarcane-mung bean treatment (Figure 1B), the compositions and abundances (shown in 
parentheses) of the dominant bacteria were Actinobacteria (24.89%), Proteobacteria (23.20%), Chloroflexi 
(20.81%), Acidobacteria (11.59%), Firmicutes (9.00%), Planctomycetes (2.76%), Bacteroidetes (1.63%), 
Saccharibacteria (1.59%), Gemmatimonadetes (1.58%) and others (2.46%). In the sugarcane-peanut treatment, 
Actinobacteria (23.53%), Proteobacteria (21.12%), Chloroflexi (22.49%), Firmicutes (14.21%), Acidobacteria 
(10.67%), Planctomycetes (3.11%), and Saccharibacteria (1.40%) dominated, and their relative proportions are 
shown in parentheses (Figure 1C). 
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Table 5. Compositions of dominant soil bacterial communities at the genus level and their relative abundances 
(%) in soils from the sugarcane monoculture and sugarcane-legume intercrops 

Genus A B C CK 

norank_o__JG30-KF-AS9 6.40 6.26 8.71 7.26 

Bacillus 9.96 4.87 7.31 5.97 

Acidothermus 4.48 4.47 7.94 6.55 

norank_c__Acidobacteria 3.21 3.44 1.58 3.25 

Bryobacter 2.05 2.45 2.56 2.41 

norank_f__DA111 1.66 1.57 3.07 3.02 

Sphingomonas 2.58 2.54 1.61 1.28 

Bradyrhizobium 1.74 2.25 1.95 1.96 

norank_f__Planctomycetaceae 1.44 1.97 2.30 2.13 

norank_o__Gaiellales 2.05 2.02 1.30 1.81 

norank_c__TK10 1.71 2.05 1.53 1.72 

norank_f__Acidobacteriaceae__Subgroup_1_ 1.13 1.59 2.26 1.95 

norank_f__ODP1230B8.23 - 1.06 2.68 2.06 

unclassified_f__Micrococcaceae 1.84 2.47 - 1.40 

Acidibacter 1.29 1.02 1.82 1.74 

Mycobacterium 1.19 1.30 1.82 1.15 

unclassified_f__Acidobacteriaceae__Subgroup_1_ - 1.16 1.95 1.42 

norank_f__YNPFFP1 - - 1.84 1.65 

norank_p__Saccharibacteria - 1.57 1.41 - 

Streptomyces 1.26 1.37 - - 

Mizugakiibacter - - 1.87 1.47 

unclassified_o__Ktedonobacterales - 1.06 1.74 - 

Micromonospora 1.51 1.35 - - 

norank_o__B12-WMSP1 - - 1.64 1.39 

Candidatus_Solibacter - 1.21 - 1.06 

norank_f__FCPS473 - - 1.32 1.07 

Burkholderia-Paraburkholderia - 1.17 - 1.17 

norank_o__Acidimicrobiales - - - 1.21 

norank_o__JG30-KF-CM45 1.01 1.11 - - 

norank_c__JG37-AG-4 - - 1.09 1.47 

unclassified_f__Intrasporangiaceae - 1.16 - - 

norank_f__1921-2 - - 1.02 1.15 

norank_o__SC-I-84 1.00 1.08 - - 

Paenibacillus - - 1.26 - 

Roseiflexus 1.30 1.17 - - 

norank_f__Gemmatimonadaceae 1.32 - - - 

norank_f__Anaerolineaceae 1.07 - - - 

Nitrospira 1.19 - - - 

others 38.13 37.8 29.29 32.26 

Note. A: sugarcane intercropped with soybean, B: sugarcane intercropped with mung bean, C: sugarcane 
intercropped with peanut, and CK: sugarcane monoculture. 

 

The total numbers of bacteria in the sugarcane-soybean, sugarcane-mung bean, sugarcane-peanut and 
monoculture soil samples were 505, 492, 403 and 464, respectively (Figure 3-1: A, B, C, and CK). Additionally, 
the numbers of unique bacteria in these treatments (in the same order) were 28, 22, 0 and 2, respectively (Figure 
3-1A, B, C, CK). The total numbers of bacteria at the operational taxonomic units (OTUs) level in the 
sugarcane-soybean sugarcane-mung bean, sugarcane-peanut (C) and sugarcane monoculture treatments were 
2,609, 2,553, 1,910 and 2,358, respectively (Figure 3-2: A, B, C, CK). The unique bacteria numbers in these 
respective treatments were 214, 118, 23 and 49 (Figure 3-2: A, B, C, CK). These results indicate that the soil 
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microbial biomass in sugarcane fields can be improved considerably by intercropping with soybean, mung bean 
or, with a much reduced effect, peanut.  

