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Abstract 
To mitigate low maize productivity, improve on-farm planning and policy implementation, the right fertilizer 
combinations and yield forecasting should be prioritized. Therefore, this research aimed at assessing the effect of 
applying different nutrient combinations on maize growth and yield and in-season grain yield prediction from 
biomass and normalized difference vegetation index (NDVI) readings. The research was done in Embu and 
Kirinyaga counties, in Central Kenya. Nutrient combinations tested were P+K, N+K, N+P, N+P+K, and 
N+P+K+Ca+Mg+Zn+B+S. The results showed consistently lowest and highest NDVI reading, dry biomass, and 
grain yields due to P+K and N+P+K+Ca+Mg+Zn+B+S treatments, respectively. Positive NDVI responses of 
56%, 14%, 15%, and 15% were recorded with N, P, K, and combined Ca+Mg+Zn+B+S, respectively. These 
nutrients, in the same order, recorded 54%, 20%, 8%, and 18% positive responses with biomass. The GreenSeeker 
NDVI reading with grain yield and aboveground dry biomass with grain yield recorded R2 ranging from 
0.23-0.53 and 0.30-0.61 (in Embu), and 0.31-0.64 and 0.30-0.50 (in Kirinyaga), respectively. When data were 
pooled, the prediction strength increased, reaching a maximum of 67% and 58% with NDVI and biomass, 
respectively. Yield prediction was even more robust when the independent variables were combined through 
multiple linear model at both 85 and 105 days after emergence. From this research, it is evident that the effects of 
balanced fertilizer application are detectable from NDVI readings—providing a tool for tracking and monitoring 
nutrient management effects—not just from the nitrogen perspective as commonly studied but from the 
combined effects of multiple nutrients. Also, grain yield could be accurately predicted early before harvesting by 
combining NDVI and biomass yields.  
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1. Introduction 

