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Abstract 

This study was performed to reveal the morpho-agronomic characters under drought and genetic diversity using 
SRAP (Sequence-related amplified polymorphism) marker on local landraces of cowpea (Vigna unguiculata (L). 
Walp) collected from East Nusa Tenggara Province, Indonesia. Data on drought response indexes according to 
the dry matter production of cowpea plants classified Carolina and Pinu Pahar as drought-sensitive and 
drought-tolerant cowpea genotypes, respectively. The assessment of the genetic diversity of cowpea genotypes 
was performed by using 25 SRAP combination primers. A total of 250 bands were produced by which 245 bands 
(98%) were polymorphic. The value of PIC (Polymorphic Information Content) of SRAP primers in this study 
varied from the highest value (0.97) to the lowest value (0.71) generated by primer pairs Me4-Em1 and 
Me3-Em4, respectively, with an average of PIC 0.87. An unweighted pair group method based on arithmetic 
averages (UPGMA) in this study was performed according to Nei and Li’s similarity index. The analysis of 
UPGMA and PCoA successfully separated Carolina and Pinu Pahar genotypes into different clusters. The result 
of the Mantel test showed that there was no significant correlation between the independent morpho-agronomic 
analysis and SRAP molecular matrix data.  
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1. Introduction 

Cowpea (Vigna unguiculata (L.) Walp) is an annual herbaceous plant belonging to the Fabaceae family. Cowpea 
is a diploid (2n = 22) with an estimated genome size of about 620 million base pairs (Chen et al., 2007). This 
plant is also known as one of the important legume crops which is mainly grown in a wide range of tropical and 
sub-tropical areas by small-scale farmers (Gupta et al., 2010; Vasconcelos et al., 2010; Jayathilake et al., 2018). 
Cowpea has a strong contribution to nutritional security according to its function as staple food and feedstuff 
(Himani et al., 2016). The global production of cowpea in 2017 is reported to reach 8.1 million tons of dried 
cowpea (FAOSTAT, 2019). The high nutritional content, particularly the protein content in cowpea grain 
(20-40%) is being the reason for the use of this plant as an affordable protein source in daily human diets, 
whereas the plant residue is equally useful for animal feed (Singh et al., 2003). Cowpea also contributes to 
improving soil fertility through nitrogen fixation (Santos et al., 2017; Simunji et al., 2019). The inter-cropping 
and rotation systems of cowpea with other crop plants, such as cassava and cereals, consequently help to increase 
plant productivity (Dahmardeh et al., 2009; Albuquerque et al., 2015). Besides its high nutritional content and 
the ability for nitrogen fixation, cowpea also functions as a ground cover to protect the soil from erosion and to 
suppress weed growth and expansion (Inaizumi et al., 1999).  
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Drought is a major environmental constraint for agriculture that affects the growth and development of plants 
(Taishi et al., 2006; Zhang et al., 2006; Harb et al., 2010; Rini, 2019). As a sessile organism, plants have evolved 
a wide range of mechanisms for fine-tuning response to environmental stresses (Valliyodan & Nguyen, 2006; 
Shinozaki & Yamaguchi-Shinozaki, 2007). The reduction of water intake by the plant during water deficit leads 
to the reduction of the plant yield and productivity as its effect during the plant’s life cycle, such as in the 
vegetative phase, the reproductive phase, and the end of plant cycle phase (Serraj et al., 2004). Under water 
deficit, decreasing cell growth is considered as one of the most effects caused by water deficit in plants (Anjum 
et al., 2011). Water shortage can inhibit cell enlargement by suppressing cell expansion and cell growth due to 
low turgor pressure during water deficit (Tardieu et al., 2014). Therefore, the reduction in turgor pressure caused 
by reduced water potential will induce the interruption of the water flow from the xylem to the surrounding of 
elongating cells. However, the maintenance of turgor pressure above a particular threshold seems to be essential 
for the plant to continuously grow under water stress (Iannucci et al., 2000). 

