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Abstract

The impact of climate change on crop growth and yield can be predicted using crop simulation models. A study
was conducted to assess the reliability and uncertainty of simulated maize yield for the near future in 2050s at
Mount Makulu (latitude = 15.550° S, longitude = 28.250° E, altitude = 1213 m), Zambia. The Long Ashton
Research Station Weather Generator (LARS-WG) was used to generate baseline (1980-2010) and future
(2040-2069) climate scenarios for two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Results
showed that mean temperature would increase by 2.09°C (RCP 4.5) and 2.56°C (RCP 8.5) relative to the baseline
(1980-2010). However, rainfall would reduce by 9.84% (RCP 4.5) and 11.82% (RCP 8.5). The CERES-Maize
model simulated results for rainfed maize growth showed that the simulated parameters; days after planting
(DAP), biomass and grain yield would reduce from 2040-2069/1980-2010 under both RCP4.5 and RCPS8.5
scenarios. The LARS-WG was successfully for our location can be used in generating climate scenarios for
impact studies to inform policy, stakeholders and decision makers. Adaptation strategies to mitigate for the
potential impact of climate change includes several sowing dates, cultivar selection that are efficient at using
nitrogen fertilizer and planting new cultivars breeds that will thrive under low root soil water content and higher
temperatures.
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1. Introduction

Climate change and climate variability are affecting agriculture, energy, water resources, and hydrology, health
(Fernandes et al., 2011). Increasing CO, levels, rising temperature, and variability in precipitation amounts and
patterns are affecting crop growth and yield. Climate change is defined as a statistically significant variation in
either the mean state of the climate or in its variability, persisting for an extended period, which may be due to
natural variability or as a result of human activities (IPCC, 2013). Climate variability refers to the climatic
parameter of a region varying from its long-term mean (AMCEN, 2011). The characteristics of climate change
are extreme weather events and an increase in climate variability (Manyeruke & Mhandara, 2013; Semenov &
Stratonovitch, 2015; ZaAS, 2013). Global Climate Models (GCMs) from the Intergovernmental Panel on
Climate Change (IPCC) are tools used for representing future climate conditions. Still, their coarse spatial
resolution (100-300 km) is at a large scale to assess impacts in agriculture production systems (Osman et al.,
2014). As a consequence, there is a need to bridge the gap between the large scale variables (predictors) and
local scale variables (predictands). Downscaling techniques try to adapt the coarse GCM (50-400 km) output to
the local level scale of a given region (Sen, 2010).

Maize (Zea mays L.) is a significant cereal crop after wheat and rice cultivated in warmer temperate and humid
subtropical regions by small-holder and commercial farmers (Lukeba et al., 2013; Nurudeen, 2011). It is used by
humans, livestock, and as a raw material in some industrial products. In sub-Saharan Africa, the absence of
adaptive capacities and inter-seasonal rainfall variability amongst smallholder farmers are limitations in rain-fed
agricultural production (Waongo et al., 2015). The Fifth Assessment Report by IPCC noted that an increase of
temperature by 4 °C or more in the 21st century poses risks on global food security, and this requires an
interdisciplinary and integrated approach. A comprehensive assessment of the impact of climate change on crop
growth and yield is vital to inform planners and policy makers. It is estimated globally, that projected changes in
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temperature and rainfall would reduce maize production from 3-10% by 2050 (Thornton & Cramer, 2012).
Globally, 80% of land under agriculture is rainfed (Turral et al., 2011). However, 70% of the world population
that inhabits 80% of agricultural lands are poor due to low and variable productivity (Alemaw & Simalenga,
2015). The impact of climate change on maize yield has been studied extensively worldwide. Two approaches
are usually used: crop simulation models and statistical downscaling tools. Crop simulation models consider the
baseline and future effects of climate change on crop yield.

