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Abstract 
The impact of climate change on crop growth and yield can be predicted using crop simulation models. A study 
was conducted to assess the reliability and uncertainty of simulated maize yield for the near future in 2050s at 
Mount Makulu (latitude = 15.550o S, longitude = 28.250o E, altitude = 1213 m), Zambia. The Long Ashton 
Research Station Weather Generator (LARS-WG) was used to generate baseline (1980-2010) and future 
(2040-2069) climate scenarios for two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Results 
showed that mean temperature would increase by 2.09oC (RCP 4.5) and 2.56oC (RCP 8.5) relative to the baseline 
(1980-2010). However, rainfall would reduce by 9.84% (RCP 4.5) and 11.82% (RCP 8.5). The CERES-Maize 
model simulated results for rainfed maize growth showed that the simulated parameters; days after planting 
(DAP), biomass and grain yield would reduce from 2040-2069/1980-2010 under both RCP4.5 and RCP8.5 
scenarios. The LARS-WG was successfully for our location can be used in generating climate scenarios for 
impact studies to inform policy, stakeholders and decision makers. Adaptation strategies to mitigate for the 
potential impact of climate change includes several sowing dates, cultivar selection that are efficient at using 
nitrogen fertilizer and planting new cultivars breeds that will thrive under low root soil water content and higher 
temperatures. 
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1. Introduction 
Climate change and climate variability are affecting agriculture, energy, water resources, and hydrology, health 
(Fernandes et al., 2011). Increasing CO2 levels, rising temperature, and variability in precipitation amounts and 
patterns are affecting crop growth and yield. Climate change is defined as a statistically significant variation in 
either the mean state of the climate or in its variability, persisting for an extended period, which may be due to 
natural variability or as a result of human activities (IPCC, 2013). Climate variability refers to the climatic 
parameter of a region varying from its long-term mean (AMCEN, 2011). The characteristics of climate change 
are extreme weather events and an increase in climate variability (Manyeruke & Mhandara, 2013; Semenov & 
Stratonovitch, 2015; ZaAS, 2013). Global Climate Models (GCMs) from the Intergovernmental Panel on 
Climate Change (IPCC) are tools used for representing future climate conditions. Still, their coarse spatial 
resolution (100-300 km) is at a large scale to assess impacts in agriculture production systems (Osman et al., 
2014). As a consequence, there is a need to bridge the gap between the large scale variables (predictors) and 
local scale variables (predictands). Downscaling techniques try to adapt the coarse GCM (50-400 km) output to 
the local level scale of a given region (Sen, 2010).  

Maize (Zea mays L.) is a significant cereal crop after wheat and rice cultivated in warmer temperate and humid 
subtropical regions by small-holder and commercial farmers (Lukeba et al., 2013; Nurudeen, 2011). It is used by 
humans, livestock, and as a raw material in some industrial products. In sub-Saharan Africa, the absence of 
adaptive capacities and inter-seasonal rainfall variability amongst smallholder farmers are limitations in rain-fed 
agricultural production (Waongo et al., 2015). The Fifth Assessment Report by IPCC noted that an increase of 
temperature by 4 oC or more in the 21st century poses risks on global food security, and this requires an 
interdisciplinary and integrated approach. A comprehensive assessment of the impact of climate change on crop 
growth and yield is vital to inform planners and policy makers. It is estimated globally, that projected changes in 
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temperature and rainfall would reduce maize production from 3-10% by 2050 (Thornton & Cramer, 2012). 
Globally, 80% of land under agriculture is rainfed (Turral et al., 2011). However, 70% of the world population 
that inhabits 80% of agricultural lands are poor due to low and variable productivity (Alemaw & Simalenga, 
2015). The impact of climate change on maize yield has been studied extensively worldwide. Two approaches 
are usually used: crop simulation models and statistical downscaling tools. Crop simulation models consider the 
baseline and future effects of climate change on crop yield.  

