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Abstract 

Grain yield potential of new maize hybrid varieties across target environments contributes to the uptake of these 
varieties by farmers. Evaluation of single-cross hybrids developed from test crossing introgressed inbred lines 
bred for three distinct environments to elite tropical inbred line testers was carried out. The study’s objective was 
to assess grain yield stability and genotype adaptability of the single-cross hybrids across South African 
environments relative to adapted commercial hybrid checks. One hundred and twenty-two introgressed inbred 
lines developed using the pedigree breeding program were crossed to four tropical elite inbred line testers using 
line × tester mating design to obtain 488 experimental single cross hybrids. Subject to availability of adequate 
seed for evaluation, a panel of 444 experimental single-cross hybrids was evaluated using an augmented design 
in two experiments defined as Population A and B for the study’s convenience in South African environments. 
Data for grain yield (t/ha) performance for experimental single-cross hybrids and commercial check hybrids in 
Population A and B across environments and individual environments identified experimental single-cross 
hybrids that had significant comparable grain yield (t/ha) performance relative to best commercial check hybrid 
(PAN6Q445B) on the market. The selected experimental single-cross hybrids 225, 89, 246 and 43 (Population A) 
and 112 (Population B) also had a better average rank position for grain yield (t/ha) relative to best commercial 
check hybrid. These selected experimental single-cross hybrids had a grain yield (t/ha) advantage range of 
0.9-6.7% for Population A and 7.3% for Population A and B, respectively, relative to the adapted commercial 
check hybrid. GGE biplot patterns for which won-where for Population A indicated that at Potchefstroom 
Research Station and Ukulinga Research Station experimental single-cross hybrids 127 and135 were the vertex 
(winning) hybrids. Cedera Research Station did not have a vertex hybrid for Population A. For Population B, 
experimental single-cross hybrids 112, 117 and 18 were the vertex hybrids at Cedera Research Station, Ukulinga 
Research Station and Potchefstroom Research Station, respectively. Experimental single-cross hybrid 257 was 
identified as ideal genotype for Population A, while experimental single-cross hybrid 121 in Population B was 
the ideal genotype. Ideal environments were also identified as Ukulinga Research Station for Population A, and 
Cedera Research Station for Population B. Average-environment coordination (AEC) view of the GGE biplot in 
Population A indicated that experimental single-cross hybrids 1 was highly stable across environments. In 
comparison, Population B experimental single-cross hybrid 161 was highly stable across environments. In 
conclusion, selected single-cross hybrids in the current study can also be advanced for further evaluation with a 
possibility for identifying high yielding and stable single-cross hybrids for variety registration and release in 
target environments in South Africa. 
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1. Introduction 

In developing countries, particularly in Africa, maize (Zea mays L.) is a critical and strategic cereal crop grown 
across many of its regions. Its wide adaptability in target environments has rendered it a staple food crop across 
tropical, subtropical, and temperate regions of the world. In South Africa, a predominantly warm temperate 
environment, maize is the largest locally produced field crop with increasing food, feed, and industrial usage 
value for the population (Syngenta Foundation for Sustainable Agriculture, 2020). Maize is also regarded as a 
net earner of foreign currency for the South African economy. Therefore, South Africa maize production is a 
large and lucrative market for breeding programmes operating inside and outside South Africa. An indication 
that breeding programmes should ensure the release of stable maize hybrid varieties that perform well in the 
South African warm temperate environments, aiming for broad adoption by farmers.  

In maize breeding, the primary objective is to develop hybrids with high yield potential and adaptability across 
target environments. According to Kuchanur et al. (2015), breeders should select top grain yielding genotypes 
associated with high grain yield stability. Mostafavi et al. (2011), and Elias et al. (2016) report that targeting 
improved varieties to specific environments is difficult when genotype-by-environment interaction is present 
since yield is less predictable be interpreted based only on genotype and environment means. 
Genotype-by-environment interaction is here defined as the differential ranking of variety yields across target 
environments, resulting in the variable performance of hybrid varieties in selected target environments (Crossa et 
al., 2002; Jandong et al., 2011; Heidari et al., 2016). Thus, it complicates the utilization of hybrid maize varieties 
across target environments. 

In this study, the emphasis is on identifying improved tropical introgressed maize inbred line hybrid 
combinations capable of maximizing maize production potential in South African warm temperate environments 
and farming systems, thus reducing crop failure or low incidences grain yields in unfavourable seasons. Breeding 
programmes have to develop improved maize varieties for the farmers with excellent agronomic performance 
relative to adapted commercial check varieties in the target environments. Recommendation of improved hybrid 
varieties in target environments requires these genotypes to be evaluated in several different but representative 
environments to identify consistently high-yielding and relatively stable genotypes and areas of specific 
adaptation (Balestre et al., 2009; Setimela et al., 2017). 