Genetic diversity refers to the diversity of the same species generated by a different genotype, which further 
produces varying phenotypes. It also can be interpreted that genetic diversity occurs due to the variation of 
inherited characters found in the population of a species (Bhandari et al., 2017). In the plant species, this term is 
then covering the diversity of crop wild relatives (CWR), accessions, landrace, and neglected and underutilized 
species (NUS). Genetic diversity which may provide the pool of novel traits, is precious for plant breeders to 
develop a new improved cultivar with its high yield and having the ability to combat the environmental 
constraints (Govindaraj et al., 2015). On the other hand, genetic diversity is being an important asset in the 
success of plant breeding programs through the selection of the set of parental genotypes (Bhandari et al., 2017).  

Assessment of genetic diversity in plant species provides basic information for further utilization. In addition, it 
also functions to remove duplicate organisms having the same genetic material for conservation and evaluation 
purposes (Doumbia et al., 2014). Sequence-related amplified polymorphism (SRAP) is one of the PCR-based 
markers developed by Li and Quiros (2001). The SRAP marker would be a potential tool for estimating the 
genetic diversity of plant species in the genomic era. SRAP is a dominant marker, and its use is very simple, 
inexpensive, and effective for generating genomic fragments with high reproducibility and versatility (Robarts & 
Wolfe, 2014). This marker particularly amplifies the coding regions of the genome using a pair of forward and 
reverse primers, in which each primer comprises 17 or 18 base nucleotides long. In every SRAP primer, there is 
a section called as core sequence which is composed of 13-14 bases, where the first 10 or 11 bases starting at the 
5′ end are the filler sequences, and then is followed by the sequence CCGG- for forward primer or -AATT for 
reverse primer. Three selective nucleotides (random) are added at the 3′ end primer (Li & Quiros, 2001; Budak et 
al., 2004).  

Since cowpea is grown in East Nusa Tenggara Province, Indonesia with irregular rainfall, it suffers considerable 
damage which affects its growth and productivity. This study was conducted to assess the morpho-agronomical 
characters of local landraces of cowpea under drought, which then the cowpea plants were arranged by the order 
on the level of drought-tolerant and sensitive plants. Furthermore, the level of genetic diversity of the cowpea 
plant was analyzed by using SRAP marker. Data obtained in this study would be useful for selecting closely 
related or very distinct plants for further study in the plant breeding program. 

2. Method 

2.1 Plant Materials 

This study used local landraces of cowpea plants (Vigna unguiculata (L.) Walp) collected from several location 
sites in East Nusa Tenggara province, Indonesia. The geographic information of collection sites of cowpea plants 
is listed in Table 1. The cowpea seeds, now, are being the germplasm collection of Plant Physiology Laboratory, 
Research Center for Biology, Indonesian Institute of Sciences (LIPI).  
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Tabel 1. Collection sites and geographical locations of cowpea genotypes  

No. Genotype name Collection site Latitude (S) Longitude (E)

1 Naibonat Naibonat District, East Nusa Tenggara Province 9°34′ 123°45′ 

2 Carolina Ramuk Village, East Sumba District, East Nusa Tenggara Province 10°4′ 120°8′ 

3 Ramuk Ramuk Village, East Sumba District, East Nusa Tenggara Province 10°4′ 120°8′ 

4 Wai Rara Wai Rara Village, East Sumba District, East Nusa Tenggara Province 10°3′ 120°31′ 

5 Praing Kareha Praing Kareha Village, East Sumba District, East Nusa Tenggara Province 9°59′ 120°2′ 

6 Pinu Pahar Pinupahar Village, East Sumba District, East Nusa Tenggara Province 10°5′ 120°7′ 

7 Wanggameti Wanggameti Village, East Sumba District, East Nusa Tenggara Province 10°6′ 120°14′ 

 