There are two downscaling techniques that are used: dynamical and statistical. Dynamical downscaling 
techniques (10-50 km) are used to solve the governing equations of the atmosphere on a finer grid numerically, 
while statistical downscaling tools are used to establish empirical relationships between local (predictands) and 
large-scale (predictors) variables (Hughes et al., 2014). There are three types of statistical downscaling types, 
namely: weather classification, regression models, and stochastic weather generators (Wilby et al., 2004; Wilby 
& Dawson, 2004). In statistical downscaling, 20-35 years of daily observed weather records are required as it 
provides the full variability of the observed climate and allows the downscaling tools to better model climate 
changes (Mckague et al., 2005). A computationally inexpensive statistical downscaling tool used in generating 
local scale climate scenarios based on global or regional climate models for impact assessments of climate 
change is the Long Ashton Research Station Weather Generator (LARS-WG). LARS-WG has been well 
validated in under different climates around the world, including Zambia (Chisanga et al., 2017; Semenov et al., 
1998; Wang, 2015). (Semenov et al., 1998) noted that LARS-WG should be evaluated to ensure that the 
generated synthetic data are suitable for the intended use. Climate change impact assessments are usually 
undertaken at a large spatial scale. As a result, local-scale impact and adaptation potentials under which farmers 
operated are not taken into consideration. 

The changes in meteorological parameters on crop growth and yield can be studied using stochastic weather 
generators and crop models. LARS-WG has been used to generate climate scenarios as inputs into the Sirius 
wheat and STICS models (Butterworth et al., 2009; Evans et al., 2010; Semenov et al., 2009, 2007). The 
literature reviewed indicated insufficient research on the local-scale impact of climate change and variability 
using climate scenarios generated using LARS-WS as inputs into the CERES-Maize model. The climate 
scenarios generated using LARS-WG can be used in crop yield forecasting and in hydrological modeling. The 
LARS-WG can be used to provide real-time transient climate scenarios for forecasting crop growth and yield in 
Zambia. Linking a stochastic weather generator (LARS-WG) to crop models has been proposed by (Wang, 2015). 
The CERES-Maize model has been evaluated at field level and in many countries (Chisanga et al., 2015; Gaydon 
et al., 2012; Tsimba et al., 2013) and it is a widely used reference maize model (Lizaso et al., 2011). The 
CERES-Maize model has been used in exploring new cultivar potential and optimum sowing dates without 
carrying out costly field experiments (Bationo et al., 2012; Chisanga et al., 2015; Soler et al., 2005). The study 
objectives were: to identify the temperature and rainfall trends for Mount Makulu; and to investigate the 
reliability of rainfed maize yield using 3 CMIP5 GCMs and CERES-Maize model at Mount Makulu, Zambia. 

2. Materials and Methods 
2.1 Description of the Study Site and Weather Data 

Mount Makulu Central Research Station, Zambia (latitude = 15.550o S, longitude = 28.250o E, altitude = 1213 m) 
is located in Chilanga, off Kafue road in Agro-Ecology Region II (AERII). Its climate described as a wet and dry 
tropical and sub-tropical and is modified by altitude (MTENR, 2010). The climatic class for Mount Makulu, 
according to Koeppen Climate Class is Warm Temperate Climate with dry winter and hot summer (Cwa). The 
site receives between 800 to 1,000 mm of annual rainfall and represents 42% of the country. The observed 
weather data for the baseline (1980-2010) was obtained from the Agricultural Modern-Era Retrospective 
Analysis for Research and Applications (AgMERRA) Climate Forcing Dataset for Agricultural Modeling (Ruane 
et al., 2015). The AGMERRA data is stored at 0.25° × 0.25° horizontal resolution (~25 km), with global 
coverage. The baseline (1980-2010) is of particular importance for agricultural modeling efforts due to the 
necessity to calibrate models for improved inter-comparison and can be used to statistically and dynamically 
construct future climate scenarios.  
2.2 Description of DSSAT-CERES-Maize Model 