Maize (Zea mays) is a vital crop in the livelihoods of families in Sub-Saharan Africa (SSA). The crop is a source 
of food, livestock feed, fuel, and thatching materials, among other uses. As a food, maize is the most consumed 
crop in the region with annual per capita consumption ranging from 31 to 180 kg per person (Awika, 2011; Abate 
et al., 2015; Kornher, 2018). As a result, food security is always defined based on the availability of maize in 
these countries. Across Africa, the production has increased in terms of acreages but yields have remained 
relatively low, less than 2 t ha-1, under conventional farmers’ practices (Otieno et al., 2020). Breaking this cycle 
of low maize yield and food insecurity requires investments in breeding high yielding and stress-tolerant crop 
varieties, accurate weather forecasting, optimal soil and water management and other emerging technologies that 
optimize resource use. In responding to this need, researchers have come up with various interventions ranging 
from soil acidity management (Otieno et al., 2018; Fontoura et al., 2019), manure application (Naramabuye et al., 
2008; Otieno et al., 2018), inorganic fertilizer application (Otieno, 2019; Otieno et al., 2020), to soil water 
management through reduced tillage and mulching (Murungu et al., 2011; Otieno et al., 2020). Most of these 
strategies and technologies have resulted in increased grain yield. Farmers and policymakers always wait until 
the dry harvesting stages to estimate the yields before proceed to draft and implement new plans and policies in 
the region. This method of assessing and measuring yields after harvesting usually comes late, leading to poor 
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food insecurity mitigation planning and budgeting by governments and policy-makers. Thus, researchers are 
coming up with strategies to help in the early detection of possible constraints and likely expected yields based 
on in-season crop behaviors—yield forecasting. The importance of yield forecasting has been summarized by 
Habyarimana et al. (2019): provides data to governmental structures, companies, and farmers, which results in 
strategic advantages such as the rationalization of policy adjustments, price predictions and stabilization, 
efficient agricultural trade, and simplification of business operations particularly through planning harvest and 
delivery of the product, better deployments of machinery and logistics, and better management at the end-user 
level. The commonly used methods of weather, pest, disease and yield forecasting are crop modeling and remote 
sensing. These forecasting methods use parameters such as normalized difference vegetation index (NDVI), leaf 
area index, and fraction of absorbed photosynthetically active radiation (fAPAR) (Diouf et al., 2015; Kross et al., 
2015; Ngoune et al., 2020). These technologies have evolved and converted into simpler farm tools and 
equipment for daily use by farmers. For instance, GreenSeeker NDVI equipment, a cheap hand-held remote 
sensing tool farmers are currently using to make in-season assessment of daily crop health (Verhulst & Govaerts, 
2010; Sultana et al., 2014; Kitić et al., 2019; Ngoune & Mutengwa, 2020). However, farmers in Africa, and 
Kenya in particular, have not been able to use the GreenSeeker NDVI tool to assess the health of their crops and 
make rapid yield predictions early in the season for prompt farm budgeting and decision making. Thus the region 
is left out in the use of the technology. And this has exposed farmers and the entire population to chronic food 
insecurity that would otherwise be managed to some extent. Several researchers have used GreenSeeker NDVI 
equipment in fertilizer management and yield forecasting tool—reporting significant positive relationship 
between NDVI and crop N demand (Xia et al., 2016; Ali et al., 2018), biomass prediction (Xia et al., 2016) and 
grain yield prediction (Sultana et al., 2014; Fernandez-Ordoñez & Soria-Ruiz, 2017). This shows the usefulness 
of the tool in nutrient management and yield forecasting. In terms of plant health and nutrient management, 
however, most research has focused on nitrogen use efficiency only (Teboh et al., 2012; Quebrajo et al., 2015; 
Vergara-Díaz et al., 2016), leaving other nutrients unaccounted for in balanced nutrient requirements for 
improved crop production. Again, a few researches have looked at the effects of different nutrient combinations 
on crop’s NDVI at different growth stages and how this translates to yield. This research therefore, aimed at 
investigating this effect. Again, researchers have shown relationships between crop NDVI and biomass and 
NDVI and grain yield through linear regression models. However, there are no evaluations done to show the 
effect of combining NDVI reading with its corresponding biomass on grain prediction in Sub-Saharan Africa. 
This gap could be explored for possible stronger yield predictions. Due to the above research gaps, this research 
therefore, aimed at assessing the effect of applying different nutrient combinations on maize growth and yield. It 
also evaluated the potential of in-season grain yield prediction from biomass and NDVI recording. The 
combination of different nutrients at plot level is important as it, to some extent, portrays the likely heterogeneity 
in maize growing conditions and interactions between nutrients between farms that have always complicated the 
expression in NDVI reading. 

2. Material and Methods 
2.1 Description of the Study Site 

The trials were carried out in Kenya Agricultural and Livestock Research Organization (KALRO), Embu 
research station located in Embu County (Referred as Embu hereafter), and Kirinyaga Technical Institute (KTI) 
research fields located in Kirinyaga County (Referred as Kirinyaga hereafter). These sites cover agriculturally 
important zones where farmers predominantly grow maize as a source of food. The sites were located in the 
Upper Wet Mid Altitude Mega-environment. The sites are characterized by bi-modal rainfall patterns, 
experiencing wet seasons from March to June (long rain season) and September to December (short rain season). 
The annual rainfall ranges from 930 mm to 1550 mm. The daily mean temperature is about 18 ºC in Embu and 
23 ºC in Kirinyaga. The soils in these sites are predominantly Humic Nitisols with clay-loam texture, deep and 
good water-holding capacity (Jaetzold & Schmidt, 1983). Other site-specific soil fertility characteristics of the 
study sites were as reported by Otieno et al. (2020). The research was done during the 2013/2014 short rains and 
2014 long rains seasons. 