A few methods have been applied in maize breeding programmes to evaluate cultivars’ adaptability and stability 
in target environments. Two main approaches have been consistently used in several studies, namely: additive 
main effects and multiplicative interaction (AMMI) analysis (George & Lundy 2019; Gauch et al., 2008; Gauch, 
2006; Duarte & Vencovsky, 1999); and a modification of the conventional AMMI analysis called genotype (G) 
and genotype-by-environment interaction (GE) (GGE-biplot) analysis (Yan & Tinker, 2006; Kaya et al., 2006; 
Yan et al., 2000). AMMI and GGE-biplot provide breeders with tools to measure maize hybrid varieties’ 
response efficiently and accurately in multiple test environments (Yan et al., 2007). According to Balestre et al. 
(2009), AMMI analysis interprets the effects of genotypes and environments as an additive and GE interaction as 
a multiplicative principal component analysis. The GGE-biplot analysis groups the genotype effects, which are 
additive in the AMMI analysis, together with the GE interaction multiplicative effects and analyses these effects 
by principal components (Kaya et al., 2006). According to Yan and Hunt (2001), and Yan et al. (2007), GGE, 
biplot software is an excellent visual MET data analysis tool. Compared with conventional methods of the MET 
data analysis, the GGEbiplot approach has some advantages. The first advantage of the biplot is its graphical 
presentation of the MET data, which significantly enhances our ability to understand the data patterns. The 
second is that it is more interpretative. It facilitates pair-wise genotype comparisons. The third advantage of this 
method is that it enables the identification of possible mega-environments. 

Genotype and genotype-by-environment interaction analysis were carried out in the current study on single-cross 
maize hybrid maize varieties to compare the grain yield potential of these genotypes across target environments 
relative to adapted commercial check entries. The comparison of grain yield potential of the maize genotypes at 
different environments or groups of environments in South African regions ensured the identification and 
recommendation of genotypes with higher grain yield potential in each target environment. As a breeder, the 
main objective is to breed for high grain yield potential. For that high grain yield potential to be highest or close 
to the highest, consistently in all locations within the geographical area for which variety will be released (Yan & 
Tinker, 2006). The study’s objective was to assess grain yield stability and genotype adaptability of single-cross 
hybrids, including parents, developed for three distinct mega environments, using GGE biplot analysis across the 
South African warm temperate environments relative to adapted commercial hybrid checks.  



jas.ccsenet.org Journal of Agricultural Science Vol. 13, No. 2; 2021 

80 

2. Method 

2.1 Germplasm Development 

2.1.1 Introgressed Inbred Lines Development 

Introgressed inbred lines used to generated experimental single-cross hybrids evaluated in the current study were 
developed from a pedigree breeding program. A single common donor maize parental inbred line (08CED6_7_B) 
from South Africa was used to introgress genes from temperate germplasm into 12 elite tropical inbred lines 
from Zimbabwe through pedigree crosses in 2008 in South Africa. Tropical maize inbred lines used were 
representative of the major tropical heterotic groups, mainly N3 (derived from Salisbury white), SC (Southern 
Cross which was derived from an open-pollinated population grown by Mr South in Zimbabwe), and P (derived 
from the open-pollinated variety (OPV) Potchefstroom Pearl). The temperate maize population was one of the 
major temperate heterotic groups used in South Africa (TAB population). Hand crossings were made between the 
tropical and temperate populations to generate F1 hybrid seed. Due to challenges in flowering synchronization 
(nicking) and seed availability, a total of eight populations were generated for advancement and selection at F2 
generation. Each population was independently advanced from F3-F6 generation through selfing and selection of 
adapted segregants to produce 122 introgressed inbred lines. 

2.1.2 Experimental Single-Cross Hybrids Development 

Experimental single-cross hybrids used in the current study were generated from testcrossing 122 Introgressed 
inbred lines to four tropical elite inbred line testers T1, T2, T3, and T4 using line by tester mating design. The 
four tropical elite inbred line testers used represented maize germplasm from two tropical heterotic groups P and 
N. A total of 488 experimental single-cross hybrids were produced from the test crossing. Subject to availability 
of adequate seed for evaluation, a panel of 444 experimental single-cross hybrids were evaluated using an 
augmented experimental design. Due to the large number (444) of the experimental single-cross hybrids 
involved and for convenience of the study, the experimental single-cross hybrids were divided into two 
populations that were designated population A and B, with both populations related to heterotic groups P and N. 
Population A comprised 280 experimental single-cross hybrids including four commercial hybrid checks; 
temperate hybrids (PAN3Q740 and PAN6Q445B) and tropical hybrids (PAN67 and SC633) to give a total 
evaluating panel of 284 entries. Population B consisted of 164 experimental single-cross hybrids, including three 
commercial hybrid checks (PAN6611, PAN6Q445B, and SC633) to give a total evaluating panel of 167 entries. 
Commercial check hybrids used in both populations were single-cross hybrids that are predominantly used in the 
South African market. 

2.2 Experimental Design and Trial Management 

A total of five trials were planted in three locations in South Africa environments. Table 1 presents a summary of 
the locations. In population A, 284 entries (experimental single-cross hybrids and commercial hybrid checks) 
were randomly assigned into 20 blocks; in each block, 14 experimental single-cross hybrids and two repeating 
checks (PAN3Q740 and PAN67) were randomly assigned to each block. Due to limited seed, commercial check 
hybrid entries SC633, PAN6227, and PAN6Q445B were randomly assigned into blocks as non-repeating 
commercial checks. In population B, 162 entries (experimental single cross hybrids and commercial checks) 
were randomly assigned into 16 blocks; in each block, ten experimental single-cross hybrids were included with 
two repeating commercial checks (PAN6611 and PAN6Q445B). Due to limited seed, non-repeating commercial 
check SC633 was randomly assigned into the blocks. Population A was replicated over two sites, namely 
Ukulinga and Cedara Research Stations. In comparison, Population B was replicated over three locations: 
Ukulinga, Cedara, and Potchefstroom Research Station. An augmented experimental design was used to evaluate 
the trial (Lin & Poushinsky, 1983; Scott & Milliken, 1993; Spehar, 1994). Due to the limited availability of seed, 
all experiments across sites were each planted as single-row plots. At Ukulinga Research Station, each entry was 
planted to 5m length, spaced at 0.3 m in-row and 0.75 m between row spacing to achieve a total plant population 
density of at least 44 000 plants ha-1. At Cedara Research Station, 5 m row-plots, in-row spacing 0.3, and row 
spacing of 0.9 m were used to achieve a plant stand of at least 37 000 plants ha-1. While at Potchefstroom 
Research Station, 6.6 m length, spaced at 0.25 m in-row, and 1.5 m between row spacing were employed to 
attain a total plant population density of at least 26 000 plants ha-1. Standard cultural management practices for 
growing maize were carried out at all the sites. Irrigation was only applied to achieve uniform establishment and 
to supplement rainfall as and when necessary. Fertilizer was applied at a rate of 120 kg Nitrogen (N), 33 kg 
Phosphorous (P), and 44 kg Potassium (K) at Cedara, Ukulinga, and Potchefstroom Research Stations.  
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2.3 Measurements 

Data was collected at all the sites applying standard procedures used at International Maize and Wheat 
Improvement Centre (CIMMYT, 1985) for the following traits: days to anthesis and silking days were recorded 
when 50% of the plants were shedding pollen, and 50% of the plants had silks emerged, respectively; plant and 
ear height were measured before harvesting on five representative plants per plot; percentage stalk and root 
lodging was recorded as a percentage of plants per plot that had their stems broken and percentage of plants per 
plot which had their stems inclined at least 45o, respectively; and the number of ears per plant-ear prolificacy 
(EPP) was calculated as the count of the number of ears plot as a fraction of the total number of plants in the plot. 
All plants were hand-harvested and shelled grain weight was measured. Grain weights were adjusted to 12.5% 
moisture content and 80% shelling percentage to calculate grain yield (t ha-1).  

2.4 GGE Biplots 

Genotype and genotype-environment interaction GGE-biplot analysis were carried out on yield data only. In 
future publications, we will report on the other traits measured. The GGE- biplot concept (Yan et al., 2000) was 
used to visualize the multi-environment trials (MET) data, as reported by Kaya et al. (2006). The GGE-biplot 
showed the first two principal components (PC1 and PC2) derived from subjecting environmental-centred yield 
data (yield evaluation due to GGE) to singular value decomposition (Yan et al., 2000). In the current study, 
genotype-focused scaling was used for visualizing genotypic comparison, with environment-focused scaling for 
environmental comparison using GGE-biplots (GenStat 14 edition, 2013). A mixed model for LSD analysis was 
also carried out for multi-treatment comparison using the Tukey-Kramer method (Yu, 2010) to compare 
experimental single-cross hybrids and commercial check hybrids grain yield (t/ha) performance at individual 
sites and across sites.  

 

Table 1. Summary of geographic location and season-related characteristics of the three trial locations 

Location Latitude Longitude Coordinates 
Altitude

(m.a.s.l.)
Description (units) A B Type of stress Mega Environment

Ukulinga 29°37′S 30°16′E 
(-29.617,  

20,267) 
812 

Av max temp (oC) 25.9 24 Heat and drought stress 

Coast hinterland  

thornveld South  

Africa mega 

environment 

Av min temp (oC) 16 12.9 Increased cold soil temperature 

Margin of  

Mid-Altitude  

(> 800 m.a.s.l.)  

and lowland  

(< 800 m.a.s.l.) 