The Decision Support Systems for Agrotechnology Transfer (DSSAT) version 4.6 (Hoogenboom et al., 2010; 
Jones et al., 2010, 2003) was used in this study. The DSSAT-CERES (Crop Environmental Resource Synthesis) 
Maize model is a process-oriented, management level model designed to simulate maize phenology, dry matter 
partitioning, yield, root-soil water, soil temperature, and nitrogen dynamics at a field scale on a daily time step 
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from inputs of climate data, management, genotype and soil (Jones & Kiniry, 1986; Jones et al., 2003; Keating et 
al., 1988).  

2.3 Description of LARS-WG  

The Long Ashton Research Station Weather Generator (LARS-WG) is a stochastic weather generator which can 
be used for the simulation of weather data at a single site for the baseline and future climate conditions (Racsko 
et al., 1991; Semenov et al., 1998; Semenov & Brooks, 1999). LARS-WG uses the semi-empirical distributions 
for the lengths of daily solar radiation, daily rainfall, and wet and dry day series (Semenov & Barrow, 2002). 
Daily weather data of 30 years is recommended to determine robust statistical parameters (Mckague et al., 2005). 
Daily minimum and maximum temperatures are considered as stochastic processes with daily means and daily 
standard deviations conditioned on the wet or dry status of the day. The seasonal cycles of means and standard 
deviations are modelled by finite Fourier series of order three and the residuals are approximated by a normal 
distribution. The Fourier series for the mean is fitted to the observed mean values for each month (Semenov & 
Stratonovitch, 2015). LARS-WG uses a semi-empirical distribution to model solar radiation. More details on 
LARS-WG are provided by Semenov et al. (1998), Semenov and Barrow (2002, 1997), and Semenov and 
Stratonovitch (2015).  

2.4 Generating the Baseline and Future Climate Scenarios 

The process of generating local-scale daily climate scenario data using LARS-WG v6 is divided into two steps: 
Site Analysis; and Generator (Semenov and Barrow, 2002; Semenov and Stratonovitch, 2010). The baseline data 
(observed station data [1980-2010] were used to perform site analysis and to generate synthetic daily weather 
data using three global climate models (GCMs) (HadGEM2-ES, MIROC5, and MPI-ESM-MR) (Semenov & 
Stratonovitch, 2015) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) shown in Table 1. 
The sit parameter file created under Site Analysis was used by the Generator in LARS-WG to generate 30 years 
of synthetic daily precipitation, minimum and maximum temperature for Mount Makulu for the time slice 
1980-2010 and 2040-2069 under RCP4.5 and RCP8.5. The baseline synthesis weather data statistically 
resembled the observed station weather data.  

 

Table 1. Coupled Model Intercomparison Project Phase 5 (CMIP5) subset GCMs considered under AgMIP 

Modeling Centre Country Model Grid resol Res 

Met Office Hadley Centre UK-Exeter HadGEM2-ES 1.25 × 1.88 MR 
Atmosphere and Ocean Research Institute (University of Tokyo), 
National Institute for Environmental Studies and Japan Agency 
for Marine-Earth Science and Technology 

Japan MIROC5 1.39 × 1.41 HR 

Max Planck Institute for Meteorology (MPI-M) Germany MPI-ESM-LR 1.85 × 1.88 MR 

 

2.5 Plant Materials 

The maize cultivars, PHB 30G19, PHB 30B50, and ZMS 606 are medium maturity of 120-130 days. PHB30B50 is 
recommended to be grown under irrigation while PHB30G19 and ZMS 606 can be grown under irrigated and 
rainfed conditions in Zambia, respectively. PHB30G19 and PHB30B50 are white and yellow cultivars, 
respectively, produced by Pioneer. The ZMS 606 is excellent drought tolerance maize caltivar. The selected 
cultivars have a long commercial life, adaptability, good heat, and drought resistance, and they can be applied in 
different locations at local-scale using crop simulation models.  

2.6 Simulating Crop Growth and Yield 

The precipitation and temperature annual means were computed using a multi-model ensemble under RCP4.5 
and RCP8.5 scenarios. The synthetic time series ensemble data were used as inputs into the CERES-Maize 
model version 4.7. The crop model was used to simulate maize growth and grain yield using the baseline 
(1981-2010) and future (2040-2069) climate scenarios. Three maize cultivars, three sowing dates (PDs), and 
three nitrogen fertilizer levels (120 [N1], 240 [N2] and 360 [N3] kg/ha NPK 10-20-10 [N, P2O5, K2O]) were 
applied as a basal dressing at the date of sowing. The 120 (N1), 240 (N2) and 360 (N3) kg urea (46% N) was 
applied as a top dressing. A calibrated and validated CERES-Maize model was used to run the simulation using 
seasonal analysis.  
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2.7 Data Analysis 

The observed and synthetic (generated) weather data for the baseline were compared using 
Kolmogorov-Simirnov (K-S) test (Equation 1), T-test (Equation 2), and F-test (Equation 3). The K-S test, T-test, 
and F-test were used to compare the probability distribution, means, and standard deviations, respectively. The 
coefficient of determination (R2) of a linear regression model is the quotient of the variances of the observed (obs) 
and generated (gen). The K-S, T-test, F-test, and R2 were computed using Equations 1, 2, 3, and 4 below, 
respectively: 

D = MaximumหFn1(X) – Fn2(X)ห                             (1) 

where, n1 = observed data, n2 = generated data. 

t = 
xത1	– xത2ඨ s1
2

n1	– 1
	– 

s2
2

n2	– 1

                                    (2) 

where, xത1 and xത2 are the means of the two datasets (observed and generated), Δ is the difference between the 
population means (0 if testing for equal means), s1

2 and s2
2 are the standard deviations of the two datasets, and ݊ଵ	and ݊ଶ	are the sizes of the two dataset. The number of degrees of freedom for the problem is smaller of n1 – 

1 and n2 – 1.  

F = 
s1
2

s2
2                                       (3) 

where, s1
2 is variance of the observed data; s2

2 is variance of the generated data.  

R2 = 
∑ (G෡ i – Gഥ)

2∑ (Oi – Oഥ)
2                                    (4) 

where, Oi is denoted as the observed values, Oഥ and Gഥ as the means of the observed and generated values. 

Standard deviation (SD), coefficient of variation (CV = SD/mean), and mean were calculated for the baseline, 
RCP4.5 and RCP8.5 30-year simulation. These metrics were used to assess inter-annual maize yield variability. 
Smaller CVs or SDs corresponded to low risks linked to climate change.  

3. Results and Discussion 
3.1 Calibration of LARS-WG 

Long Ashton Research Station Weather Generator (LARS-WG) version 6 incorporates climate projections from 
the multi-model ensembles of GCMs used in the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC). LARS-WG version 6 integrates baseline (1980-2010) site parameters (Semenov and 
Stratonovitch, 2015). In LARS-WG, the GCMs are not directly applied, but the models apply proportionally 
local station climate parameters (rainfall, temperature and solar radiation) which are adjusted based on relative 
monthly changes in rainfall amount, daily wet and dry series duration, mean temperature and standard deviation 
between the baseline and future climate predicted by a GCM (Hassan & Harun, 2013; Khan et al., 2006). Local 
site climate parameters are adjusted proportionately to represent climate change (Khan et al., 2006). 

3.2 KS-Test for Seasonal Distributions: Effective N, KS Statistic and p-Value at Mount Makulu 

The suitability of LARS-WG v6.0 in simulating rainfall, temperature and solar radiation are shown in Figures 1 
and 2. The K-S statistics for seasonal wet/dry and daily rainfall distribution were fitted well by the LARS-WG 
v6.0 used in this study for DJF (wet/dry), MAM (dry), JJA (dry), and SON (dry) and JFMAMJJAOND (Figure 
1). Nonetheless, the performance of LARS-WG used in this study was poor for seasonal wet (MAM and JJA) 
and daily rainfall distribution (September) due to lack of rainfall in those months. The LARS-WG v6.0 used in 
this study is capable of simulating the seasonal distributions of the wet/dry spells and daily rainfall distributions 
for Mount Makulu. Similar results have been reported by Chisanga et al. (2017), Hassan et al. (2014) and Qian et 
al. (2004). Temperature and solar radiation parameters were accurately simulated as shown in Figures 2a, 2b, 2c, 
and 2d. Stochastic weather generators generate synthetic weather data that have statistical properties similar to 
the observations (Qian et al., 2004). A study by Chisanga et al. (2017) also found similar results and are in 
agreement with the findings of this study. A study by Wang (2015) in Korea concluded that data generated by the 
LARS-WG reflected the regional climate characteristics very well. The LARS-WG has been applied in countries 
such as the United States, Canada, Europe, Asia and Africa (Chisanga et al., 2017; Hassan & Harun, 2013; 
Heydari et al., 2013; Qian et al., 2005; Semenov et al., 1998; Semenov & Brooks, 1999). Their findings revealed 
that the weather generator performed well in distributing the wet and dry series. It has also been used in climate 
change impact assessments at local scale. 
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Table 2. Standard deviation and mean maize biomass and grain yield for the baseline (1980-2010) and future 
(2040-2069) scenarios (t ha-1)  

Treatment 
Baseline RCP4.5 RCP8.5 

tops sd grain sd tops cv grain cv tops cv grain cv 

PD1_ZMS606_N1 10.67 1.16 6.38 0.86 8.67 0.09 5.15 0.09 9.15 0.09 5.39 0.11
PD1_ZMS606_N2 10.83 1.70 6.45 1.39 8.56 0.09 4.65 0.14 9.08 0.09 5.16 0.13
PD1_ZMS606_N3 11.31 1.72 6.77 1.42 9.32 0.10 5.53 0.13 9.44 0.10 5.57 0.13
PD2_ZMS606_N1 10.67 1.16 6.38 0.86 8.64 0.08 5.13 0.09 9.15 0.09 5.39 0.11
PD2_ZMS606_N2 10.83 1.70 6.45 1.39 8.56 0.09 4.65 0.14 9.08 0.09 5.16 0.13
PD2_ZMS606_N3 11.31 1.72 6.77 1.42 9.32 0.10 5.53 0.13 9.44 0.10 5.57 0.13
PD3_ZMS606_N1 10.67 1.16 6.38 0.86 8.64 0.08 5.13 0.09 9.15 0.09 5.39 0.11
PD3_ZMS606_N2 10.83 1.70 6.45 1.39 8.56 0.09 4.65 0.14 9.08 0.09 5.16 0.13
PD3_ZMS606_N3 11.31 1.72 6.77 1.42 9.32 0.10 5.53 0.13 9.44 0.10 5.57 0.13
PD1_P30G19_N1 11.31 1.14 6.40 0.94 8.83 0.08 5.10 0.11 9.64 0.10 5.42 0.16
PD1_P30G19_N2 10.86 1.58 5.91 1.17 8.38 0.12 4.26 0.19 9.29 0.09 4.84 0.16
PD1_P30G19_N3 11.26 1.41 6.08 1.04 9.25 0.09 5.00 0.16 10.01 0.10 5.51 0.16
PD2_P30G19_N1 11.31 1.14 6.40 0.94 8.83 0.08 5.10 0.11 9.64 0.10 5.42 0.16
PD2_P30G19_N2 10.86 1.58 5.91 1.17 8.38 0.12 4.26 0.19 9.29 0.09 4.84 0.16
PD2_P30G19_N3 11.26 1.41 6.08 1.04 9.25 0.09 5.00 0.16 10.01 0.10 5.51 0.16
PD3_P30G19_N1 11.31 1.14 6.40 0.94 8.83 0.08 5.10 0.11 9.64 0.10 5.42 0.16
PD3_P30G19_N2 10.86 1.58 5.91 1.17 8.38 0.12 4.26 0.19 9.29 0.09 4.84 0.16
PD3_P30G19_N3 11.26 1.41 6.08 1.04 9.25 0.09 5.00 0.16 10.01 0.10 5.51 0.16
PD1_P30B50_N1 10.60 0.79 6.64 0.40 8.60 0.07 5.20 0.05 9.44 0.07 5.91 0.07
PD1_P30B50_N2 11.66 1.14 7.95 0.93 9.32 0.08 6.10 0.12 9.87 0.09 6.48 0.11
PD1_P30B50_N3 11.90 1.24 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 6.26 0.10
PD2_P30B50_N1 10.60 0.79 6.64 0.40 8.60 0.07 5.20 0.05 9.44 0.07 5.91 0.07
PD2_P30B50_N2 11.66 1.14 7.95 0.93 9.32 0.08 6.10 0.12 9.87 0.09 6.48 0.11
PD2_P30B50_N3 11.90 1.24 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 6.26 0.10
PD2_P30B50_N1 10.60 0.79 6.64 0.40 8.60 0.07 5.20 0.05 9.44 0.07 5.91 0.07
PD2_P30B50_N2 11.66 1.14 7.95 0.93 9.32 0.08 6.10 0.12 9.87 0.09 6.48 0.11
PD2_P30B50_N3 11.90 1.24 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 6.26 0.10