2.2 Growth Conditions and Morpho-agronomic Parameters 

Cowpea plants were grown in the pot-based system (Psys) and maintained in the greenhouse with temperature 
30±5 oC, relative humidity 60±20%, and natural photoperiod. The experiment was carried out in a completely 
randomized design with two factors, local landraces of cowpea plants and drought stress treatments, each with 3 
replications. The local landraces of cowpea plants consisted of 7 different genotypes as listed in Table 1. In this 
study, drought stress was performed by the treatments of irrigation periods comprised of four periods, i.e., 
irrigation every day (control), every two days, every four days, and every six days. The irrigation technique was 
performed until the pot reached full pot holding capacity. Drought treatments started to be subjected when the 
cowpea plants reached 2-week-old.  

Morpho-agronomic characters, such as shoot and root length, shoot and root fresh weight, shoot and root dry 
weight, were observed on cowpea plants at the vegetative stage (5-week-old plants), the flowering stage 
(7-week-old plants), and the pod-filling stage (9-week-old plants). Measurement of the shoot length was 
conducted from the base of the plant up to the tip of the shoot. The root length was measured on the primary root, 
from the base of the root that borders to the base of the plant to the tip of the root. Shoot and root fresh weight 
were calculated on the fresh weight of shoot and root at the harvesting time. Shoot and root dry weight were 
analyzed on the shoots and the roots after being dried in an oven at 60 oC for 48 hours until they reached a 
constant weight. On the basis of these results, the ratio between the root and the shoot dry weight was calculated.  

2.3 DNA Isolation 

Total genomic DNA of cowpea plants was isolated from up to 100 g of leaf tissue of 2-week old seedlings using 
Genomic DNA Mini Kit for the plant (Geneaid Biotech Ltd) according to the manufacture’s protocol. The 
quality and quantity of genomic DNA samples were checked through UV-Vis spectrophotometry using the 
NanoDrop 2000/c (Thermo Fisher Scientific). The quality of DNA samples was measured at a wavelength of 260 
nm and 280 nm. The ratio of absorbance at 260 nm and 280 nm which shows ~1.8 is generally accepted as the 
pure DNA sample. Furthermore, DNA was diluted with TE buffer for a working concentration of 50-80 ng/µl 
and stored at 4 oC for PCR amplification.  

2.4 SRAP Finger Printing 

A total of 25 pairs of polymorphic SRAP primers as the combination from five forwards and five reverse primers 
(Table 2) were used to amplify the genomic DNA of cowpea plants. The SRAP primers used in this study were 
synthesized by Integrated DNA Technologies, Inc. PCR amplification was conducted in a reaction mixture of 10 
µl volume containing 5 µl 2x GoTaq® Green Master Mix (Promega), 0.5 µl 100 µM forward primer, 0.5 µl 100 
µM reverse primer, 1 µl of 50-80 ng genomic DNA as the template, and 3µl nuclease-free water. The thermal 
cycling conditions for PCR amplification was set on the PCR Thermal Cycler (Takara) as follows: initial 
denaturation at 94 oC for 5 min, followed by five cycles of denaturation at 94 oC for 1 min, annealing at 35 oC for 
1 min, and elongation at 72 oC for 1 min. In the remaining 3 oC ycles, the annealing temperature was increased to 
50 oC for 1 min with a final elongation step at 72 oC for 7 min (Ferriol et al., 2003). The amplified SRAP 
products then were resolved on 1.5% TAE agarose gel and the electrophoresis was performed at 160 volts for 
about 90 minutes. A 100-bp DNA ladder (Geneaid Biotech Ltd) was used to identify the size of each band. 
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Table 2. List of forward and reverse of SRAP primers 

