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Abstract 
The linear response with plateau (LRP) is widely used in agronomic and agricultural economic studies of crop 
yield response. This empirical example uses data from an under-replicated experiment to compare maize (Zea 
maize L.) yield response to nitrogen under different plant and corridor row spacing. Not all replications received 
a 0-nitrogen rate, making estimation of the LRP difficult because data for the intercept terms is absent. We 
leverage information from other treatments using Bayesian methods to estimate the yield response of each 
treatment using a LRP function, given limited replication and absence of check plots for some treatments. We 
use a linearized LRP, which bypasses using the “min” operator typically required to estimate LRP functions. 
Economically optimal nitrogen rates were determined and net returns from treatments compared from the 
perspective of risk-averse producers. The wide plant/narrow row treatment was most profitable when the 
decision rule was to apply nitrogen. The statistical procedure used here may be useful for exploratory analyses of 
pilot agronomic trials that may include unbalanced and under-replicated treatments.  

Keywords: maize, plant and row spacing, linear response plateau, Bayesian Markov Chain Monte Carlo, 
nitrogen 

1. Introduction 
The linear response with plateau (LRP) model has broad theoretical and practical appeal to both agronomists and 
economists’ study of crop response to inputs. The LRP is based on von Liebig’s law of the minimum, which 
states:  

The crops on a field diminish or increase in exact proportion to the diminution of increase of mineral 
substances conveyed to it in manure…by deficiency or absence of one necessary constituent, all the others 
being present, the soil is rendered barren for all those crops to the life of which that one constituent is 
indispensable (cited in Dillon & Anderson, 1990, p. 81).  

In other words, plant growth occurs at a constant rate with nutrients contributing to its production in fixed 
proportions until some factor becomes limiting (Blackman, 1905; Swanson, 1963). A horizontal plateau over a 
range of input levels depicts this situation (Grimm et al., 1987). From an agronomic perspective, with good prior 
information about growing conditions, soil type, and plant growth, Linear Response Plateau (LRP) models 
require only three input levels for identification; check plots and two additional application rates (Babcock et al., 
1996). 

Numerous agronomic studies have used the LRP to estimate plant response to fertilizer inputs and to determine 
corresponding biological and/or economically optimal application rates. Dillon and Anderson (1990) cite 17 
studies in their review of the LRP. Mangiafico and Guillard (2005) determined optimal nitrogen applications for 
turf grass using the LRP function. Tembo et al. (2008) used a stochastic version of the LRP to estimate optimal 
nitrogen fertilizer rates for wheat over multiple growing seasons. Haque et al. (2009) estimated LRP functions to 
identify nutrient-efficient perennial grass species and optimal nitrogen application rates. Tumusiime et al. (2011) 
used a stochastic LRP to determine optimal nitrogen rates for rye and ryegrass. Boyer et al. (2012) used a LRP to 
determine profit-maximizing nitrogen rates for switchgrass, while Haankuku et al. (2014) used the LRP function 
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to estimate forage sorghum yield response to nitrogen. Harmon et al. (2016) used LRP functions to determine 
economically optimal potassium fertilizer rates for cotton. Dhakal et al. (2019) used a LRP to estimate carryover 
dynamics of nitrogen on cotton yield response.  

We estimate maize yield response to nitrogen planted at different row widths with a LRP using Bayesian 
procedures. Estimation of the LRP with Bayesian methods is not new. Holloway and Paris (2002) were first to 
apply Bayesian procedures to estimate the LRP. Ouedrago and Brorsen (2018) estimated a stochastic plateau 
function with a hierarchical Bayesian model to determine the optimal nitrogen rates for winter wheat. The 
advantage of using Bayesian methodology in this application is that prior information on treatment yields can 
address problems arising from under-replication and unbalanced experimental designs. The experimental data 
used in this application was from a randomized complete block design with three nitrogen applications of four 
treatments, but it was unbalanced and under-replicated. Two of the four treatments did not receive 0-nitrogen 
check strips. Without check plot repetitions, it is difficult to estimate an intercept, which is essential for 
identifying the LRP’s slope and plateau parameters using nonlinear least squares or maximum likelihood (ML). 
We estimate the LRP parameters by using response information from other treatments as Bayesian priors.  

Our example concludes with an economic application using the posterior estimates of the LRP. Economically 
optimal nitrogen fertilizer rates for different plant/row spacing combinations for maize (Zea maize L.) are 
evaluated using the posterior distributions of the model’s intercept, slope, and plateau coefficients. Net returns 
generated under different plant/row spacing treatments and nitrogen fertilizer rates are compared in a partial 
budget analysis assuming 1) a risk-neutral producer who maximizes expected profit and 2) a producer who 
prefers upside variability in net returns but is averse to downside risk. Stochastic dominance is used to evaluate 
the second case.  