2.2 Experimental Design and Treatments 

The experiment was laid out in a randomized complete block design with each treatment replicated six times. 
Each plot measured 8 m × 10 m with a space of 1.5 m and 1 m left between blocks and plots, respectively. 
Between blocks, a trench of 1 m wide and 1 m deep was dug to reduce the chances of nutrients flowing within 
the soil profile from one plot to the other. The treatments comprised of different nutrient combinations: P+K, 
N+K, N+P, N+P+K, and N+P+K+Ca+Mg+Zn+B+S. Nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), 
magnesium (Mg), zinc (Zn), boron (B), and sulfur (S) nutrients were applied at the rates of 120, 40, 40, 10, 10, 5, 



jas.ccsenet.org Journal of Agricultural Science Vol. 13, No. 1; 2021 

167 

5 and 26.3 kg ha-1, respectively. The nutrients were supplied from urea, triple superphosphate, muriate of potash, 
calcium sulfate, magnesium sulfate, zinc sulfate, borax, and sulfate sources, respectively. These rates were 
chosen to ensure maize growth was no limited by nutrients and to target at least 6 tons of grains per hectare. 
Nitrogen was applied in three equal splits (at planting, V4, and V10 stages of maize vegetative growth) while the 
rest of the nutrients were applied at planting. Maize variety, DK 8031, was selected and used for the trials in all 
sites. This maize variety was selected due to its extensive use in the region and adaptability to the prevailing 
climatic conditions. 

2.3 Agronomic Practices 

The research was done during the 2013/2014 short rains and 2014 long rains seasons. During the 2013/2014 
short rain season, DK 8031 maize variety was planted to deplete nutrients from the plots to reduce huge 
variability due to already present nutrients. Tilling of plots was done a week to the 2014 long rain season using 
hand-hoes. After three consecutive rains, maize planting was done at 75 cm by 25 cm spacing using a calibrated 
planting string. At planting, fertilizers were placed in planting holes then mixed with soil before placing seeds to 
avoid direct contact with fertilizer. Two maize seeds were planted per socket and thinned to one plant per socket 
seven days after emergence to maintain a population of about 53,000 plants per hectare. The first and second 
weeding and topdressing (on plots that received N) were done at V4 and V10 stages of maize growth. Pests and 
diseases were monitored regularly. At 30 days after emergence, Bulldock (Beta-Cyfluthrin 0.5 g/kg) pesticide 
was applied at the rate of 6 kg ha-1 to control stalk borers. During pesticide application, all protection measures 
as outlined by Otieno (2019) were observed. After maturity stage, dried cobs were harvested manually.  

2.4 Data Collection 

Maize Normalized Difference Vegetation Index (NDVI): Maize NDVI measurements were taken with 
GreenSeeker™ Handheld Optical Active Sensor (Trimble Navigation Limited, Sunnyvale, California, USA). The 
sensor emits brief bursts of red and infrared light and then measures the amount of each type of light that is 
reflected back from the plant; the measuring process continues as long as the trigger remains engaged 
(https://agriculture.trimble.com). The NDVI reading (ranging from 0.00 to 0.99) is displayed on the LCD screen 
of the equipment. The strength of the detected light is used to indicate the crop health; the higher the reading, the 
healthier the plants could be assumed to be. The NDVI measurements were taken at 40, 65, 85, and 105 days 
after emergence (DAE) in the central rows of all plots. Three readings were taken within each plot, leaving two 
maize rows from both edges. These readings were then averaged to give a plot reading.  

Biomass production: Aboveground biomass production was assessed at 40, 65, 85, and 105 DAE. Biomass 
production from each treatment was computed from a sub-plot measuring 4.69 m2 and a subsample containing 
chopped leaves and stalks weighing 500 g dried at 65 ºC to a constant dry weight. These weights were then used 
to compute dry biomass production per hectare using Dobermann and Walters (2005) formula. 

Grain yield: Yields were computed from a net plot measuring 3.75 m by 4 m (15 m2) taken from the center of 
each treatment plot leaving at least 2 m on each side of the net plot to minimize the edge effects. After harvesting, 
total plants and cob numbers were recorded, and total cob weight was determined in the field using a digital 
scale accurate to 2 decimal places. All cobs were shelled, mixed thoroughly, and a sub-sample of 1 kg grain 
(fresh weight) taken for further drying to a constant weight at 12% moisture content (dry weight). These weights 
were then used to compute grain yield production per hectare. 