No. Primers Sequences (5′-3′) 
1 Me1 (forward) TGAGTCCAAACCGGATA 
2 Me2 (forward) TGAGTCCAAACCGGAGC 
3 Me3 (forward) TGAGTCCAAACCGGACC 
4 Me4 (forward) TGAGTCCAAACCGGTAG 
5 Me5 (forward) TGAGTCCAAACCGGTGT 
6 Em1 (reverse) GACTGCGTACGAATTTGC 
7 Em2 (reverse) GACTGCGTACGAATTGCA 
8 Em3 (reverse) GACTGCGTACGAATTAGC 
9 Em4 (reverse) GACTGCGTACGAATTTAG 
10 Em5 (reverse) GACTGCGTACGAATTGGT 

 

2.5 Morpho-agronomic Data Analysis 

The data obtained from morpho-agronomic characters were statistically analyzed using JMP 11 statistics 
software. Furthermore, the resistant and sensitive genotypes were determined in cowpea plants after being 
subjected to the withholding of irrigation period for 20 days (Ψ = -14.48±8.22 MPa) as the drought treatment, 
which then was compared with the plants in the normal condition (control). The indexes and equations for 
resistant and sensitive cowpea plants toward drought stress were presented in Table 3. 

 

Table 3. The equations for drought response indexes 

Drought resistant/Sensitive indexes Equations 

Stress Sensitivity Index (SSI) 
Stress Tolerance Index (STI) 
Mean Productivity Index (MPI) 
Yield Index (YI) 
Yield Stability Index (YSI) 
Geometric Mean Productivity (GMP) 
Harmonic Mean (HM) 
Relative Drought Index (RDI) 
Abiotic Tolerance Index (ATI) 
Stress Susceptibility Percentage Index (SSPI) 

SSI = [1 – (Ysi/Ypi)]/SI 
STI = (Ypi × Ysi)/(Yp)

2 

MPI = (Ypi + Ysi)/2 
YI = Ysi/Ys 

YSI = Ys/Yp 
GMP = (Ypi × Ysi)

0.5 
HM = [2 × (Ypi × Ysi)/(Ypi + Ysi)] 
RDI = (Ysi/Ypi)/(Ys/Yp) 
ATI = [(Ypi – Ysi)/(Yp/Ys)·(Ypi – Ysi)

0.5] 
SSPI = [(Ypi – Ysi)/(2 – Yp)] × 100 

Note. Ypi and Ysi are the biomass of a genotype at normal and stressed treatment, respectively. SI is the stress 
intensity as calculated by SI = 1 – (Ys/Yp). Ys and Yp are the mean of biomass of all genotypes under stress and 
normal conditions, respectively.  

 

2.6 Molecular Data Analysis 

The distinguished DNA bands as the amplified product of SRAP markers were scored as presence (1) and 
absence (0). The 0/1 score data was then constructed as binary matrix SRAP data. The corresponding diversity 
parameters, such as the number of total bands (NTB), the number of polymorphic bands (NPB), percentage 
polymorphism (PP), polymorphic information content (PIC), resolving power (RP), and power index (PI) as 
presented in Table 7, were calculated according to the matrix data. The number of total bands (NTB) was 
counted according to the number of the clearly amplified products of SRAP marker. The number of polymorphic 
bands (NPB) was calculated based on the different positions of the DNA band across the lanes. The percentage 
polymorphism for individual SRAP combination primer was calculated based on the ratio of NPB/NTB. The 
polymorphic information content (PIC) was calculated in each primer combination as PIC = Σ (1 – Pi

2)/n, where, 
Pi is the frequency of the ith allele, n is the number of bands (Milbourne et al., 1997). Resolving power (RP) 
value in each primer combination is the sum of band informativeness according to the formula RP = Σ Ib, and Ib 
= 1 − (2 × |0.5 − p|), where, p is the proportion of the total genotypes containing the band. Marker index (MI) 
was calculated for each SRAP primer combination according to the formula of MI = PIC × npi, where npi is the 
number of polymorphic bands (Powell et al., 1996). 