There are two downscaling techniques that are used: dynamical and statistical. Dynamical downscaling
techniques (10-50 km) are used to solve the governing equations of the atmosphere on a finer grid numerically,
while statistical downscaling tools are used to establish empirical relationships between local (predictands) and
large-scale (predictors) variables (Hughes et al., 2014). There are three types of statistical downscaling types,
namely: weather classification, regression models, and stochastic weather generators (Wilby et al., 2004; Wilby
& Dawson, 2004). In statistical downscaling, 20-35 years of daily observed weather records are required as it
provides the full variability of the observed climate and allows the downscaling tools to better model climate
changes (Mckague et al., 2005). A computationally inexpensive statistical downscaling tool used in generating
local scale climate scenarios based on global or regional climate models for impact assessments of climate
change is the Long Ashton Research Station Weather Generator (LARS-WG). LARS-WG has been well
validated in under different climates around the world, including Zambia (Chisanga et al., 2017; Semenov et al.,
1998; Wang, 2015). (Semenov et al., 1998) noted that LARS-WG should be evaluated to ensure that the
generated synthetic data are suitable for the intended use. Climate change impact assessments are usually
undertaken at a large spatial scale. As a result, local-scale impact and adaptation potentials under which farmers
operated are not taken into consideration.

The changes in meteorological parameters on crop growth and yield can be studied using stochastic weather
generators and crop models. LARS-WG has been used to generate climate scenarios as inputs into the Sirius
wheat and STICS models (Butterworth et al., 2009; Evans et al., 2010; Semenov et al., 2009, 2007). The
literature reviewed indicated insufficient research on the local-scale impact of climate change and variability
using climate scenarios generated using LARS-WS as inputs into the CERES-Maize model. The climate
scenarios generated using LARS-WG can be used in crop yield forecasting and in hydrological modeling. The
LARS-WG can be used to provide real-time transient climate scenarios for forecasting crop growth and yield in
Zambia. Linking a stochastic weather generator (LARS-WG) to crop models has been proposed by (Wang, 2015).
The CERES-Maize model has been evaluated at field level and in many countries (Chisanga et al., 2015; Gaydon
et al., 2012; Tsimba et al., 2013) and it is a widely used reference maize model (Lizaso et al., 2011). The
CERES-Maize model has been used in exploring new cultivar potential and optimum sowing dates without
carrying out costly field experiments (Bationo et al., 2012; Chisanga et al., 2015; Soler et al., 2005). The study
objectives were: to identify the temperature and rainfall trends for Mount Makulu; and to investigate the
reliability of rainfed maize yield using 3 CMIP5 GCMs and CERES-Maize model at Mount Makulu, Zambia.

2. Materials and Methods
2.1 Description of the Study Site and Weather Data

Mount Makulu Central Research Station, Zambia (latitude = 15.550° S, longitude = 28.250° E, altitude = 1213 m)
is located in Chilanga, off Kafue road in Agro-Ecology Region II (AERII). Its climate described as a wet and dry
tropical and sub-tropical and is modified by altitude (MTENR, 2010). The climatic class for Mount Makulu,
according to Koeppen Climate Class is Warm Temperate Climate with dry winter and hot summer (Cwa). The
site receives between 800 to 1,000 mm of annual rainfall and represents 42% of the country. The observed
weather data for the baseline (1980-2010) was obtained from the Agricultural Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA) Climate Forcing Dataset for Agricultural Modeling (Ruane
et al.,, 2015). The AGMERRA data is stored at 0.25° x 0.25° horizontal resolution (~25 km), with global
coverage. The baseline (1980-2010) is of particular importance for agricultural modeling efforts due to the
necessity to calibrate models for improved inter-comparison and can be used to statistically and dynamically
construct future climate scenarios.

2.2 Description of DSSAT-CERES-Maize Model

The Decision Support Systems for Agrotechnology Transfer (DSSAT) version 4.6 (Hoogenboom et al., 2010;
Jones et al., 2010, 2003) was used in this study. The DSSAT-CERES (Crop Environmental Resource Synthesis)
Maize model is a process-oriented, management level model designed to simulate maize phenology, dry matter
partitioning, yield, root-soil water, soil temperature, and nitrogen dynamics at a field scale on a daily time step
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from inputs of climate data, management, genotype and soil (Jones & Kiniry, 1986; Jones et al., 2003; Keating et
al., 1988).