2. Method 
2.1 Linear Response With Plateau: Background and Extension 

Paris and Knapp (1989), Dillon and Anderson (1990), and Paris (1992) review the linear response plateau’s 
(LRP) history in agronomic and economic studies [Note 1]. The LRP depicts the biological effects of limiting 
factors on plant growth as: 

y = min{f1(x1), f2(x2) … fK(xK), M}                             (1) 

where, y is crop or animal production, xj a vector of inputs (e.g., j = nitrogen, phosphorous, or potassium), 
and M a plateau common to all inputs. The plateau is the highest obtainable biological maximum yield or 
production, subject to a limiting factor or input. The functions fj ·  may include different inputs and can be 
linear or nonlinear functions such as the quadratic, Spillman, or Mitscherlich-Baule forms (Paris, 1992). Linear, 
single input functions were most commonly used in the majority of the studies reviewed here.  

Assuming a linear relationship between crop response and inputs, then for each factor j = 1, 2, … k, yield 
response (y) is: 

y = min{α1 + β1·x1, α2 + β2·x2 … αK + βK·xK, M}                       (2) 

where the α’s are positive intercept terms and M is a yield plateau common to all response regimes. The 
marginal physical product of plant growth with respect to input j is the positive slope parameter βj. Writing 
Equation 2 as a two-part model provides economic intuition and is the starting point for linearizing the LRP. For 
each input determining production or yield response, the two-part specification is:  

y = 
αj + βj·xj for 0 ≤ xj < xj

*

αj + βj·xj
* for xj ≥ xj

*                                 (3) 

where, xj
* is the critical value of input xj and calculated as xj

*= M – αj /βj. The critical input level for the jth 
input corresponds with a “knot” connecting the intercept to a plateau with a line ascending at rate βj, the linear 
response. Formulated this way, response to an input factor increases positively until that input becomes limiting, 
where after the marginal physical product is zero and the plateau M*= αj + βj·xj

* is obtained (Anderson & Dillon, 
1990). When inputs are purchased and there is a market for the output, the two-part formulation implies that a 
factor should be used if the ratio of the per unit cost of input j(rj) to the per unit price received for the 
commodity (p) is less than the marginal physical product; i.e., the producer should use input xj

* just until 
rj ≤ p·βj.  

The LRP model’s constants must be estimated when the relationship between yield or production and inputs is 
imperfect. The error term of Equation 2 are typically assumed to be linear-additive, i.e., 
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y	= min f1 x1 , … fK xK , M  + u [Note 2]. Earlier applications estimating this particular specification used a 
dummy variable approach to approximate the join point location of the plateau and linear response with multiple 
step-wise linear regressions (for example, Paris & Knapp, 1989). With the advent of better solver algorithms, 
conventional maximum likelihood or Bayesian MCMC estimation techniques can be used to estimate the LRP 
parameters, with the “min” function entering directly into a likelihood function (Holloway & Paris, 2002). In 
small sample settings, the nonlinear least squares, ML, and MCMC estimators of the LRP with linear-additive 
errors produce similar results (Brorsen, 2013) [Note 3]. 

The discontinuous and non-differentiable nature of the LRP once posed computational before advances in solver 
optimization routines (Q. Paris & P. Paris, 1985; Paris & Knapp, 1989). This research uses an alternative 
specification of the LRP model that bypasses use of the “min” function and allows for additional flexibility in 
parameterization of the response model. Not surprisingly, the linearized LRP intercept, slope, and plateau 
estimators are identical to those obtained using conventional likelihood methods whereby the “min” function 
enters directly into a log likelihood or least squares minimization function. We reformulate the LRP with 
linear-additive errors by endogenizing the optimal input levels, xj

*, in the linear part of the model. Consider first 
the case where a single input is used. Let the indicator function I x	<	x* 	=	1 when the argument is true, 0 
otherwise. Yield response follows as:  

y =	I x	≤	x* · α	+	β·x 	+	 1	– I x	≤	x* · α	+	β·x* 	+	u                    (4) 

which is algebraically equivalent to Equations 2 and 3. The latent indicator variables sort observed yield-input 
pairs into linear response or plateau domains, subject to an applied input level or rate. This specification is 
similar to threshold autoregressive models appearing in the time series literature (Luukkonen et al., 1988; 
Lundbergh et al., 2003). This parametrization is also similar to Paris and Knapp’s (1989) iterative stepwise least 
squares approach that uses dummy variables to identify join points, but Equation 4 suggests the indicator 
variables enter directly into the response function as nonlinear, discontinuous functions of the linear response 
and plateau parameters. With linear-additive errors, the data generating process for the LRP is:  

y =		 α	+	β·x: I x	≤	x*  

α	+	β·x*: I x	>	x*
	+	u                             (5) 

Evaluated at the biologically optimal input rate, yield is: 

y =	 α	+	β·x: I x	≤	x*  

M: I x	>	x*
	+	u                             (6) 

where, u is the error term with E u 	=	0 and Var u 	=	σ2.  