The genetic similarity in each pair of genotypes was calculated using Nei and Li’s (1979) similarity index 
according to the matrix SRAP data. The genetic distance matrix then was utilized for cluster analysis by the 
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UPGMA-derived dendrogram of morpho-agronomic dissimilarity matrices according to the Euclidean Distance 
(Figure 1) enabled grouping 7 cowpea genotypes into 2 distinct clusters. The first cluster was composed of 2 
cowpea genotypes Pinu Pahar and Naibonat, whereas the second cluster was formed by 5 genotypes (Wai Rara, 
Ramuk, Wanggameti, Praing Kareha, and Carolina).  

Some mathematical equations based on normal and stress conditions (Table 3) have been proposed in order to 
estimate the responses of biomass dry matter production of cowpea plants toward drought stress (Table 5). The 
distinct characters of cowpea genotypes under drought stress conditions provided valuable information for plant 
selection in cowpea breeding program. It has been proposed that stress tolerance index (STI) and geometric 
mean productivity (GMP) are valuable for detecting the genotypes having a good performance under stress 
conditions (Golbashy et al., 2010). Meanwhile, plants having stress sensitivity index (SSI) values more and less 
than 1 indicate above and below-average susceptibility to drought stress, respectively (Guttieri et al., 2001). In 
other words, the genotype showing a lower value of SSI indicates more resistance to drought (Raman et al., 
2012). Therefore, the genotypes with high values of STI and GMP indexes and low SSI are identified as a 
drought-tolerant genotype (Mohammadi et al., 2008). According to the highest values of STI and GMP, Pinu 
Pahar genotype was considered as a tolerant genotype to drought stress. The highest values of STI and GMP in 
Pinu Pahar genotype was consistently related to MPI, YI, HM, and RDI. In regard to the indexes of STI, MPI, YI, 
YSI, GMP, HM, and RDI (Table 5), Carolina genotype displayed the lowest values than other genotypes and 
showed the highest values of SSI, ATI, and SSPI indexes. Consequently, Carolina was determined as a 
drought-sensitive genotype. 

 

Table 5. Drought response indexes based on biomass dry matter production in cowpea genotypes 

Genotypes SSI STI MPI YI YSI GMP HM RDI ATI SSPI 

Naibonat 0.33 6269.74 79.21 1.09 0.95 79.18 79.15 1.12 396.80 0.03 

Carolina 2.64 3496.93 61.24 0.64 0.59 59.13 57.10 0.70 2232.70 0.19 

Wai Rara 1.17 6227.59 79.32 1.01 0.82 78.92 78.51 0.97 1494.31 0.10 

Ramuk 0.81 6229.75 79.11 1.05 0.87 78.93 78.75 1.04 998.91 0.06 

Praing Kareha 0.87 6241.54 79.22 1.04 0.86 79.00 78.79 1.02 1084.27 0.07 

Pinu Pahar 0.36 6502.65 80.67 1.11 0.94 80.64 80.60 1.12 448.06 0.03 

Wanggameti 0.91 6403.14 80.26 1.05 0.86 80.02 79.78 1.02 1167.27 0.07 

Rank           

Naibonat 7 4 5 2 1 3 3 1.5 7 6.5 

Carolina 1 7 7 7 7 7 7 7 1 1 

Wai Rara 3 6 3 6 6 5 6 6 2 2 

Ramuk 5 5 6 3.5 3 6 5 3 5 5 

Praing Kareha 4 3 4 5 4.5 4 4 4.5 4 3.5 

Pinu Pahar 6 1 1 1 2 1 1 1.5 6 6.5 

Wanggameti 2 2 2 3.5 4.5 2 2 4.5 3 3.5 

Note. SSI: Stress Sensitivity Index; STI: Stress Tolerance Index; MPI: Mean Productivity Index; YI: Yield Index; 
YSI: Yield Stability Index; GMP: Geometric Mean Productivity; HM: Harmonic Mean; RDI: Relative Drought 
Index; ATI: Abiotic Tolerance Index; SSPI: Stress Susceptibility Percentage Index. 