2.3 Description of LARS-WG

The Long Ashton Research Station Weather Generator (LARS-WGQG) is a stochastic weather generator which can
be used for the simulation of weather data at a single site for the baseline and future climate conditions (Racsko
et al., 1991; Semenov et al., 1998; Semenov & Brooks, 1999). LARS-WG uses the semi-empirical distributions
for the lengths of daily solar radiation, daily rainfall, and wet and dry day series (Semenov & Barrow, 2002).
Daily weather data of 30 years is recommended to determine robust statistical parameters (Mckague et al., 2005).
Daily minimum and maximum temperatures are considered as stochastic processes with daily means and daily
standard deviations conditioned on the wet or dry status of the day. The seasonal cycles of means and standard
deviations are modelled by finite Fourier series of order three and the residuals are approximated by a normal
distribution. The Fourier series for the mean is fitted to the observed mean values for each month (Semenov &
Stratonovitch, 2015). LARS-WG uses a semi-empirical distribution to model solar radiation. More details on
LARS-WG are provided by Semenov et al. (1998), Semenov and Barrow (2002, 1997), and Semenov and
Stratonovitch (2015).

2.4 Generating the Baseline and Future Climate Scenarios

The process of generating local-scale daily climate scenario data using LARS-WG v6 is divided into two steps:
Site Analysis; and Generator (Semenov and Barrow, 2002; Semenov and Stratonovitch, 2010). The baseline data
(observed station data [1980-2010] were used to perform site analysis and to generate synthetic daily weather
data using three global climate models (GCMs) (HadGEM2-ES, MIROCS, and MPI-ESM-MR) (Semenov &
Stratonovitch, 2015) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) shown in Table 1.
The sit parameter file created under Site Analysis was used by the Generator in LARS-WG to generate 30 years
of synthetic daily precipitation, minimum and maximum temperature for Mount Makulu for the time slice
1980-2010 and 2040-2069 under RCP4.5 and RCP8.5. The baseline synthesis weather data statistically
resembled the observed station weather data.

Table 1. Coupled Model Intercomparison Project Phase 5 (CMIP5) subset GCMs considered under AgMIP

Modeling Centre Country Model Grid resol Res
Met Office Hadley Centre UK-Exeter HadGEM2-ES 1.25x1.88 MR
Atmosphere and Ocean Research Institute (University of Tokyo), Japan MIROCS 1.39 x1.41 HR

National Institute for Environmental Studies and Japan Agency
for Marine-Earth Science and Technology

Max Planck Institute for Meteorology (MPI-M) Germany MPI-ESM-LR  1.85x1.88 MR

2.5 Plant Materials

The maize cultivars, PHB 30G19, PHB 30B50, and ZMS 606 are medium maturity of 120-130 days. PHB30B50 is
recommended to be grown under irrigation while PHB30G19 and ZMS 606 can be grown under irrigated and
rainfed conditions in Zambia, respectively. PHB30G19 and PHB30B50 are white and yellow cultivars,
respectively, produced by Pioneer. The ZMS 606 is excellent drought tolerance maize caltivar. The selected
cultivars have a long commercial life, adaptability, good heat, and drought resistance, and they can be applied in
different locations at local-scale using crop simulation models.

2.6 Simulating Crop Growth and Yield

The precipitation and temperature annual means were computed using a multi-model ensemble under RCP4.5
and RCP8.5 scenarios. The synthetic time series ensemble data were used as inputs into the CERES-Maize
model version 4.7. The crop model was used to simulate maize growth and grain yield using the baseline
(1981-2010) and future (2040-2069) climate scenarios. Three maize cultivars, three sowing dates (PDs), and
three nitrogen fertilizer levels (120 [N1], 240 [N2] and 360 [N3] kg/ha NPK 10-20-10 [N, P,0s, K,O]) were
applied as a basal dressing at the date of sowing. The 120 (N1), 240 (N2) and 360 (N3) kg urea (46% N) was
applied as a top dressing. A calibrated and validated CERES-Maize model was used to run the simulation using
seasonal analysis.
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2.7 Data Analysis
The observed and synthetic (generated) weather data for the baseline were compared using
Kolmogorov-Simirnov (K-S) test (Equation 1), T-test (Equation 2), and F-test (Equation 3). The K-S test, T-test,
and F-test were used to compare the probability distribution, means, and standard deviations, respectively. The
coefficient of determination (R?) of a linear regression model is the quotient of the variances of the observed (obs)
and generated (gen). The K-S, T-test, F-test, and R? were computed using Equations 1, 2, 3, and 4 below,
respectively:

D = Maximum|F,,;(X) - Fn(X)| 1)

where, n; = observed data, n, = generated data.

t= L% )

np—1 B np—1
where, X; and X, are the means of the two datasets (observed and generated), A is the difference between the
population means (0 if testing for equal means), s7 and s3 are the standard deviations of the two datasets, and
n, and n, are the sizes of the two dataset. The number of degrees of freedom for the problem is smaller of n; —
land n, — 1.
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where, s? is variance of the observed data; s3 is variance of the generated data.
~ =2
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where, O; is denoted as the observed values, O and G as the means of the observed and generated values.

Standard deviation (SD), coefficient of variation (CV = SD/mean), and mean were calculated for the baseline,
RCP4.5 and RCP8.5 30-year simulation. These metrics were used to assess inter-annual maize yield variability.
Smaller CVs or SDs corresponded to low risks linked to climate change.

3. Results and Discussion
3.1 Calibration of LARS-WG

Long Ashton Research Station Weather Generator (LARS-WG) version 6 incorporates climate projections from
the multi-model ensembles of GCMs used in the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC). LARS-WG version 6 integrates baseline (1980-2010) site parameters (Semenov and
Stratonovitch, 2015). In LARS-WG, the GCMs are not directly applied, but the models apply proportionally
local station climate parameters (rainfall, temperature and solar radiation) which are adjusted based on relative
monthly changes in rainfall amount, daily wet and dry series duration, mean temperature and standard deviation
between the baseline and future climate predicted by a GCM (Hassan & Harun, 2013; Khan et al., 2006). Local
site climate parameters are adjusted proportionately to represent climate change (Khan et al., 2006).

3.2 KS-Test for Seasonal Distributions: Effective N, KS Statistic and p-Value at Mount Makulu

The suitability of LARS-WG v6.0 in simulating rainfall, temperature and solar radiation are shown in Figures 1
and 2. The K-S statistics for seasonal wet/dry and daily rainfall distribution were fitted well by the LARS-WG
v6.0 used in this study for DJF (wet/dry), MAM (dry), JJA (dry), and SON (dry) and JFMAMIJAOND (Figure
1). Nonetheless, the performance of LARS-WG used in this study was poor for seasonal wet (MAM and JJA)
and daily rainfall distribution (September) due to lack of rainfall in those months. The LARS-WG v6.0 used in
this study is capable of simulating the seasonal distributions of the wet/dry spells and daily rainfall distributions
for Mount Makulu. Similar results have been reported by Chisanga et al. (2017), Hassan et al. (2014) and Qian et
al. (2004). Temperature and solar radiation parameters were accurately simulated as shown in Figures 2a, 2b, 2c¢,
and 2d. Stochastic weather generators generate synthetic weather data that have statistical properties similar to
the observations (Qian et al., 2004). A study by Chisanga et al. (2017) also found similar results and are in
agreement with the findings of this study. A study by Wang (2015) in Korea concluded that data generated by the
LARS-WG reflected the regional climate characteristics very well. The LARS-WG has been applied in countries
such as the United States, Canada, Europe, Asia and Africa (Chisanga et al., 2017; Hassan & Harun, 2013;
Heydari et al., 2013; Qian et al., 2005; Semenov et al., 1998; Semenov & Brooks, 1999). Their findings revealed
that the weather generator performed well in distributing the wet and dry series. It has also been used in climate
change impact assessments at local scale.
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Figure 1. K-S-test for seasonal wet/dry SERIES distribution for Mount Makulu
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Figure 2. K-S test for daily rainfall, minimum, and maximum temperature and solar radiation distributions for
Mount Makulu

3.3 Monthly Means and Standard Deviations for Temperature, Rainfall and Solar Radiation at Mount Makulu

Comparisons between the monthly mean and standard deviation for temperature, rainfall and solar radiation are
shown in Figure 3. The results showed very good performance of LARS-WG in fitting the monthly means of
temperature, rainfall and solar radiation statistics giving coefficient of determinations and correlation coefficients
approximately equal to unit. The R* for the mean monthly rainfall and temperature (tmax and tmin) and solar
radiation had strong linear relationship between observed and generated (synthetic) data. The LARS-WG used in
this study was able to reproduce the mean monthly solar radiation. A study by (Wang, 2015) in Korea reported
similar results. The maximum and minimum temperatures generated by LARS-WG were closer to the observed
baseline values. LARS-WG was able to accurately simulate mean monthly temperature and rainfall amounts for
Mount Makulu. (Ababaei et al., 2010) agrees with the findings of this study in his study. He also observed that
LARS-WG was able to reproduce observed values, especially daily distributions and mean monthly values.

The standard deviation showed an excellent performance for minimum temperature, solar radiation and rainfall
(Figure 3). It has been observed that the means and standard deviations for daily synthetic weather data are
supposed to be non-significantly different from the observations (Qian et al., 2003). It is also important that
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synthetic weather series follow a probability distribution which is not statistically different from the observed
time series. The maximum temperature monthly standard deviations of the generated values were under
estimated. Similar results have been reported by (Semenov et al., 1998; Semenov & Brooks, 1999) and this is
one of the limitation of LARS-WG. Maximum temperature is taken as a stochastic process where monthly means
and standard deviations are conditioned on the wet or dry status of the day (Semenov et al., 1998).
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Figure 3. Monthly means and standard deviations for minimum and maxim temperature, rainfall and solar
radiation at Mount Makulu

3.4 Future Climate Scenarios

The mean annual rainfall and temperature change were projected using 3 GCMs for 2040-2069 (RCP4.5 and
RCP8.5 scenarios) relative to 1980-2010. Future climate scenarios for Mount Makulu indicate a hotter and drier
climate as shown in Figure 4. The change in rainfall from 2040-2069 relative to 1980-2010 would be -11.64 mm
and -15.24 mm under RCP4.5 and RCP8.5 scenarios, respectively. The mean temperature change relative to the
baseline would be 1.81 °C (RCP4.5) and 2.46 °C (RCP8.5). Since the assumed CO, emissions are higher under
RCP8.5 (541 ppm) compared to RCP4.5 (487 ppm), there are generally higher changes in temperatures and
rainfall as shown in Figure 4 and Figure 5.

Seasonal sum rainfall would also reduce under RCP4.5 (JFM = -0.81 mm; AMJ = 0.56 mm; JAS = -0.02 mm;
OND = -3.62 mm) and RCP8.5 (JFM = 0.32 mm; AMJ = -0.40 mm; JAS = -0.08 mm; OND = -4.92 mm).
However, the mean seasonal temperature would increase under RCP4.5 (JFM = 1.46 °C; AMJ = 1.74 °C; JAS =
1.87 °C; OND = 2.19 °C) and RCP8.5 (JEM = 2.09 °C; AMJ = 2.54 °C; JAS = 2.34 °C; OND = 2.86 °C). The
ensemble means based on 3 GCMs showed a decrease in seasonal rainfall in under RCP4.5 (JFM and OND) and
RCP8.5 (OND) (Figure 5). The projected temperature increase under both scenarios (RCP4.5 and RCP8.5) at
Mount Makulu are suitable for growing maize. It has been reported that maize grows well between 15 and 35 °C
(Araya et al., 2015). The projected mean temperature (19.84-28.56 °C [RCP4.5]; 20.24-28.76 °C [RCP8.5]) for
Mount Makulu are within the thresholds reported by (Araya et al., 2015). A study by (Chen et al., 2012) in Sudan
using LARS-WG also predicted decreasing and increasing trends in rainfall and temperature, respectively.
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Boxplot of mean temperature during the baseline and future scenarios (a)
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Figure 4. Boxplots of annual changes in temperature and rainfall

B rain hist
W en_rain_rcpd5
35 M en_rain_rcpss
— tmax_hist
— en_tmax_rcp435
en_tmax_rcp85
—— tmin_hist
—— en_tmin_rcp45
en_tmin_rcp85
solar_hist
en_solar_rcp4s
—— en_solar_rcp85

150

100

Temp (deg C)

N
Sept Oct Nov Dec

o S .
Figure 5. Comparison of monthly rainfall and temperature for baseline (1980-2010) and 2040-2069
(RCP4.5, RCP8.5) for Mt Makulu

3.5 Impact of Climate Scenarios on Maize Yield
3.5.1 Phenological Stages

Results show that the phenological stages at all treatment levels (days after planting [DAP]) would reduce
relative to the baseline as shown in Figure 6 and Figure 7. The observed maize cultivar maturity ranges from
120-130 DAP. Maize growth, development and yield depends on temperature and soil water. Temperature
increases lead to rapid accumulation of growing degree days and therefore, crop growth and development are
faster. This results in the reduction of DAP or the duration of the phenological phase. Changes in rainfall and
temperature would affect maize cultivar phenology differently. The increase in temperature and reduction in
rainfall would cause the maize crop to develop faster and reach anthesis and maturity earlier during the 2050s.
The simulated number of DAP during the baseline for the three maize cultivars would be different. The maize
cultivars (ZMS606 [anthesis = 44.57; maturity = 101.73]; PHB30G19 [anthesis = 46.73; maturity = 105.3];
PHB30B50 [anthesis = 43.87; maturity = 99.97]) used in this study with longer duration to anthesis and maturity

281



jas.ccsenet.org

Journal of Agricultural Science

Vol. 12, No. 11;2020

would experience reduced DAP in 2050s. The simulated percent reduction in anthesis and maturity for the
ZMS606, PHB30G19 and PHB30B50 would be higher under RCP8.5 compared to RCP4.5 scenario as shown in
Figure 6 and Figure 7. A reduction in the number of DAP to anthesis and maturity have also been observed by

Lin et al. (2015) and Zhang et al. (2015).
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model relative to the baseline (1980-2010)
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3.5.2 Biomass and Grain Yield

Results shown in Figure 8 and Figure 9 indicate that biomass and grain yield would reduce under RCP4.5 and
RCP8.5 scenarios relative to the baseline. Biomass and grain yield are between the -1 and +1 standard deviation.
This indicates that 68.26% of the yield values lie in the first standard deviation of the normal distribution curve.
Maize cultivars (ZMS606 (-27.94 to -18.41% [RCP4.5]; -19.99 to -15.64% [RCPS8.5]), PHB30G19 (-27.88 to
-17.68% [RCP4.5]; -18.12 to -9.34% [RCP8.5]) and PHB30B50 (-25.32 to -21.81% [RCP4.5]; -22.13 to -11.13%
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[RCP8.5])) would behave differently under future climate scenarios. Two climatic factors that are directly altered
by climate change and affect maize growth, development and yield are rainfall and temperature. Increased
temperature in future would enable grain crops to mature more quickly and this would shorten the number of
DAP to anthesis and physiological maturity resulting in reduced grain yield. Climate change induced by CO,
enrichment is likely to affect plant growth, development and yield differently depending on the cultivar.
PHB30G19 would perform better under RCP8.5 compared to RCP4.5 scenarios. As discussed above, carbon
dioxide enrichment in the atmosphere may enhance grain yield under RCP8.5 (541 ppm) compared to RCP4.5
(487 ppm). Rainfall and air temperature effects are accentuated under higher fertility (nitrogen fertilizer rates)
compared to lower fertility as shown in Figure 8 and Figure 9. Treatments receiving lower N rates (ZMS606 and
PHB30B50) would out-perform those receiving higher rates during the 2050s. Fertilizer treatment rate (N2)
effect on ZMS606 and PHB30G19 would have higher reduction in grain yield compared to N1 and N2 at all
sowing dates. Cultivar PHB30B50 with N3 would experience higher reduction in grain yield compared to N1
and N2. This cultivar (PHB30G50) is specifically bred to be grown under irrigation. The effects of reduced
rainfall would impact on growth and yield of PHB30B50 at higher fertility compared to lower fertility.

The probability of obtaining reduced grain yields in future would make maize unsuitable economically at Mount
Makulu. Projected temperature increase and rainfall variability would reduce maize yield in the range of 3-10%
globally by 2050 (Thornton & Cramer, 2012). Projected rainfall and temperature changes would reduce maize
yield in Africa as a result of reduced DAP and water stress (Adhikari et al., 2015). (Bassu et al., 2014) agrees
with the findings of this study that temperature increase has negative impact on grain yield. (Soussana et al.,
2010) reported that there is limited literature on studies that have focused on modeling maize cultivars with
proper thermal time, crop heat units and resistant to drought to maintain productivity under a changed future
climate. Reduction in rainfall would lead to fluctuation in root soil water content in future (Kang et al., 2009).
Soils with higher water holding capacity would reduce the impact of drought whilst maintaining crop growth and
yield. Crop yield and available soil water are likely to decrease under future climate scenarios as
evapotranspiration increases under higher temperatures.
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Figure 8. Projected% change in biomass yield using CERES-Maize model in 2040-2069/1980-2010
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Figure 9. Projected% change in grain yield using CERES-Maize model in 2040-2069/1980-2010: (a) Baseline
grain yield; (b) 2050 grain yield at RCP4.5; (c) 2050 grain yield at RCP8.5

The average temperature change under RCP4.5 (SD = -0.09) shows higher risks that are linked to climate change.
However, rainfall changes at RCP8.5 (SD = -2.81) scenario shows higher risks linked to climate change. The
standard deviation (SD) and mean grain yield for the baseline (0.40-1.42) and future scenarios are shown in
Table 2. As explained above, the grain yields were predicted to reduce during the 2050s. The standard deviation,
an indicator of uncertainty and variability, was predicted to decrease under the RCP4.5 (0.27-0.83) and RCP8.5
(0.43-0.89). Cultivar PHB30G19 shows the least reliability followed by ZMS606 and PHB30G50 when yield
from sowing dates and N rates are compared. However, the RCP8.5 scenario shows high unreliability.
(Nkomozepi and Chung, 2013) noted that the trouble encountered in predicting accurately the potential impacts
of climate change to grain yields adds to the unreliability. Lower rates of nitrogen fertilizer (67.02 kg N ha™) had
smaller coefficient of variation and standard deviation that corresponded to low risks associated with change in
temperature and rainfall. Cultivars receiving higher nitrogen fertilizer rates had higher coefficient of variation
and exhibit high unreliability under future changed climate.
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Table 2. Standard deviation and mean maize biomass and grain yield for the baseline (1980-2010) and future
(2040-2069) scenarios (t ha™)

Baseline RCP4.5 RCP8.5
tops sd grain  sd tops cv grain  cv tops cv grain  cv
PD1_ZMS606 N1  10.67 1.16 6.38 0.86 8.67 0.09 515 0.09 9.15 0.09 539 0.11
PD1_ZMS606 N2  10.83 1.70 6.45 1.39 856 0.09 465 0.14 9.08 0.09 516 0.13
PD1_ZMS606 N3 1131 1.72 6.77 142 932 0.10 553 0.3 9.44 0.10 557 0.13
PD2 ZMS606 N1  10.67 1.16 6.38 0.86 8.64 0.08 513 0.09 9.15 0.09 539 0.11
PD2 ZMS606 N2  10.83 1.70 6.45 1.39 856 0.09 465 0.14 9.08 0.09 516 0.13
PD2 ZMS606 N3 1131 1.72 6.77 142 932 0.10 553 0.3 9.44 0.10 557 0.13
PD3_ZMS606 N1  10.67 1.16 6.38 0.86 8.64 0.08 513 0.09 9.15 0.09 539 0.11
PD3_ZMS606 N2  10.83 1.70 6.45 1.39 856 0.09 465 0.14 9.08 0.09 516 0.13
PD3_ZMS606 N3 1131 1.72 6.77 142 932 0.10 553 0.3 9.44 0.10 557 0.13
PD1_P30G19_N1 11.31 1.14 640 094 883 0.08 5.10 0.11 9.64 0.10 542 0.16
PD1_P30G19_N2 10.86 1.58 591 1.17 838 0.12 426 0.19 9.29 0.09 484 0.16
PD1_P30G19_N3 1126 141 6.08 1.04 925 0.09 500 0.16 10.01 0.10 551 0.16
PD2_P30G19_N1 11.31 1.14 640 094 883 0.08 5.10 0.11 9.64 0.10 542 0.16
PD2_P30G19_N2 10.86 1.58 591 1.17 838 0.12 426 0.19 9.29 0.09 484 0.16
PD2_P30G19_N3 1126 141 6.08 1.04 925 0.09 500 0.16 10.01 0.10 551 0.16
PD3_P30G19_N1 11.31 1.14 640 094 883 0.08 5.10 0.11 9.64 0.10 542 0.16
PD3_P30G19_N2 10.86 1.58 591 1.17 838 0.12 426 0.19 9.29 0.09 484 0.16
PD3_P30G19_N3 1126 141 6.08 1.04 925 0.09 500 0.16 10.01 0.10 551 0.16
PD1_P30B50 Nl 10.60 0.79 6.64 0.40 8.60 0.07 520 0.05 9.44 0.07 591 0.07
PD1_P30B50 N2 11.66 1.14 795 093 932 008 6.10 0.12 9.87 0.09 648 0.11
PD1_P30B50_N3 1190 124 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 626 0.10
PD2_P30B50_Nl1 10.60 0.79 6.64 0.40 8.60 0.07 520 0.05 9.44 0.07 591 0.07
PD2_P30B50 N2 11.66 1.14 795 093 932 008 6.10 0.12 9.87 0.09 648 0.11
PD2_P30B50_N3 1190 124 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 626 0.10
PD2_P30B50_Nl1 10.60 0.79 6.64 0.40 8.60 0.07 520 0.05 9.44 0.07 591 0.07
PD2_P30B50 N2 11.66 1.14 795 093 932 008 6.10 0.12 9.87 0.09 648 0.11
PD2_P30B50_N3 1190 124 8.04 1.04 9.44 0.08 6.01 0.11 9.76 0.09 626 0.10

Note. sd: standard deviation; cv: coefficient of variation; tops: biomass yield (t ha™); grain: grain yield (t ha™).

Treatment

4. Conclusion

This study considered the impact of climate change, sowing date, cultivar and nitrogen fertilizer rate effect on
maize yield and yield components. Future climate (2040-2069) scenarios for Mount Makulu indicate a hotter and
drier climate. Seasonal rainfall based on multi-ensemble mean would reduce under RCP4.5 (JFM = -0.81 mm;
OND = -3.62 mm) and RCP8.5 (JFM = 0.32 mm; OND = -4.92 mm). However, the mean seasonal temperature
would increase under both future climate scenarios (RCP4.5 and RCPS8.5) relative to the baseline. An increase in
temperature with corresponding reduction in rainfall would lead to a reduced number of DAP to anthesis and
physiological maturity. The reduced number of DAP would reduce maize biomass and grain yield in
2040-2069/1980-2010.

Treatments receiving lower N rates (ZMS606 and PHB30B50) would out-perform those receiving higher N rates
during the 2050s. Fertilizer treatment rate (N2) effect on ZMS606 and PHB30G19 would have higher reduction
in grain yield compared to N1 and N2 at all sowing dates. Cultivar PHB30B50 with N3 would experience higher
reduction in grain yield compared to N1 and N2. The PHB30GS50 cultivar is specifically bred to be grown under
irrigated conditions. The reduction in rainfall would have an impact on growth and yield of PHB30B50 at higher
fertility compared to lower fertility. Lower rates of nitrogen fertilizer (67.02 kg N ha™) had smaller coefficient of
variation and standard deviation that corresponded to low risks associated with change in temperature and
rainfall. Cultivars receiving higher nitrogen fertilizer rates had higher coefficient of variation and exhibit high
unreliability under future climate scenarios. The adaptation and mitigation strategies required to cope with the
effects of climate change impacts on maize growth and yield include adjustment in sowing dates, nitrogen
fertilizer application rates, management practice and breeding for genotypes that are resilient to climate change.
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