Soil enzymes are produced by microorganisms, other soil organisms and plant roots, and they have key 
biochemical functions, such as decomposing organic matter in the soil system (Ellert et al., 1997), and thereby 
release nutrients that are readily available for crop uptake. Soil enzymes also play an important role in 
facilitating microbial processes in the soil that stabilize soil structure, balance soil microbial ecology and drive 
nutrient cycling (Dick et al., 1994). In our study, the activities of soil β-glucosidase, aminopeptidase and acid 
phosphatase in sugarcane-soybean and sugarcane-mung bean intercropping systems were significantly higher 
than in sugarcane monocultures. This finding parallels the soil microbial biomass levels observed in our study, 
which indicate a significant contribution to nutrient cycling that is facilitated by increased levels of soil 
microflora in legume-intercropped sugarcane crops. Intercropping with soybean or mung bean thus significantly 
accelerates soil carbon, nitrogen and phosphorus cycles in sugarcane fields and promotes soil fertility and 
healthy soil ecology, which in turn, result in better crop performance 

Soil microbial populations and their compositions are closely related to soil quality, which make them an ideal 
indicator of soil health (Brookes, 1995; Zhang et al., 2014). In our study, we found that the soil microbial 
population in sugarcane monocultures can be significantly improved by intercropping with soybean and mung 
bean but not as effectively with peanut. High-throughput sequencing of microbial populations revealed that the 
dominant bacteria at the phylum level represented eight phyla in sugarcane monocultures, e.g., Actinobacteria, 
Proteobacteria, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Bacteroidetes, and Gemmatimonadetes 
groups. In addition to these eight bacterial phyla in sugarcane monoculture fields, sugarcane-soybean soils were 
additionally enriched with Nitrospirae, while Saccharibacteria formed another dominant phylum in 
sugarcane-mung bean intercropped soils. Additionally, it is noteworthy that Saccharibacteria was also enriched in 
sugarcane-peanut intercropped fields. In addition to the new added dominant phyla, the orders of the dominant 
bacteria, based on their abundance levels, were also changed in intercropped soils. For instance, Proteobacteria 
was the third dominant phylum in sugarcane-peanut treatments but was first and second most abundant in 
sugarcane-soybean and sugarcane-mung bean systems, respectively. Generally, Proteobacteria are considered to 
be copiotrophic microorganisms, which thrive under conditions of high nutrient availability (Chen et al., 2016). 
These results suggest that legume intercropping promotes nutrient-tolerant soil bacterial community structures in 
sugarcane fields and thus positively impacts soil fertility. As the microbial community structures in rhizospheres 
can be changed by one or synergistically by both plant species (Yang et al., 2016; Song et al., 2007a, 2007b), we 
found significant variations in bacterial community compositions and abundances in intercropped soils compared 
to monoculture treatments. Collectively, our data suggest that intercropping systems, such as sugarcane-soybean 
and sugarcane-mung bean, are beneficial for improving soil biology and ecology, soil structure and soil fertility 
and lead to superior sustainable sugarcane agriculture. It is very likely that sugarcane-legume intercropping will 
also help meet the increasing demand for agricultural intensification and diversification without compromising 
the environmental obligations and economic outcomes of sugarcane agriculture. 

5. Conclusion 
In this study, a field experiment was carried out to elucidate the effects of intercropping sugarcane with different 
legumes on soil biological properties, soil bacterial diversities and community structures. The conclusions are as 
follows: The biological indicators of soil fertility in sugarcane fields, such as the activities of soil cultivable 
microorganisms (e.g., bacteria, fungi and actinomycetes), soil enzymes (e.g., β-Glucosidase, acid phosphatase, 
and aminopeptidase) and microbial biomass carbon, nitrogen, phosphorus, were all significantly improved by 
intercropping sugarcane with soybean and mung bean. Soil bacterial diversity and richness in sugarcane fields 
were also significantly enhanced by sugarcane intercropping with soybean and mung bean. By intercropping, 
new bacterial phyla, such as Nitrospirae or Saccharibacteria, became the dominant groups in intercropped soils. 
Proteobacteria, which thrives under conditions of high nutrient availability, became the most and second-most 
dominant bacterial group in sugarcane-soybean and sugarcane-mung bean systems. Sugarcane-mung bean 
intercropping showed the greatest effects for improving soil fertility and soil health among the cropping systems 
studied in this work. 
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