2.5 Statistical Analysis 

Collected data were subjected to analysis of variance (ANOVA) using Genstat statistics software, 15th version. 
Where F tests were significant, means were compared using Fisher’s protected least significance difference 
(L.S.D.) procedure at p ≤ 0.05. The NDVI and biomass averages were then used to assess nutrient responses for 
individual nutrients and their combinations. Several simple and multiple linear regression models were 
investigated and compared for each site and pooled data. These regression models were done to establish the 
relationship between NDVI, biomass, and grain yield. Graphical presentations were done using excel package. 

3. Results and Discussion 
3.1 Effect of the Site and Nutrient Combinations on GreenSeeker Normalized Difference Vegetation Index 
(NDVI) 

In Kirinyaga, the NDVI readings were 0.05 and 0.02, significantly higher than those recorded in Embu at 40 and 
65 DAE respectively. However, this changed at 85 and 105 DAE, where Embu recorded 0.01 and 0.15 higher 
readings. The change in NDVI recordings was because during the first eight weeks after planting, Kirinyaga site 
received higher rainfall than Embu site, after which the latter site received more rainfall than the former site 
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Figure 3. Maize GreenSeeker normalized difference vegetation index (NDVI) response to N, P, K, and combined 
secondary and micro-nutrients (Mg+Ca+S+Zn+B) application. The responses were calculated from the pooled 

data across Embu and Kirinyaga sites 

 

Table 1. The interactive effect between site and nutrient combination on maize GreenSeeker normalize difference 
vegetation index (NDVI) readings at 40, 65, 85, and 105 days after emergence (DAE) in Embu and Kirinyaga 
sites 

Nutrient combination  
40 DAE 65 DAE 85 DAE  105 DAE 

Embu Kirinyaga Embu Kirinyaga Embu Kirinyaga  Embu Kirinyaga

P+K 0.38 0.46 0.45 0.48 0.56 0.53  0.40 0.24 

N+K 0.44 0.50 0.54 0.55 0.58 0.58  0.45 0.29 

N+P 0.45 0.51 0.52 0.54 0.58 0.57  0.43 0.29 

N+P+K 0.47 0.52 0.55 0.55 0.60 0.60  0.47 0.32 

N+P+K+Zn+B+Mg+Ca+S 0.49 0.52 0.57 0.59 0.67 0.62  0.49 0.34 

L.S.D.( S × NC) 0.051 0.034 0.027  0.043 

P-value(S × NC) 0.819 0.474 0.472  0.946 

CV% 9.2 5.5 3.9  9.9 

 
3.2 Effect of Site and Nutrient Combinations on Aboveground Dry Biomass Production 

The site significantly influenced dry biomass production (p < 0.001) (Figure 4) and by fertilizer application (p < 
0.001) at 65, 85 and 105 DAE only (Table 2). Biomass production at 40 and 65 DAE was 0.19 and 1.8 t ha-1, 
respectively, higher in Kirinyaga than in Embu while at 85 and 105 DAE, the trend changed and biomass was 
1.15 and 1.42 t ha-1, respectively, higher in Embu than in Kirinyaga (Figure 4). This trend is similar to that 
observed with NDVI readings and is attributed mainly to rain variations between sites. 

The biomass increased from 40 DAE and peaked at 85 DAE before decreasing towards 105 DAE. This trend was 
observed both in Embu and Kirinyaga. This finding agrees with that reported by Otieno (2019) while evaluating 
the growth and yield response of maize to a wide range of nutrients on ferralsols of western Kenya. Similarly, in 
Central Brazil, Baldé et al. (2011) reported an increase in maize leaf area which peaked between 80-100 days 
before declining in size towards 180 days after planting. As cells increase in size and multiply in number, maize 
plants grow and thus increase in size. Consequently, the leaf area increases in size and number, and more 
photosynthates are accumulated resulting in high biomass production until the maximum size is attained (Bair, 
1942; Kohl et al., 2017).  