The parameters maximizing this function can be estimated directly using maximum likelihood, nonlinear least 
squares, or Bayesian Markov Chain Monte Carlo (MCMC) procedures [Note 4]. One advantage of using a 
Bayesian MCMC procedure is that the posterior distribution of the parameters can be used directly in ex-post 
partial budget analyses to derive empirical distributions of yields, optimal fertilizer application rates, and net 
returns under competing management scenarios. The empirical distributions can be resulted from a converged 
chain. They can also be used directly to compare management scenarios statistically under the assumption that 
producers maximize expected net returns (the risk-neutral case) or that producers are averse to variability in net 
returns (risk-averse). In terms of limited experimental replication, another advantage is that Bayesian estimates 
are valid regardless of sample size or degrees of freedom (McElreath, 2015). 

2.2 Empirical Application 

The empirical application estimates maize response to nitrogen sown in different plant and row widths. Plant and 
row spacing has long been understood to affect maize yield and the amount of nitrogen fertilizer required. 
Optimal row and plant spacing of maize reduces weed competition for nutrients and sunlight and increases maize 
productivity and nitrogen use efficiency (Widdicombe & Thelen, 2002; Worku & Astatkie, 2011; Mattera et al., 
2013; Testa et al., 2016). Yields for narrow row maize are generally higher than wider row spacing (Widdicombe 
& Thelen, 2002; Lambert & Lowenberg-DeBoer, 2003; De Bruin & Pedersen, 2008; Mohammadi et al., 2012). 
Muldoon and Daynard (1981) found that variability in intra- row spacing affects maize yield. When maize was 
planted uniformly, yields increased and plant-to-plant variation in size was reduced (Martin et al., 2005; Rossini 
et al., 2011).  

Inter- and intra-row widths affect optimal nitrogen fertilizer rates for maize (Martin et al., 2005; Barbieri et al., 
2008; Boomsma et al., 2009; Srivastava et al., 2018). Applying too much nitrogen fertilizer diminishes nitrogen 
use efficiency and may cause soil acidification (Chen et al., 2014; Zhu et al., 2016). Some research finds that 
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different row and plant spacing require different nitrogen fertilizer rates (Karlen & Camp, 1985; Lewis & Knight, 
1987). Other studies conclude that grain yield response to applied nitrogen and the optimal nitrogen application 
rates are similar regardless of plant and row spacing (Shapiro & Wortmann, 2006). Barbieri et al. (2008) showed 
that optimal nitrogen fertilizer rates were lower for maize planted in narrower rows.  

The empirical application uses data from a two-year field experiment (2017 and 2018) managed by the Plant and 
Soil Science Department of Oklahoma State University. The objective of the experiment was to identify the 
optimum plant-to-plant spacing and the optimum row spacing for maize and response to nitrogen. Maize plots 
were located eight miles west of Stillwater, OK [Note 5]. The research plots were on Pulaski fine-sandy loam 
soil (coarse/loamy, mixed non-acid, thermic, Typic, and Ustifluvent) (USDA/NRCS soil taxonomy). The 
experiment was a randomized complete block design with three nitrogen applications of four treatments, each 
replicated three times.  

Plot sizes were 9.94-ft × 19.88-ft. Urea fertilizer (46-0-0) was applied as side-dress at 0, 54, and 107 lb ac-1. 
Maize was planted 1.97 inches deep for all treatments. Between-plant spacing treatments were 0.49-ft and 0.98-ft. 
Row spacing treatments were 1.67-ft and 2.49-ft. Plant-to-plant spacing was maintained by marking a string at 
5.91 inches or 11.81 inches, according to the treatment structure. Wide plant/narrow row spacing under 
Treatment 3 (0.98-ft and 1.67-ft) and wide plant/wide row spacing under Treatment 4 (0.98-ft and 2.49-ft) did 
not receive the 0-nitrogen rate treatment for logistical and budgetary reasons (Table 1).  

 

Table 1. Maize yield and plant-row spacing treatments 

Treatment ----- Treatment 1 ----- ----- Treatment 2 ----- --- Treatment 3 --- --- Treatment 4 ---

Nitrogen rate (lbs ac-1) 0 54 107 0 54 107 54 107 54 107 

Mean yield (bu ac-1) 56 87 118 38 63 89 98 155 73 99 

Standard error 18 10 49 13 9 40 15 71 14 39 

Minimum yield (bu ac-1) 38 70 61 25 49 38 73 79 47 57 

Maximum yield (bu ac-1) 86 106 186 58 75 134 115 230 98 144 

n 6 12 6 6 12 6 12 6 12 6 

N 24   24   18 18 

Note. Treatments indicated (plant; row) spacing: Treatment 1 is (0.49-ft; 1.67-ft), Treatment 2 is (0.49-ft; 2.49-ft), 
Treatment 3 is (0.98-ft; 1.67-ft), and Treatment 4 (0.98-ft; 2.49-ft). 

 

At harvest, maize samples were collected and the grain weighed. Grain weight was converted to yield using 
Raun et al. (2002)’s methodology. The wider plant spacing generally produced higher yields than the narrower 
plant spacing treatment. The average yield for the wide plant and narrow row spacing treatment (Treatment 3; 
0.98-ft and 1.67-ft) was 155 bu ac-1 at 107 lbs ac-1 nitrogen fertilizer (Table 1). The narrow plant and wide row 
spacing of Treatment 2 (0.49-ft and 2.49-ft) yielded 89 bushels at the highest nitrogen fertilizer application. For 
Treatments 1 and 2, the 0-nitrogen treatments yielded 56 and 118 bu ac-1, respectively.   

2.3 Estimation 

We estimate maize yield response to nitrogen fertilizer planted in different plant/row spacing as:  

yik= ∑ dk·[I
k Nik	≤	Nik

* β0k	+	β1k·Nik 	+	Ik Nik	>	Nik
* β0k	+	β1k·Nik

* ]4
k=1 	+	uik           (7) 

where, yik is maize yield in treatment replicate i; k indexes treatments (plant space/row space), 1 = (0.49-ft, 
1.67-ft), 2 = (0.49-ft, 2.49-ft), 3 = (0.98-ft, 1.67-ft), and 4 = (0.98-ft, 2.49-ft); Nik*  is the critical value of 
nitrogen fertilizer rate Nik; β0k and β1k are positive intercept and slope parameters; I is an indicator variable 
equal to 1 when applied nitrogen is less than or equal to the nitrogen rate corresponding with the yield plateau (0 
otherwise); dk is a (0, 1) variable indicating an observed yield from treatment k; and uik is an independent and 
identically distributed random error with an expected value of zero and a constant variance. The variance term is 
constant across treatment yields under the assumption that random variation due to weather and other stochastic 
events occurred with equal likelihood across treatment plots.  

Yield intercept, linear, and plateau parameters were estimated using SAS’s PROC MCMC, a Bayesian MCMC 
routine (SAS, 2014). We use this procedure for two reasons. First, the sample size of each treatment is relatively 
small, with N = 24 for treatments 1 and 2 and N = 18 for treatments 3 and 4 (Table 1). There were 24 
observations for treatments 1 and 2, both with n = 6 replications for the check plot and highest nitrogen rate, 
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and n = 12 observations for intermediate fertilizer rate of 54 lbs ac-1. Second, treatments 3 and 4 did not receive 
the 0-nitrogen rate, rendering estimation of an intercept term for these treatments exceedingly difficult if 
standard maximum likelihood or nonlinear least squares procedures were used to estimate the LRP parameters.  

We leverage yield information from the check plots of treatments 1 and 2 as priors for the intercept terms of 
treatments 3 and 4. An advantage of Bayesian MCMC estimators is that they are valid regardless of sample size 
(Brorsen, 2013; McElreath, 2015). Even so, the power of a Bayesian estimator critically depends on prior 
information on a parameter’s distribution. We compare the performance of models under different priors with 
the deviance information criterion (DIC). Preferred models are those with smaller DICs (Spiegelhalter et al., 
2002). The DIC is calculated with the posterior densities of the respective models.  

Model specifications under different prior assumptions are summarized in Table 2. For all models, a diffuse prior 
was assumed for the error variance parameter. The prior distribution for the variance term is the inverted Gamma 
distribution (IG) with a shape parameter of 0.001 and a scale parameter of 1,000. For the other parameters, we 
use informative priors based on the univariate statistics of the observed treatment yields.  

The first model (Model 1) assumes the intercept, slope, and plateau parameters are Gaussian (normal) distributed. 
Model 1’s specification is:  

yik~G [Ik Nik	≤	Nik
* β0k	+	β1k·Nik 	+	Ik Nik	>	Nik

* β0k	+	β1k·Nik
* ],	σ2               (8) 

π β0k ~G 41,7.25  ∀k                                 (9) 

π β1k ~G 0.75,0.10  ∀k                               (10) 

π Mk ~G 150,4.34  ∀k                                (11) 

π σ2 ~IG 0.001,1000                                 (12) 

where, G denotes the Gaussian (standard normal) distribution. We used the means and standard deviations of 
the intercept, slope, and plateau estimates reported by Boyer et al. (2013) in their analysis of corn yield response 
to nitrogen as a reference distribution for model 1. For all plant/row spacing treatments evaluated with model 1, 
the mean (standard deviation) of the intercept priors was 41 bu ac-1 (7.25), and the mean (standard deviation) of 
the linear response priors were 0.75 bu lb-1 of applied nitrogen (0.10) (Table 2). The Gaussian prior for the 
plateau parameters was 150 bu ac-1, with a standard deviation of 4.34.  

 

Table 2. Priors for models evaluated and deviance information criterion 
Model Intercept N rate Slope Plateau yield Error variance DIC a 

1 G(41, 7.25) G(0.75, 0.10) G(150, 4.34) IG(0.001, 1000) 807 

2 Uni(min0, max0) Uni(0,1) Uni(min107k, max107k) IG(0.001, 1000) 811 

3 Uni(min0, max0) Uni(0,5) Uni(min107k, max107k) IG(0.001, 1000) 788 

4 Uni(min0, max0) Half-Cauchy Uni(min107k, max107k) IG(0.001, 1000) 809 

Note. min0 and max0 are the minimum and maximum yield of data when no nitrogen fertilizer applied, and 
min107k and max107k are the minimum and maximum yield of data when 107 lb ac-1 nitrogen fertilizer applied 
by each treatment k = 1, … 4.  
a DIC, Deviance Information Criterion.  

 

Models 2, 3 and 4 used Equation 8 as the yield response prior and Equation 12 as the prior for the error variance. 
We evaluated alternative priors for the intercept, slope, and plateau parameters for models 2, 3, and 4. A lower 
bound of zero was used for the treatment intercept terms. Uniform distribution priors may be preferable when 
information on individuals, treatments, or group characteristics is limited (Gelman, 2006). Our experimental data 
is relatively limited, with treatments 3 and 4 receiving no check strips. Naturally, one would expect yields to be 
zero or positive even in the absence of fertilizer. The priors for the treatment intercepts of models 2, 3, and 4 
were the uniform distribution (Uni), specified as π β0k ~Uni(min0, max0) for all treatments. The min0(max0) 
terms are the lowest (highest) yield observed in treatments 1 and 2 (Table 1).  

The uniform distribution was also used as plateau priors for Models 2, 3, and 4. All treatments received the 
maximum nitrogen fertilizer of 107 lb ac-1. The corresponding yields observed under the maximum applied 
fertilizer rate for each plant-row spacing treatment served as the lower and upper bounds of the plateau priors as 
π Mk ~Uni min107k, max107k  (Table 1). 
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We evaluated the performance of models 2, 3, and 4 assuming different priors for the LRP slope parameters 
(Table 2). The expectation is that the slope parameters are either positive and upward sloping or flat, indicating 
that maize exhibits no response to nitrogen. Models 2 and 3 assume a uniform distribution for the slope 
parameter; π β1k ~Uni(0, b) ∀k, with the upper bound set to b = 1 for model 2 and b = 5 for model 3. For 
model 2, the 0 to 1 range includes values of slope estimates from previous literature (i.e., Boyer et al., 2013). For 
model 3, the upper bound of 5 admits an extreme case where maize is highly responsive to nitrogen with yield 
plateauing quickly at low amounts of N fertilizer. For model 4, the prior used for the slope parameters of each 
treatment was the Half-Cauchy distribution. Thus, model 4 also includes the case where maize is unresponsive to 
nitrogen fertilizer or positive/upward sloping (Table 2). The Half-Cauchy distribution was defined as a  
distribution truncated at zero with 3 degrees of freedom; i.e., π β1k ~ttrunc(0, 3) ∀k (McElreath, 2015). This 
prior has thicker tails and accommodates outliers (Gelman et al., 2013). 

Model convergence was validated using the effective sample sizes (ESS) of the posterior distributions of each 
parameter and the remaining autocorrelation between draws of the Markov chains. Relatively small ESS values 
and high autocorrelation are indicative of convergence problems (Kass et al., 1998). As a parameter’s ESS 
approaches the number of posterior draws used to populate the chain, one can conclude that the model exhibits 
good mixing properties size (Che & Xu, 2010). The relative efficiency of each parameter’s chain is calculated as 
the parameter’s ESS divided by the number of Monte Carlo (MC) draws. Efficiency scores close to 100% 
indicate chain convergence. We sampled 1,000 MC draws from parallel chains, with a burn-in of 50,000 and a 
thinning value of 1,000. Thus, the total number of draws is 1,050,000. We reported the highest posterior density 
(HPD), or the modes, of the estimated parameters and their corresponding HPD 90-percent credible intervals 
(HDPI).  

A Kolmogorov-Smirnov (KS) two-sample test is used to compare statistically the posterior distributions of the 
LRP intercept, slope, and plateaus of each treatment. The KS test is a non-parametric test of the equality of two 
distributions [Note 6]. The null hypothesis is that pairs of distributions originate from the same reference 
distribution. 

2.3 Economic Analysis 

For each treatment, we generate economically optimal nitrogen rates, yields, and profit using the posterior 
empirical distributions of the parameter estimates. The risk-neutral decision maker solves the following problem 
to maximize expected profit:  

max Nk
*

k∈ 1,2,3,4

E(πk) 	=	 p·β0k	– Fk
C if 

r

p
	≥	β1k

p·Mk	– r·Nk
*	– Fk

C if  
r

p
	< β1k

                      (13) 

where, E(πk) is the expected profit under treatment k evaluated at maize price p; “ ” indicates a parameter 
estimate drawn from a posterior distribution; Fk

C are the per acre fixed costs of each treatment; and r are 
fertilizer nitrogen costs ($ lb-1). The price of maize is $3.40 bu-1, based on the USDA National Agricultural 
Statistics Service (NASS) annual reports for Oklahoma (USDA, 2018). The price of nitrogen is $0.43 lb-1, and 
was calculated from a urea fertilizer price of $0.20 lb-1 (Farmers Coop Association of Snyder, 2019). If the 
marginal value product of fertilizer exceeds its per unit cost, then the producer applies nitrogen at the optimal 
rate, Nk

*. Each treatment uses a different number of seeds per acre because of the different spacing. The 
technology costs are reflected in the change in plant population density according to plant width and row spacing 
(Treatment 1, 52,922 seeds ac-1; Treatment 2, 35,514 seeds ac-1; Treatment 3, 26,461 seeds ac-1; Treatment 4, 
17,757 seeds ac-1). The price of maize seed is $3.20 per one million count (Plastina, 2019). Seed costs for each 
treatment are therefore $0.17, $0.11, $0.08, and $0.06 per acre, respectively. Decision makers who prefer more to 
less but are unconcerned about the variability or skewness of returns are risk-neutral. For these individuals, the 
plant/row spacing treatment that generates the highest expected return would be the preferred technology. 

2.4 Stochastic Dominance Analysis 

Stochastic dominance is used to generate a risk-preferred ordering of the plant width/row spacing treatments. 
Stochastic dominance maintains two key assumptions about human behavior (Lambert & Lowenberg-DeBoer, 
2003). First, most decision makers prefer more to less. Second, most people are averse to low value outcomes. 
The second statement suggests that individuals are risk-averse, but this does not necessarily mean that 
risk-averse individuals prefer to avoid gambles with highly variable returns. The same decision maker might 
prefer technologies that generate, with some positive probability, right-skewed net returns or yields.  
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Two decision rules resulting from the assumptions above are first-degree stochastic dominance (FDSD) and 
second-degree stochastic dominance (SDSD) criteria (Anderson et al., 1977). First-degree stochastic dominance 
assumes that persons generally prefer technology options that generate higher returns over ones that yield lower 
returns. For example, when technology A dominates B by the first-degree rule, the net returns from  are 
higher than B at every probability in the empirical distribution. Graphically, for net returns this means that the 
empirical distribution of A is always to the right of B. 

The SDSD criterion assumes decision makers are risk-averse. Mathematically, the SDSD criterion is 
FA π dz	≤	 FB π dz

z

-∞

z

-∞
 for all net returns over support z with at least one strict inequality (Anderson & 

Dillon, 1992). In other words, SDSD enumerates the area between the crossover points of two competing 
distributions at every level of probability in their respective empirical distributions of net returns. As a general 
rule, if the lowest value in the net return distribution of A is smaller than the minimum net return value of B’s 
distribution, then technology A can never dominate B even if net returns from A are higher than B’s at every 
point in the distribution thereafter. Note that FDSD implies SDSD, but not the converse. Stochastic dominance 
comparisons were conducted using Simetar® software (Richardson et al., 2006) [Note 7]. 

3. Results 
Discussion of maize yield response to nitrogen under the different plant-row spacing treatment uses the results of 
model 3 because this model had the smallest deviance information criterion (DIC = 788) (Table 2). Even so, the 
power of a Bayesian estimator critically depends on prior information on a parameter’s distribution [Note 8]. 
Inspection of the posterior distributions indicates a low correlation between draws, relatively high effective 
sample sizes, and overall parameter convergence (Figure 1). The average efficiency score was 0.79, with a low 
(high) efficiency of 0.44 (1.28) (Table 3). The intercept and the error variance parameters exhibit good mixing 
properties, while the ESS of the slope estimates exhibited the largest HDPI range.  

 

Table 3. Parameter efficiency for model 3 

Parameter Treatment 1 Treatment 2 Treatment 3 Treatment 4 

Intercept 0.93 1.10 0.91 0.87 

N rate slope 0.44 0.64 1.28 0.54 

Yield plateau  0.54 0.53 0.94 0.52 

Error variance 0.97   

Average 0.79    

Note. Efficiency is calculated as the effective sample size divided by the number of Monte Carlo iterations 
(1,000). Treatments indicated (plant-row) spacing: Treatment 1 is (0.49-ft; 1.67-ft), Treatment 2 is (0.49-ft; 
2.49-ft), Treatment 3 is (0.98-ft; 1.67-ft), and Treatment 4 is (0.98-ft; 2.49-ft). 
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Table 5. Two-Sample Kolmogorov-Smirnov Test Statistics 

 Treatment 1 Treatment 2 Treatment 3 

Treatment ----------------------------------- Intercept ---------------------------------- 

1 -   

2 0.56 -  

3 0.36 0.21 - 

4 0.20 0.38 0.19 

Treatment ------------------------------------ Slope ------------------------------------- 

1 -   

2 0.18 -  

3 0.43 0.41 - 

4 0.22 0.11 0.46 

Treatment ----------------------------------- Plateau ------------------------------------ 

1 -   

2 0.63 -  

3 0.64 0.98 - 

4 0.55 0.31 0.94 

Treatment ---------------------- Net returns: Nitrogen Applied ---------------------- 

1 -   

2 0.68 -  

3 0.65 0.99 - 

4 0.59 0.36 0.96 

Treatment -------------------- Net returns: No nitrogen Applied --------------------- 

1 -   

2 0.56 -  

3 0.36 0.21 - 

4 0.20 0.38 0.19 

Note. All test statistics are significant at the 1% level.  

 

Maize yield response to the first pound of nitrogen fertilizer applied was highest for treatment 3 (1.02 bu lb-1 of 
nitrogen fertilizer), followed by treatments 1 and 4 (0.57 and 0.55 bu lb-1 nitrogen fertilizer, respectively). The 
relative precision of the linear response estimate was greatest for treatment 3, with a range of 0.87 between the 
lower and upper bounds of the HDPI credible interval (Figure 3). The prior for the slopes of all treatments was a 
uniform distribution with a lower (upper) bound of 0 (5), with the upper bounds of the slope estimates for 
treatments 1, 2, and 4 approaching the prior upper bound of 5. The influence of the prior upper bound is apparent 
by inspection of the HDP credible intervals of treatments 1, 2, and 4. The variability of the posterior slope 
estimates for these treatments ranged between 4.06 (for treatment 1) to 4.59 (for treatment 4). Statistical 
comparison of the posterior distributions of the treatment slopes suggests the estimates are significantly different 
at the 1% level (Table 4).  

The null hypothesis that the empirical distributions of the plateaus were similar was rejected at the 1% level of 
significance (Table 5). Treatment 3 (wide plant; narrow row spacing) produced the highest yield plateau (160 bu 
ac-1) and the narrowest HDP credible region (range, 90) (Figure 3, Table 4). Treatment 3 > treatment 1 > 
treatment 4 > treatment 2 in terms of maize yield. This ranking suggests that narrow row spacing confers a yield 
advantage over wide row spacing under favorable maize and nitrogen prices.  

If the marginal value product of an additional unit of nitrogen applied exceeds the cost per unit of nitrogen, the 
yield advantage gained from the narrow row spacing translates into the same ranking in terms of profitability. 
When the marginal physical product is greater than the ratio of per unit nitrogen costs and the maize price, the 
expected net return for treatment 3 is $528 ac-1. The optimal nitrogen rate corresponding with treatment 3’s 
plateau was 125 lbs ac-1. Visual inspection of the net returns’ empirical distributions clearly indicates the 
following rank, in terms of profitability: treatment 3 > treatment 1 > treatment 4 > treatment 2 (Figure 4). Since 
none of the empirical distributions cross, we can conclude that the technology ranking for the risk-neutral and 
risk-averse individual would be the same. In other words, treatment 3 stochastically dominates treatments 1, 4, 
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and 2 by the first degree. Likewise, treatment 1 dominates 4 and 2 by the first degree criteria, and treatment 4 
FDSD-dominates 2.  

4. Conclusion 
The proof-of-concept exercise used data from a plot trial comparing maize response to nitrogen under different 
plant/row spacing. The treatments were unbalanced. Two of the plant/row spacing treatments received three 
levels of nitrogen, with one of those levels a check plot of 0 applied nitrogen. The remaining two plant/row 
spacing treatments did not receive a nitrogen control. Zero-rate check plots are important for identifying yield 
intercepts. In the case of the LRP model, yield intercepts are key components for identifying linear 
response/plateau join points. Yet, in the absence of check plots, intercepts are exceedingly difficult (or 
impossible) to determine, rendering the LRP under-identified. We approached this problem of limited 
information by using a Bayesian simulation procedure, infilling missing information with a relatively strong set 
of priors and leveraging information from the univariate statistics of the treatment yields. The statistical methods 
used here may be useful for informing larger plot or field experiments based on pilot trials with unbalanced, 
limited replications. 

This paper also applied an alternative formulation of the linear response with plateau (LRP) model for estimating 
yield response to inputs. The LRP model “min” operator was reformulated as a latent threshold regression 
whereby yield-input pairs are sorted into response or plateau regimes. The reformulation reproduces exactly the 
same estimates one would observe in a LRP response model specified with the “min” operator. However, the 
linearization of the “min” operator allows for additional flexibility with the inclusion of qualitative variables, 
such as those that might be used to design experimental designs, soil types, management zones, or other discrete 
categories. In addition, linearization of the LRP’s “min” problem provides additional insight into the economics 
of the input decision-making process under risk.  

An advantage of the Bayesian estimation procedure used here is that the posterior distributions of the LRP 
parameters can be directly used to generate ex-post distributions for net returns and optimal nitrogen rates 
observed under different conditions or treatments. Using these distributions, and admitting some mild 
assumptions about human behavior and risk, the empirical distributions can be compared using non-parametric 
risk analysis procedures such as stochastic dominance.  

Extension of this research could expand the linearized version of the LRP to accommodate nonlinear response 
functions and multiple inputs. Additional elaborations are conceivable, given the flexibility of linearization 
procedure, including modifications of the model for other knot-and-spline applications, or addressing 
discontinuous problems formulated as “max” problems. What remain unknown are computational efficiencies on 
gains by linearizing the family of LRP problems.  

References 
Anderson, J. R., Dillon, J. L., & Hardaker, B. (1977). Agricultural decision analysis. Monographs: Applied 

Economics. 

Babcock, B. A., Carriquiry, A. L., & Stern, H. S. (1996). Evaluation of soil test information in agricultural 
decision‐making. Applied Statistics, 45, 447-461. https://doi.org/10.2307/2986067 

Barbieri, P. A., Echeverría, H. E., Saínz Rozas, H. R., & Andrade, F. H. (2008). Nitrogen use efficiency in maize 
as affected by nitrogen availability and row spacing. Agronomy Journal, 100, 1094-1100. https://doi.org/ 
10.2134/agronj2006.0057 

Blackman, F. F. (1905). Optima and limiting factors. Annals of Botany, 19, 281-295. https://doi.org/10.1093/ 
oxfordjournals.aob.a089000 

Boomsma, C. R., Santini, J. B., Tollenaar, M., & Vyn, T. J. (2009). Maize morphophysiological responses to 
intense crowding and low nitrogen availability: An analysis and review. Agronomy Journal, 101, 1426-1452. 
https://doi.org/10.2134/agronj2009.0082 

Boyer, C. N., Tyler, D. D., Roberts, R. K., English, B. C., & Larson, J. A. (2012). Switchgrass yield response 
functions and profit-maximizing nitrogen rates on four landscapes in Tennessee. Agronomy Journal, 104, 
1579-1588. https://doi.org/10.2134/agronj2012.0179 

Boyer, C. N., Larson, J. A., Roberts, R. K., McClure, A. T., Tyler, D. D., & Zhou, V. (2013). Stochastic corn 
yield response functions to nitrogen for corn after corn, corn after cotton, and corn after soybeans. Journal 
of Agricultural and Applied Economics, 45, 669-681. https://doi.org/10.1017/S1074070800005198 



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 10; 2020 

13 

Brorsen, B. W. (2013). Using Bayesian Estimation and Decision Theory to Determine the Optimal Level of 
Nitrogen in Cotton (Selected Paper, February 2-5, 2013). Southern Agricultural Economics Association, 
Orlando, Florida. 

Che, X., & Xu, S. (2010). Bayesian data analysis for agricultural experiments. Canadian Journal of Plant 
Science, 90, 575-603. https://doi.org/10.4141/CJPS10004 

Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., … Zhang, F. (2014). Producing more grain with 
lower environmental costs. Nature, 514, 486. https://doi.org/10.1038/nature13609 

Dhakal, C., Lange, K., Parajulee, M. N., & Segarra, E. (2019). