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Abstract 
Fatty acids in avocado fruit (Persea americana Mill.) are vital composition affecting flavour and nutritive value. 
Hence, horticulturalists are interested in illustrating the functions of transcription factors on fatty acid 
accumulation in avocado fruit. In the present study, the APETALA2/ethylene-responsive transcription factor 
gene, PaRAP2.1, was cloned from avocado mesocarp, and the subcellular localization demonstrated that 
PaRAP2.1 was located in the cytoplasm and nucleus. The PaRAP2.1 was introduced into Arabidopsis thaliana 
by Agrobacterium-mediated transformation. Furthermore, PaRAP2.1 were functionally verified its effect on fatty 
acid biosynthesis. Histological analyses of lipid droplets displayed that the striking difference in the lipid 
droplets in the mature seeds between PaRAP2.1-overexpressing transgenic and wild-type Arabidopsis thaliana 
lines were revealed based on confocal microscopy images. Subsequently, fatty acid analyses of 
PaRAP2.1-overexpressing Arabidopsis thaliana lines displayed the significantly higher contents of fatty acids 
than those in the wild-type plants. Meanwhile, expression amount of ten genes involving in fatty acid 
biosynthesis dramatically up-regulated in the mature seeds of PaRAP2.1-overexpressing lines than those of 
wild-type plants. These results provide a theoretical basis for future research in regard to the function of 
PaRAP2.1 on fatty acid biosynthesis. 
Keywords: avocado, PaRAP2.1, fatty acids 

1. Introduction 
Fatty acids are important components in plant (Ge et al., 2017, 2018). The fatty acid biosynthesis has been 
studied extensively, and these have expounded transcription factors that regulate fatty aicd biosynthesis in plants 
(Ge et al., 2021a, 2021b). Members of many transcription factor families involving APETALA2/ethylene 
responsive factor (AP2/ERF) superfamily have been found to be involved in regulation in fatty acid biosynthesis 
in plants (Yeap et al., 2017). The AP2/ERF transcription factors are a multifarious superfamily expressed in 
plants, and AP2/ERF members have the conserved DNA binding domain, namely the AP2 domain, that binds to 
the gene’s promoter region to regulate expression (Zhang et al., 2020). They are classified into three separate 
groups: ERF, RAV, and AP2 families according to the repeat number in AP2 domain (Zhang & Li, 2018). 
Currently, with studies in dicotyledonous plants such as Ricinus communis (Xu et al., 2013), Ziziphus jujuba 
(Zhang & Li, 2018), Arabidopsis thaliana (Xie et al., 2019), Dimocarpus longan (Zhang et al., 2020), 
monocotyledonous plants such as Phyllostachys edulis (Wu et al., 2015), and gymnosperm such as Taxus 
chinensis (Zhang et al., 2019), we present a more in-depth knowledge of the functions and classification of 
AP2/ERF members.  

In our previous study, the 137 PaAP2/ERF genes were identified in avocado, and then the expression patterns of 
them in five developmental stages of avocado mesocarp were presented according to transcriptome data (Ge et al., 
2021a). Subsequently, two PaAP2/ERF genes (PaWRI2 and PaWRI1) belonging to AP2 subfamily and eight 
PaAP2/ERF genes (PaRAP2.1, PaERF023, PaERF102-4, PaRAP2.2-2, PaERF109-5, PaERF082-1, 
PaRAP2.2-3, and PaRAP2.4-2) belonging to ERF subfamily were highly transcribed during five developmental 
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stages of avocado mesocarp, which might regulate the accumulation of fatty acids in the avocado mesocarp (Ge et 
al., 2021a). Furthermore, the PaWRI1, a AP2 subfamily member, was selected to carry out the transgenic 
functional analysis, and the result implied that PaWRI1 might contribute to fatty acid accumulation (Ge et al., 
2021a). Similarly, most of the genes governing fatty acid synthesis are found to be regulated by WRI1 in many 
plants (Kong & Ma, 2019). 

However, neither one of PaAP2/ERF genes belonging to ERF subfamily has been found to modulate the vital 
genes participating in the fatty acid biosynthesis until now. In our previous study, the eight PaAP2/ERF genes 
belonging to ERF subfamily were considered to take part in fatty acid biosynthesis in avocado mesocarp, and the 
PaRAP2.1 was more abundantly transcribed than other sever genes (Ge et al., 2021a). Therefore, in this study, 
we first chose PaRAP2.1, and performed the cloning and subcellular localization of PaRAP2.1. Second, to 
further exploit potential function of PaRAP2.1 on fatty acid accumulation, PaRAP2.1-overexpressing  
transgenic A. thaliana were developed, after which gene expression, lipid droplet observation, and targeted fatty 
acids detection of the transgenic A. thaliana and wild-type (WT) lines were carried out to analyse the contents of 
fatty acids. The data enriches our understanding in regard to the functions of PaRAP2.1 on fatty acid biosynthesis 
in the avocado mesocarp. 

2. Method 
2.1 Plant Materials and Growth Conditions 

Avocado fruits (cultivar ‘Hass’) were collected from six 10-year-old trees in September 2018 at the Chinese 
Academy of Tropical Agricultural Sciences. Arabidopsis thaliana wild-type Col-0 seeds were disinfected 
surfaces with 70% ethanol for 30 s and 15% sodium hypochlorite for 15 min, and then rinsed with distilled water 
three times for 20 s. Then, the seeds were removed moisture from the surface, and placed on Murashige and 
Skoog medium. 
2.2 RNA Extraction and cDNA Synthesis 

The total RNA was extracted from avocado mesocarps and A. thaliana seeds. The mRNA was extracted from 
total RNA using poly-T oligo-attached magnetic beads. The first-strand cDNA was synthesized based on the 
sequence of the extracted RNA. The concentration of cDNA was diluted to 12.5 ng/µL.  
2.3 Cloning of PaRAP2.1 

The coding sequence of PaRAP2.1 is 1135 bp, and the amplification primer sequences of PaRAP2.1 were: 

5′: TCTGATCAAGAGACAGGATCCATGGAGGGCACCGCCGCTCC 

3′: CATCGGTGCACTAGTGTCGACTAAATGCCCCATTTGCATCT 

PCR amplification system: synthetase 1 μL, 2×PCR buffer 20 μL, dNTP Mixture 8 μL, 5′ primer 0.3 μL, 3′ 
primer 0.3 μL, cDNA 500 ng, plus ddH2O up to 50 μL. PCR amplification process: Initialized at 95 °C for 2 min 
and then 34 repeated cycles at 98 °C for 10 s, 60 °C for 30 s, and 68 °C for 2 min, with a final extension at 68 °C 
for 7 min. PCR products were purified using an Axygen company Recovery Kit.  

2.4 Construction of PaRAP2.1 Transient Expression Vector and Subcellular Localization 

The vector plasmids sequenced correctly were transformed into Agrobacterium, spread on the plates including 
25 mg/L kanamycin and 25 mg/L rifamycin. The monoclonal shaking bacteria were selected to grow overnight, 
the bacterial solutions were collected, and then resuspended in infiltration medium. Agrobacterium solutions 
containing vectors were blended in proportion. The liquid mixtures were transfused into leaves of tobacco for 28 
days. After 3 days, the leaves of tobacco were scanned through confocal scanning microscope. 

2.5 Vector Construction and Plant Transformations 

To generate the PaRAP2.1-overexpressing (OE) construct, the full-length PaRAP2.1 CDSs was amplified and 
transferred into the pCAMBIA1300 vector including the 35S promoter. We introduced the recombinant plasmids 
into Agrobacterium tumefaciens (GV3101). The floral dip method was used for genetic transformation of 
wild-type A. thaliana. Hygromycin-resistant plants were screened from transformed seeds, and then the T1 
generation were obtained. T1 seeds were sown, and finally T3 transgenic A. thaliana plants were obtained. 

2.6 Quantitative Real Time PCR of Gene Expression 

The eight genes participating in fatty acid biosynthesis expressed in the seeds of the WT and PaRAP2.1-OE A. 
thaliana lines were chosen for qRT-PCR, and AtActin7 was used as an endogenous control for normalizing data 
(Table 1). The qRT-PCR amplification process was described by Ge et al. (2019). Relative gene expression 
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levels were calculated with the 2−∆∆Ct method (Livak & Schmittgen, 2001). For each sample, the qRT-PCR 
analysis was completed with three biological replicates and two technical replicates. 

 

Table 1. Primer sequence 

Primer Sequence information 5′-3′ 
AtPDH (E1α)F ACTTCGCCAGCTTGTGATTC 

AtPDH (E1α)R AAGATCGCTCCCTCTGACAG 

AtACC (Ctα)F TTCTTTACCACTGGACACCC 

AtACC (Ctα)R CTGCGACCTTAAAGGAACGC 

AtACP4F GAAGGTGTAGGGCGAAGACA 

AtACP4R GTGTAGACAGGCAGTGGACA 

AtSADF GGTATGTCGTCGCTTGTGAA 

AtSADR ACACGCTACTCACCTACACA 

AtFATAF ATGGCAGTTAGATTGGTGGG 

AtFATAR AGAGCCGAGTCGTTATGTCC 

AtLACS9F AGAGGGTTGAGGCGAAGAAC 

AtLACS9R GTTGAAGCGAGCAGTGGAAC 

AtGPAT1F ATCACTCTCTTGAGCTGGCG 

AtGPAT1R ATACTCCTCTGTGACGTGGC 

AtFAD2F TTGCTGGAAAGTGCTGACAA 

AtFAD2R CTATGAGTTGGTCTCGCGAG 

AtActin7F TGCCCAGAAGTTCTATTCCAGC 

AtActin7R CATAGTTGAACCACCACTGAGGAC 

 

2.7 Analysis of Fatty Acid Compositions by Gas Chromatography-Mass Spectrometry 

The fatty acid compositions of the A. thaliana seeds from the WT and PaRAP2.1-OE plants were determined by 
gas chromatography-mass spectrometry (GC-MS) as described by Ge et al. (2019). The oils extracted from the 
seeds of the WT and PaRAP2.1-OE (20 L) were saponified at 80 °C (30 min). After cooling, the solutions were 
mingled with 3 mL BF3-MeOH (14%) and incubated at 75 °C (30 min) to generate fatty acid methyl esters 
(FAMEs). The analyses were performed through an Agilent 7890B-7000B GC-MS with a DB-5MS column.The 
FAMEs were identified by comparing the retention times of the peaks with those of commercial standards and 
comparing the respective ion chromatograms with those in the NIST 2011 library. Methyl nonadecanoate was 
added as an internal standard and the FAMEs were quantified based on the calibration curves for the standards 
(R2 ≥ 0.995). The FAME contents (mg/100 g fresh weight) are herein presented as the mean ± standard deviation 
of three biological replicates, each with two technical replicates. 

2.8 Histological Analyses 

To visualize the lipid droplets in the mature seeds from the WT and PaRAP2.1-OE A. thaliana plants, the 
method of sample handling and lipid droplet observation was described by Ge et al. (2019). 

3. Results and Discussion 
3.1 Cloning and Subcellular Localization Analysis of PaRAP2.1 

Using the melon cDNA as a template, the fragment of PaRAP2.1 was amplified and analyzed. Band 1 was about 
1131 bp according to the DNA marker (DL2000) (Figure 1), which was consistent with the anticipative result of 
the present study. Through laser scanning microscopy, it was observed that PaRAP2.1 was located in the nucleus 
and cytoplasm of tobacco leaves. However, as shown in Figure 2, the green fluorescent signal of PaRAP2.1-GFP 
was mainly concentrated on the plasma membrane. These results indicated that the PaRAP2.1 might be a 
transcription factor that played a role in the nucleus and cytoplasm. However, subcellular localization shows that 
BnWRI1, the same AP2/ERF transcription factor, is only distributed in the nucleus (Wu et al., 2014; Li et al., 
2015). 
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4. Conclusion 
The functional analyses of transgenic A. thaliana lines overexpressing PaRAP2.1 illustrated the effects of the 
encoded transcription factors on fatty acid biosynthesis. The data suggested that PaRAP2.1 might be conducive to 
fatty acid biosynthesis. The results described herein may help to demonstrate the involvement of PaRAP2.1 in 
the fatty acid biosynthetic pathways in plants. The produced data offer worthy clues in regard to the biological 
functions of AP2/ERF transcription factors in plants. 
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