CIMMYT mega 

environment  

Rainfall (mm) 600.7 885 

Increased frost exposure 

Grey leaf spot (GLS) 

Long day length 
 

Cedara 26°32′S 30°16′E 
(-25.533,  

30.267) 
1068 

Av max temp (°C) 25.2 23.6 Northern leaf corn blight (NCLB) 

Moist Midlands  

Misbelt South Africa

mega environment 

Av min temp (°C) 13 9.6 Phaeosphaeria leaf spot (PLS) 

Mid-Altitude humid, 

warm CIMMYT  

mega environment 

Rainfall (mm) 647 873 
Grey leaf spot (GLS) 

Long day length  

Potchefstroom 26°73′S 27°75′E 
(-26.117,  

28.250) 
1349 

Av max temp (oC) 27.7 25.7

Heat and drought stress,  

rain poorly distributed in  

the season 

North-west dryland 

South Africa mega 

environment 

Av min temp (°C) 19.5 9.8 Phaeosphaeria leaf spot (PLS) 

Mid-Altitude  

dryland CIMMYT  

mega environment 

Rainfall (mm) 708.7 703.1 long day length 

Source: Ukulinga-Ukulinga Research Centre; Cedera-Cedera Research Station; Potchefstroom-Potchefstroom 
Research Station. 
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3. Results 

3.1 Grain Yield (t/ha) Performance for Top 12% High-Yielding Hybrids in Population A  

Data from grain yield (t/ha) performance for top 12% top-yielding experimental single-cross hybrids and 
commercial check hybrids in Population A sorted according to the average rank for grain yield (t/ha) across sites 
and individual sites (Cedera Research Station, Potchefstroom Research Station and Ukulinga Research Centre 
environments) are presented in Table 2. Across the environments, data indicated that grain yield (t/ha) 
performance was highly significant with experimental single-cross hybrids and adapted commercial check 
hybrids showing significant similar grain yield (t/ha) performance. The average rank position across 
environments for grain yield (t/ha) showed that the top four (225, 89, 246, and 43) experimental single-cross 
hybrids had better grain yield (t/ha) rank position and higher grain yield (t/ha) equivalent to a range of 0.9 to 
6.7% than the best adapted temperate environment commercial check hybrid (PAN6Q445B).  

Individual environments, data for Cedera Research Station, Potchefstroom Research Station, and Ukulinga 
Research Centre environments grain yield (t/ha) were significant with experimental hybrids illustrating 
comparable performance relative to the adapted temperate environment commercial check hybrids (PAN6Q445B, 
PAN3Q740, and PAN6227). At Cedera Research Station environment, the average rank position for grain yield 
(t/ha) highlighted that eleven experimental single-cross hybrids (60, 257, 131, 61, 144, 259, 43, 225, 45, 1, and 
92) had a better average rank position placement than the best adapted temperate commercial check hybrid 
(PAN6Q445B). These eleven experimental single-cross hybrids had a grain yield (t/ha) advantage that ranged 
from 0.4 to 12.1% relative to the best adapted temperate commercial check hybrid (PAN6Q445B). Similarly, at 
Ukulinga Research Centre environment, fourteen experimental single-cross hybrids (135, 257, 61, 225, 1, 138, 
89, 259, 255, 245, 253, 263, 137, and 144) had high average range position for grain yield (t/ha) relative to best 
adapted commercial check hybrid (PAN6Q445B). A grain yield (t/ha) advantage of between 4.4 to 97.9% was 
noted over the best adapted commercial check (PAN6Q445B). Equally, the Potchefstroom Research Station 
environment exhibited a similar trend with three experimental single-cross hybrid entries (225, 89, and 246) 
exhibiting high average range position for grain yield (t/ha) relative to best adapted temperate commercial check 
hybrid (PAN6Q445B). The grain yield advantage over the best adapted commercial check hybrid (PAN6Q445B) 
ranges from 3.16 to 3.86%. The grain yield (t/ha) performance data for across environments and individual 
environments illustrate Genotype × Environment (G×E), as under various environments (Cedera Research 
Station, Potchefstroom Research Station, and Ukulinga Research Centre) not the same hybrid entries out yielded 
the best commercial check hybrids in terms of grain yield (t/ha) rank placement. This data is further supported by 
genotype main effects (G) and genotype × environment interaction effects model, known as GGE biplots Figures 
1 to 8. The GGE model applies the singular value decomposition (SVD) to the data, subtracting the 
environmental effects because the biplots display both G and GE, which are the two sources of variation relevant 
to cultivar variation (Frutos et al., 2014). 
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Table 2. Grain yield (t/ha) performance for 12% of the top-yielding single-cross hybrids and commercial check 
hybrids in Population A entries across and individual environments 

Entry Across A1  Entry Cedera A1  Entry Ukulinga A1  Entry Potchefstroom A1 

225 10.42a 6.68  60 14.39a 12.09  135 18.11a 97.87  225 1.49a 3.86 

89 10.33a 5.73  257 14.09a 9.75  257 14.36ab 56.89  89 1.48ab 3.16 

246 10.29a 5.29  131 13.79a 7.42  61 13.96ab 52.51  246 1.48ab 3.16 

43 9.86ab 0.96  61 13.49a 5.08  225 13.21ab 44.32  43 1.42abcd -0.68

75 9.57abc -2.04  144 13.24a 3.13  1 11.56ab 26.28  45 1.38abcdef -3.83

45 9.49abc -2.89  259 13.24a 3.13  138 11.31ab 23.55  41 1.34abcdefg -6.63

41 9.15abcd -6.35  43 13.19a 2.75  89 10.81ab 18.09  75 1.34abcdefg -6.63

256 8.97abcde -8.19  225 13.19a 2.75  259 10.81ab 18.09  256 1.34abcdefg -6.63

253 8.89abcde -8.96  45 13.14a 2.36  255 10.51ab 14.81  108 1.27abcdefgh -11.17

271 8.85abcdef -9.37  1 12.94a 0.80  245 10.36ab 13.17  253 1.27abcdefgh -11.17

61 8.82abcdef -9.73  92 12.89a 0.41  253 10.01ab 9.34  263 1.27abcdefghi -11.52

138 8.81abcdef -9.86  127 12.84a 0.02  263 9.96ab 8.80  240 1.26abcdefghi -11.87

137 8.78abcdef -10.18  135 12.79a -0.37  137 9.66ab 5.52  271 1.25abcdefghi -12.57

263 8.75abcdef -10.44  137 12.79a -0.37  144 9.56ab 4.43  138 1.25abcdefghij -12.92

240 8.73abcdef -10.66  75 12.49a -2.71  246 8.91ab -2.68  137 1.21abcdefghij -15.37

245 8.64abcdefg -11.52  41 12.14ab -5.43  75 8.81ab -3.77  61 1.20abcdefghij -16.42

108 8.55abcdefg -12.49  246 12.14ab -5.43  271 8.51ab -7.05  245 1.20abcdefghij -16.42

92 8.41abcdefg -13.91  139 10.49ab -18.28  43 7.91ab -13.61  259 1.19abcdefghij -16.77

259 8.31abcdefg -14.96  89 10.44ab -18.67  108 7.71ab -15.79  134 1.18abcdefghij -17.81

127 8.19abcdefg -16.13  240 10.19ab -20.62  60 7.36ab -19.62  127 1.15abcdefghij -19.91

257 8.18abcdefg -16.28  253 9.84ab -23.35  45 7.11ab -22.35  92 1.11abcdefghij -22.36

60 7.95abcdefg -18.72  134 9.59ab -25.29  41 6.81ab -25.63  257 1.11abcdefghijk -22.71

134 7.81abcdefg -20.02  263 9.39ab -26.85  154 6.71ab -26.72  131 1.09abcdefghijk -24.11

131 7.64abcdefg -21.72  245 8.44ab -34.25  92 6.46ab -29.45  154 1.08abcdefghijk -24.81

1 7.43abcdefg -23.93  256 8.34ab -35.03  134 6.31ab -31.09  60 1.07abcdefghijk -25.16

154 7.25abcdefg -25.80  271 7.69ab -40.09  240 5.81ab -36.56  1 1.03abcdefghijkl -28.30

135 7.00abcdefgh -28.34  154 7.64ab -40.48  131 5.56ab -39.29  135 0.97abcdefghijkl -32.15

144 5.30abcdefgh -45.74  108 7.59ab -40.87  127 2.16ab -76.45  144 0.71abcdefghijkl -50.68

Mean of Population 6.70abcdefgh      12.79a      9.15ab      0.96abcdefghijkl   

Check 3 (SC633) 8.49abcdefg      11.64ab      9.21ab      1.16abcdefghij   

Check 5 (PAN6227) 6.97abcdefgh      9.34ab      7.21ab      0.99abcdefghijkl   

Check 4 (PAN6Q445B) 9.77abc      12.84a      9.01ab      1.43abc   

Check 1 (PAN3Q740) 5.30abcdefgh      5.88ab      9.15ab      0.76abcdefghijkl   

Check 2 (PAN67) 8.28abcdefg      11.11ab      9.47ab      1.18abcdefghij   

Mean of checks 7.76abcdefg      10.16ab      8.81ab      1.10abcdefghijk   

LSD(0.05) 0.12      0.1      0.12      0.01   

CV 20.71      14.79      17.38      10.95   

Std Dev 4.67      1.17      3.26      0.22   

Std Error 0.9      0.08      2.1      0.11   

Pr > F ***      *      **      ***   

Note. Means with the same letter in the same column are not significantly different (P > 0.05), A1-Percentage 
grain yield (t/ha) advantage relative to best check entry. 

 

3.2 GGE-Biplots 

Genotype and genotype-by-environment interaction (GGE) biplots allow effective identification of the 
Genotype-by-Environment Interaction (GEI) pattern of the data. In this current study, biplots were plotted for 
entries in population A and B to allow visualization of, which-won-where patterns pattern for genotypes and 
environments, genotype-focused scaling for comparison of the genotypes with ideal genotype, 
environment-focused scaling for comparison of the environments relative to an ideal environment, and average 
environment coordination (AEC) views based on environment-focused scaling for the means performance and 
stability of genotypes. Subsequent GGE biplot analysis produced eight biplots for entries in Population A (Figure 
1 to 4) and Population B (Figures 5 to 8) to allow visualization of; which-won-where pattern for genotypes and 
environments, genotype-focused scaling for comparison of the genotypes with ideal genotype, 
environment-focused scaling for comparison of the environments relative to an ideal environment, and average 
environment coordination (AEC) views based on environment-focused scaling for the mean performance and 
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3.4 Grain Yield (t/ha) Performance for Top 14% High-Yielding Hybrids in Population B 

Table 3 shows that data for grain yield (t/ha) performance for top 14% top-yielding experimental single-cross 
hybrids and commercial check hybrids in Population B sorted relative to the average rank for grain yield (t/ha) 
across environments and individual environments (Cedera Research Station, Potchefstroom Research Station and 
Ukulinga Research Centre). Across the environments, data showed that grain yield (t/ha) performance was highly 
significant, with experimental hybrid entries and adapted commercial check hybrids showing significant 
comparable grain yield (t/ha) performance. The average rank position for grain yield (t/ha) performance across 
environments highlighted that experimental hybrid entry 112 had a 7.3% grain yield (t/ha) advantage relative to the 
best commercial check hybrid (PAN6Q445B). Individual environments, data for the Ukulinga Research Centre 
environment was not significantly different for grain yield (t/ha) performance. While, Potchefstroom Research 
Station environments and Cedera Research Station environments grain yield (t/ha) performance data was 
significant with experimental hybrid entries exhibiting comparable performance relative to the adapted temperate 
environment commercial check hybrids (PAN6Q445B, DK78-45BR, 13XH915, and PAN6611). At Cedera 
Research Station, average rank position for grain yield (t/ha) performance highlighted that six experimental 
single-cross hybrids (112, 123, 152, 100, 121, and 95) had a better average rank position placement than the 
adapted best temperate experimental single-cross hybrids (PAN6Q445B). These experimental single-cross hybrids 
had an 8.6-34.1% grain yield (t/ha) advantage relative to the best adapted best commercial check (PAN6Q445B). 
Equally, at Potchefstroom Research Station environment, five experimental hybrid entries (117, 89, 95, 113, and 
61) had significant comparable grain yield (t/ha) performance to best adapted temperate environment commercial 
check hybrids. A 9.2-29.3% grain yield (t/ha) advantage relative to best adapted commercial check hybrid 
(PAN6Q445B).  

 

Table 3. Grain yield performance for top 14% high-yielding experimental single-cross hybrids and commercial 
check hybrid in Population B across and individual environments 

Entry Across A1 Entry Ukulinga A1 Entry Cedera A1 Entry Potchefstroom A1 

112 7.50a 7.34 18 7.74a 1.68 112 14.47a 34.11 117 3.31a 29.34 

95 6.83a -2.26 1 7.42a -2.53 123 12.88ab 19.37 89 3.09a 20.75 

123 6.54a -6.45 153 7.41a -2.60 152 12.61ab 16.82 95 3.08a 20.16 

100 6.43a -7.94 112 7.36a -3.32 100 12.56ab 16.40 113 2.99a 16.84 

121 5.91a -10.68 33 7.28a -4.37 121 12.01ab 11.26 61 2.80a 9.22 

152 5.79a -18.64 110 6.94a -8.77 95 11.72ab 8.62 153 2.34a -8.75 

110 5.58a -19.72 95 5.94a -21.91 153 9.51abc -11.91 121 2.24a -12.65

1 5.36a -22.47 101 5.23a -31.24 61 9.20abc -14.74 123 2.23a -13.04

33 5.32a -23.31 123 4.75a -37.55 110 9.08abc -15.85 100 2.02a -21.05

153 5.18a -24.13 100 4.60a -39.59 89 8.68abc -19.60 1 1.95a -23.98

89 5.15a -25.24 117 4.60a -39.59 101 8.54abc -20.85 110 1.73a -32.38

113 5.02a -28.42 152 4.29a -43.59 113 8.40abc -22.20 152 1.73a -32.38

117 4.74a -35.16 89 4.25a -44.19 1 8.36abc -22.52 112 1.61a -37.07

101 4.36a -36.43 113 4.24a -44.32 117 7.16abc -33.69 93 1.23a -52.10

61 4.25a -38.04 121 3.83a -49.70 93 6.94abc -35.73 98 0.93a -63.55

18 4.20a -38.15 98 3.62a -52.40 33 6.68abc -38.09 18 0.621a -75.74

93 3.71a -40.80 93 3.60a -52.73 98 4.83abc -55.28 33 0.61a -76.32

98 3.52a -44.94 61 2.40a -68.50 18 3.25bc -69.88 101 0.57a -77.69

Mean of population 4.58a 4.47a 7.86abc 1.45a 

Mean of checks 5.88a 5.83a 10.17abc 2.17a 

Check 3 (SC633) 5.83a 4.81a 12.93ab 1.94a 

Check 5 (DK78-45BR) 4.87a 6.19a 7.09abc 2.18a 

Check 4 (13XH915 5.37a 4.64a 9.795abc 1.96a 

Check 1 (PAN6611) 6.22a 5.95a 10.25abc 2.24a 

Check 2 (PAN6Q445B) 6.99a 7.61a 10.79abc 2.56a 

LSD (0.05) 0.02 0.78 1.05 0.44 

CV 26.88 38.05 17.38 14.08 

St dev 0.53 1.66 1.9 0.72 

St error 0.16 2.22 1.39 0.66 

Pr>F ** NS * * 

Note. Means with the same letter in the same column are not significantly different (P > 0.05), A1-Percentage 
grain yield (t/ha) advantage relative to best check entry.  
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advantage over the best adapted commercial check hybrid (PAN6Q445B). Average grain yield (t/ha) 
performance across environments are good indicators of genotypic performance only in the absence of 
Genotype-by-Environment Interaction (Kaya et al., 2006; Balestre et al., 2009). Thus, indicating that these 
experimental single-cross hybrids have the potential to be advanced for further evaluation, possible registration, 
and release in target environments. These selected experimental single-cross hybrids also allow an opportunity to 
explore what makes these hybrids unique and whether they have shared desired economic traits, i.e., 
physiological maturity, drought tolerance, prolificacy, and good standability that is valuable in advancing this 
breeding program.  

Individual environments data for average rank position grain yield (t/ha) performance for Population A 
experimental single-cross hybrids was significantly comparable to adapted commercial check hybrids across all 
the environments (Cedera Research Station, Ukulinga Research Centre, and Potchefstroom Research Station 
environments. Contrary, Population B had Cedera Research Station and Potchefstroom Research Station 
environments as significant environments. Population A data highlighted that at Cedera Research Station 
environment top-placed experimental single-cross hybrids had 0.4 to 12.1% grain yield (t/ha) advantage over the 
best adapted commercial check (PAN6Q445B). At the Ukulinga Research Station environment, the best-placed 
experimental hybrids had a 4.4 to 97.9% grain yield (t/ha) advantage over the best commercial check 
(PAN6Q445B). In comparison, Potchefstroom Research Station environment noted a 3.16 to 3.86% grain yield 
(t/ha) advantage for the best placed experimental hybrids relative to best adapted commercial check hybrid 
(PAN6Q445B). Population B data showed that at the Cedera Research Station environment, the best-placed six 
experimental single cross hybrids had an 8.6 – 34.1% grain yield (t/ha) advantage relative to the best-adapted 
check (PAN6Q445B). 

Similarly, at the Potchefstroom Research Station environment’s top five experimental single-cross hybrid entries 
had a 9.2-29.3% grain yield advantage over the best-adapted commercial check hybrid (PAN6Q445B). This 
group of selected experimental single-cross hybrids for both Population A and B can be advanced for further 
testing as they can out-compete adapted commercial check hybrids. Thus, indicating a possibility for commercial 
registration and release if they are to maintain consistent performance is accompanied by desired economic traits 
(prolificacy, early physiological maturity, and good standability) for target environments. These experimental 
single-cross hybrids also provide an opportunity for the breeding program to explore if they have unique traits 
that can be utilized in advancing the breeding program.  

4.2 GE-Biplots Patterns 

Visualization of which-won-where pattern of multi-environmental trials data is essential for studying the possible 
existence of different mega environment (ME) in a region (Gauch, 2006; Kaya et al., 2006; Jalata et al., 2009; 
Alwala et al., 2010; Jandong et al., 2011; Shim et al., 2015). In this study, visualization of which-won-where 
pattern of multi-environment trials data for experimental single-cross hybrids and commercial check hybrids in 
Population A illustrated that there were six sectors and environments fell into three of them. Two of the 
environments, Potchefstroom Research Station and Ukulinga Research Station, had experimental single-cross 
hybrids 127 and 135 as the vertex hybrids. Most importantly, the vertex hybrids had higher (sometimes the 
highest) grain yield (t/ha) than the other hybrids (experimental single-cross hybrids and commercial check 
hybrids) in all environments that fell in these sectors. Similar results were also reported by (Crossa et al., 2002; 
Kaya et al., 2006). Cedera Research Station environment did not have a vertex hybrid, an indication that no 
hybrid was ideal for this environment. Population B data also had six sectors, and the environments fell into 
three of them. Cedera Research Station, Ukulinga Research Station, and Potchefstroom Research Station 
environments had experimental single-cross hybrids 112, 117, and 18 as the vertex hybrids. Thus, indicating that 
these were the winning hybrids for each respective environment for both Population A and B, with Ukulinga 
Research Station environment discriminating the genotypes more clearly as depicted by higher PC1 scores. GGE 
biplot analysis carried out on Population A, and B identified sites that best represent the target environment for 
these populations. Several similar studies (Balestre et al., 2009; Jalata, 2011; Kaya et al., 2006; Ndhlela, 2012; 
Yan et al., 2010) have been conducted across crops not only to identify high yielding cultivars but also to 
identify sites that best represent the target environments. Selected experimental single-cross hybrids for both 
Population A (127 and 135) and B (112, 117 and 18) in this current study can be advanced for further evaluation 
in the subsequent seasons with a possibility for variety registration and release their selected target 
environments. 
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4.3 Ideal Genotypes 

According to Kaya et al. (2006), and Dehghani et al. (2009), yield potential and stability of genotypes are 
evaluated by an average environment coordination (AEC) method. In this method, an average environment is 
defined by the average PC1 and PC2 scores of all the environments. An ideal genotype should have the highest 
mean grain yield (t/ha) performance and stability across all the environments and may not exist but can be used 
as a reference for genotype evaluation (Yan and Tinker, 2006). In Population A, experimental single-cross hybrid 
257 was close to ideal, while experimental single-cross hybrid 127 was the highly undesirable entry. In 
Population B, experimental single-cross hybrid 121 was defined as the ideal genotype, and in contrast, 
experimental single-cross hybrid 18 was defined as the highly undesirable entry. The ideal experimental 
single-cross hybrids in Population A (257) and B (121) can be used in future similar projects as a reference in 
selecting for maize genotypes that are defined as ideal genotypes.  

4.4 Ideal Environment 

An ideal testing environment should have the ability to discriminate genotypes in terms of the main genotypic 
effect during evaluation. This environment should have large PC1 scores and small PC2 scores, together with 
approach 100%, and may not exist in reality, but it can be used as a reference for genotype selection in 
multi-location trials (Kaya et al., 2006). In Population A and B, both environments were not ideal environments 
for these entries. However, they can be used to define the most favourable environment that can be used for 
evaluating high yield potential. In the current study, Ukulinga Research Station was defined as the ideal 
environment for Population A. In comparison, Cedera Research Station was defined as the ideal environment for 
Population B.  

4.5 Mean Yield and Stability of the Genotypes 

Average-environment coordination (AEC) view of the GGE biplot in Population A indicated that experimental 
hybrid entry 1 was highly stable across the three environments. While experimental single-cross hybrids 135, 
281and 127 were highly unstable highly stable across the three environments. Population B, experimental 
single-cross hybrid 161, was highly stable across environments. In contrast, experimental single-cross hybrid 117 
and 112 were highly unstable across the three environments.  

5. Conclusion 

Experimental single-cross hybrids 225, 89, 246, and 43 in Population A and 112 in Population B had better 
average rank position for grain yield (t/ha) performance across environments and grain yield (t/ha) grain yield 
(t/ha) advantage over the best adapted commercial check hybrid (PAN6Q445B) of 0.9-6.7% and 7.3% for 
Population A and B, respectively. These selected experimental single-cross hybrids can also be advanced for 
further evaluation with a possibility for identifying high yielding experimental single-cross hybrids for variety 
registration and release in target environments in South Africa if they even have desired economic traits. In terms 
of stability, experimental single-cross hybrids 1 and 161 in populations A and B, respectively, were defined as 
highly stable hybrids across environments. Experimental single-cross hybrids 257 (Population A) and 121 
(Population B) were identified as the ideal hybrids.  
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