At 40 DAE, the effect of applying different nutrient combinations yielded non-significant differences in 
aboveground dry biomass. This could be due to low nutrients demanded by young maize seedlings. Hence the 
amounts that were supplied by the soil were optimal in keeping the same growth rate. As plants grow, the 
demand for nutrients increases leading to a slow growth rate for plants that cannot access adequate nutrients. At 
65 DAE, P+K treatment recorded significantly lower dry biomass than all other treatments except N+K 
combination. Both N+P+K and N+P+K+Zn+B+Mg+Ca+S treatments recorded similar biomass. Throughout the 
growth stages, P+K and N+P+K+Zn+B+Mg+Ca+S treatments, respectively, recorded significantly lower and 
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Figure 5. Maize biomass yield response to N, P, K, and combined secondary and micronutrients 

(Mg+Ca+S+Zn+B) application. The responses were calculated after pooling the data across  
Embu and Kirinyaga sites 

 

The interaction between the site (S) and nutrient combination (NC) did not result in a significant difference in 
biomass production (Table 2).  The numerically lowest biomass yields were recorded at 40 DAE, while the 
highest at 85 DAE. The biomass production varied between 0.25 and 0.64, 5.15 and 8.51, 12.35 and 17.45, and 
8.19 and 13.11 t ha-1 at 40, 65, 85 and 105 DAE respectively. 

 

Table 2. Interactive effect between site and nutrient combination on maize dry biomass yield (t ha-1) at 40, 65, 85, 
and 105 days after emergence (DAE) in Embu and Kirinyaga trial sites 

Nutrient combination 
40 DAE 65 DAE 85 DAE  105 DAE 

Embu Kirinyaga Embu Kirinyaga Embu Kirinyaga  Embu Kirinyaga

P+K 0.25 0.38 5.64 7.37 12.94 12.35  10.27 8.19 

N+K 0.28 0.52 6.15 7.90 15.38 15.03  11.38 11.03 

N+P 0.36 0.53 5.85 7.91 15.38 13.71  11.38 9.71 

N+P+K 0.39 0.57 6.40 8.03 15.89 14.64  12.27 11.21 

N+P+K+Zn+B+Mg+Ca+S 0.43 0.64 6.67 8.51 17.45 15.58  13.11 11.15 

L.S.D.(S × NC) 0.09 0.72 0.95  0.93 

p-value(S × NC) 0.660 0.934 0.049  0.050 

CV% 19.3 8.8 5.6  7.3 

 

3.3 Effect of the Site and Nutrient Combination on Maize Grain Yield 

Site and nutrient combinations significantly affected grain yields (Table 3). The N+P+K+Zn+B+Mg+Ca+S 
treatment generally had significantly higher grain yield than N+K, N+P, and P+K across all sites and NPK 
treatment in Embu. The P+K treatment had a lower grain yield than N+P treatment at Kirinyaga. Nutrient 
combinations N+K, N+P, P+K, and N+P+K, were not significantly different in grain yield at Embu. At Kirinyaga 
site, no significant differences were recorded among N+P+K+Zn+B+Mg+Ca+S, N+P+K, N+K, and N+P 
treatments. There was no significant interaction effect observed between site and nutrient combinations. The 
positive effect of combining primary, secondary, and trace nutrients on grain yields has been confirmed in Ghana 
by Kugbe et al. (2019) and in Kenya by Muthaura et al. (2017), Njoroge et al. (2018), and Otieno (2019). 
Secondary and micro-nutrients are increasingly becoming important in Kenyan soils. Kihara et al. (2016) reported 
strong response to the application of secondary and micronutrients in the high and intermediate response classes in 
Kenya and other countries in Sub-Saharan Africa. Otieno (2019) also reported strong responses due to the 
application of Ca, Mg, Zn, B, and S in western Kenya. 
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Table 3. Effect of site and nutrient combination on maize grain yield (t ha-1) at Embu and Kirinyaga 