 

Principal component analysis was performed according to drought response indexes of cowpea plant (Figure 2). 
Two clusters of drought response indexes were generated in PCA. The first cluster of PCA placed drought 
response indexes of STI (Stress Tolerance Index), MPI (Mean Productivity Index), YI (Yield Index), YSI (Yield 
Stability Index), GMP (Geometric Mean Productivity), HM (Harmonic Mean), and RDI (Relative Drought Index) 
in the same group. The second cluster of PCA was composed of 3 drought response indexes of SSI (Stress 
Sensitivity Index), ATI (Abiotic Tolerance Index), and SSPI (Stress Susceptibility Percentage Index). Data 
shown in the PCA result (Figure 2) corresponded to Pearson correlation coefficients of drought response indexes 
of cowpea (Table 6). Drought response indexes of STI, MPI, YI, YSI, GMP, HM, and RDI contained in the first 
cluster of PCA, showed the positive and strong relationships (ρ < 0.01) observed between them. A similar result 
also presented in the second cluster where SSI, ATI, and SSPI indexes produced a positive and significant 
correlation each other. STI and GMP as the precious parameters for identifying resistant plant toward drought 
(Golbashy et al., 2010), generated a high correlation with MPI, YI, YSI, HM, and RDI in this study. Therefore, 
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are adequate to identify the genetic diversity in a small number of cowpea genotypes collected from a narrow 
location. Of this result, the primer combination of Me3-Em4 generated the lowest percentage polymorphism of 
83.33%. The PIC values in this study varied among SRAP combination primers, showing the highest PIC value 
(0.97) and the lowest PIC value (0.71) generated by a combination of SRAP primer Me4-Em1 and Me3-Em4, 
respectively. The overall average of PIC values was 0.87. The resolving power (RP) generated by SRAP primer 
ranged from 3.04 to 7.00 generated by primer combination of Me4-Em1 and Me5-Em1, respectively, with an 
average of 4.50. Meanwhile, the distinctive value of MI (marker index) in Table 7 generated an average of 8.58. 
The highest value of MI 16.56 was generated by SRAP primer combinations of Me1-Em1. 

 