Note. sd: standard deviation; cv: coefficient of variation; tops: biomass yield (t ha-1); grain: grain yield (t ha-1). 

 

4. Conclusion 
This study considered the impact of climate change, sowing date, cultivar and nitrogen fertilizer rate effect on 
maize yield and yield components. Future climate (2040-2069) scenarios for Mount Makulu indicate a hotter and 
drier climate. Seasonal rainfall based on multi-ensemble mean would reduce under RCP4.5 (JFM = -0.81 mm; 
OND = -3.62 mm) and RCP8.5 (JFM = 0.32 mm; OND = -4.92 mm). However, the mean seasonal temperature 
would increase under both future climate scenarios (RCP4.5 and RCP8.5) relative to the baseline. An increase in 
temperature with corresponding reduction in rainfall would lead to a reduced number of DAP to anthesis and 
physiological maturity. The reduced number of DAP would reduce maize biomass and grain yield in 
2040-2069/1980-2010. 

Treatments receiving lower N rates (ZMS606 and PHB30B50) would out-perform those receiving higher N rates 
during the 2050s. Fertilizer treatment rate (N2) effect on ZMS606 and PHB30G19 would have higher reduction 
in grain yield compared to N1 and N2 at all sowing dates. Cultivar PHB30B50 with N3 would experience higher 
reduction in grain yield compared to N1 and N2. The PHB30G50 cultivar is specifically bred to be grown under 
irrigated conditions. The reduction in rainfall would have an impact on growth and yield of PHB30B50 at higher 
fertility compared to lower fertility. Lower rates of nitrogen fertilizer (67.02 kg N ha-1) had smaller coefficient of 
variation and standard deviation that corresponded to low risks associated with change in temperature and 
rainfall. Cultivars receiving higher nitrogen fertilizer rates had higher coefficient of variation and exhibit high 
unreliability under future climate scenarios. The adaptation and mitigation strategies required to cope with the 
effects of climate change impacts on maize growth and yield include adjustment in sowing dates, nitrogen 
fertilizer application rates, management practice and breeding for genotypes that are resilient to climate change. 
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