Nutrient Combination Embu  Kirinyaga Mean 

P+K 5.00  4.20 4.60 

N+K 5.10  4.50 4.80 

N+P 5.10  4.70 4.90 

N+P+K 5.20  4.70 4.95 

N+P+K+Zn+B+Mg+Ca+S 5.70  4.80 5.25 

Mean 5.22  4.58  

L.S.D.(Site-S) 0.49   

L.S.D.NC 0.35   

L.S.(S × NC) 0.95   

p-valueS <0.001   

p-valueNC 0.013   

p-value(S × NC) 0.076   

 

3.4 Predicting Maize Grain Yield from GreenSeeker Normalized Difference Vegetation Index (NDVI) Reading 
and Aboveground Dry Biomass 

The in-season precision of predicting grain yield varied between sites and independent variables considered 
(Table 4). In all sites, there were significant positive relationships between grain and GreenSeeker NDVI reading 
and between grain and biomass. The GreenSeeker NDVI readings and aboveground dry biomass produced R2 
ranging from 0.23-0.53 and 0.30-0.61 (in Embu), and 0.31-0.64 and 0.30-0.50 (in Kirinyaga) respectively. The 
use of NDVI reading in predicting grain yields has been reported by several researchers (Sultana et al., 2014; 
Fernandez-Ordoñez & Soria-Ruiz, 2017; Maresma et al., 2020). The pooled GreenSeeker NDVI readings and 
aboveground biomass data recorded significant positive prediction of grain yield (Figure 6). The GreenSeeker 
NDVI were significant at 65 (p < 0.0001), 85 DAE (P = 0.0185) and 105 DAE (P < 0.0001) while aboveground 
dry biomass was significant at 65, 85 and 105 DAE (P < 0.0001). Both GreenSeeker NDVI reading and biomass 
showed an increasing strength in predicting maize grain as the measurements were taken towards crop 
maturation; R2 ranged between 0.0007 (at 40 DAE) and 0.6683 (at 105 DAE) in the case of NDVI and between 
0.0077 (40 DAE) and 0.57 (at 105 DAE) in the case of dry biomass (Figure 6). These R levels are well within 
the ranges reported by other researchers, 0.32-0.78 (Sultana et al., 2014; Naser et al., 2020). Whether at the 
individual sites or pooled data, stronger yield predictions were recorded from those variables collected towards 
the reproductive stages from 85 days and the best at 105 days after emergence. These findings resonate with 
those reported by Maresma et al. (2020) who concluded that best yield predictions are obtained by scanning 
maize at or after V10 stage of growth. Fernandez-Ordoñez & Soria-Ruiz (2017) also found strong yield 
prediction when NDVI was recorded at flowering. During the assessment of the usefulness of spectral 
reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions, Royo et al. 
(2003) concluded that the milky-grain stage is the best depictive stage for recording NDVI as it is more directly 
related to yield than earlier measurements. 

When NDVI was combined with biomass collected at corresponding growth stages, the strength of grain 
prediction increased tremendously (Table 5) compared to when the relationship was considered at the individual 
site levels (Table 4 and Figure 6). In-season prediction of grain yield was very strong from 85 DAE (adjusted R 
= 0.706) to 105 DAE (adjusted R = 0.841). This could be due to the synergy resulting from the individual 
variables all linking towards grain prediction. Although there is no previous work showing this kind of prediction, 
Royo at al. (2003) found that combining NDVI with other parameters like reflectance at 550 nm (R550), water 
index (WI), photochemical reflectance index (PRI), structural independent pigment index (SIPI), and simple 
ratio (SR) explained a 95.7% of yield variability jointly when all the experiments were analyzed together 
compared to 17-65.2% when regressions were analyzed separately. 
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