Table 7. SRAP analysis of cowpea genotypes 

Primers NTB NPB PP (%) PIC RP MI 

Me1-Em1 18 18 100 0.92 4.00 16.56 

Me1-Em2 10 10 100 0.91 4.00 9.10 

Me1-Em3 10 10 100 0.82 5.80 8.20 

Me1-Em4 10 10 100 0.84 5.20 8.40 

Me1-Em5 10 9 90 0.76 6.60 6.84 

Me2-Em1 11 11 100 0.93 3.45 10.23 

Me2-Em2 7 7 100 0.88 4.00 6.16 

Me2-Em3 13 13 100 0.9 4.30 11.70 

Me2-Em4 11 11 100 0.82 5.45 9.02 

Me2-Em5 9 8 88.89 0.9 4.22 7.20 

Me3-Em1 7 6 85.71 0.85 5.14 5.10 

Me3-Em2 7 7 100 0.86 4.57 6.02 

Me3-Em3 9 9 100 0.93 3.33 8.37 

Me3-Em4 6 5 83.33 0.71 7.00 3.55 

Me3-Em5 11 11 100 0.91 4.18 10.01 

Me4-Em1 4 4 100 0.97 3.50 3.88 

Me4-Em2 11 11 100 0.87 4.00 9.57 

Me4-Em3 13 13 100 0.83 5.54 10.79 

Me4-Em4 9 8 88.89 0.78 6.22 6.24 

Me4-Em5 10 10 100 0.92 3.80 9.20 

Me5-Em1 13 13 100 0.92 3.54 11.96 

Me5-Em2 7 7 100 0.89 3.43 6.23 

Me5-Em3 15 15 100 0.91 3.73 13.65 

Me5-Em4 10 10 100 0.86 3.04 8.60 

Me5-Em5 9 9 100 0.88 4.44 7.92 

Total 

Average 

250 

10 

245 

9.8 

- 

97.47 

- 

0.87 

112.48 

4.50 

214.5 

8.58 

Note. NTB: Number of total bands; NPB: Number of polymorphic bands; PP: Percentage polymorphism; PIC: 
Polymorphic information content; RP: Resolving power; MI: Matrix index. 
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indicates the informativeness of the primer set. Nine primers out of 25 SRAP combination primers had high RP 
values more than the average of RP value (Table 7), presenting the high informativeness of those nine primers 
for distinguishing all the cowpea genotypes used in this study. As a parameter used to estimate the utility of the 
marker system, the Marker index (MI) value of SRAP combination primers showed an average of 8.58 with 48% 
of the primers were high than that of the average. 

According to its floral morphology, cowpea is determined as a self-pollinating plant where the pollination 
process is completed before the flower opens. The cross-pollination in cowpea plant is estimated as an 
occasional process with the incidence rate at < 1 or up to 2% (OECD, 2016). Therefore, cowpea is considered as 
a crop plant having a narrow genetic base (Afiukwa et al., 2012). Even though the cowpea plants in this study 
were collected from closely related areas in East Nusa Tenggara, Indonesia (Table 1), the UPGMA cluster 
analysis using matrix data of SRAP combination primers successfully separated 7 cowpea genotypes based on 
the Nei and Li’s similarity coefficient (Figure 3). Pinu Pahar and Carolina as the tolerant and sensitive cowpea 
genotypes toward drought stress, respectively, grouped into a different cluster. This result corresponds to 
clustering through the Principal coordinate analysis (PCoA) plot as shown in Figure 2. Accordingly, the 
geographical architecture of the area where cowpea plants were collected, is being the reasons underlying the 
cowpea genotypes variability in this study. As stated by Gaggiotti et al. (2009), ecological and environmental 
factors have an important responsibility in the genetic diversity patterns of the organisms. This is because the 
local adaptation of the plant species to the environmental factors can lead to a case of isolation by the 
environment thereby prohibiting the gene flow process (Sexton et al., 2014). Several studies have reported that 
environmental factors play an important role in shaping the genetic diversity of the species. It is reported that the 
genetic diversity of Caragana microphylla as a member of Leguminosae family has been affected by 
environmental factors in northeast China (Huang et al., 2016). Geographic environments also affect the genetic 
variability and ploidy level of Erianthus arundinaceus (Zhang et al., 2017). 

In this study, the Mantel test revealed that the morpho-agronomical distances have no correlation with the Nei 
and Li’s distance matrices generated from SRAP combination primers analysis. It means that the morphological 
data of cowpea plants subjected under drought stress has no intercourse with matrix data generated by SRAP 
primers. Assessment of plant diversity by using DNA-based markers is well known as a reliable method 
accompanied by many features, such as simplicity, flexibility, and cost-effectiveness (Robarts & Wolfe, 2014). 
Unlike the DNA marker, the morphological marker is less reliable and affected by the environment. The results 
in this study showing no correlation between morpho-agronomical parameters with molecular parameters in 
cowpea plants, correspond with other study in Aegilops geniculata (Mahjoub et al., 2009), Rosa platyacantha 
(Yang et al., 2016), Juglans regia (Wang et al., 2015). 

5. Conclusions 

According to the drought response indexes as the mathematics formulas used in this study, Pinupahar and 
Carolina have been determined as drought-resistant and drought-sensitive cowpea genotypes, respectively. The 
high level of PIC (Polymorphic Information Content) at the value of 0.87 generated by SRAP combination 
primers, indicated that SRAP marker successfully identified the genetic diversity among cowpea genotypes 
collected from the closely related area in East Nusa Tenggara Province, Indonesia. 
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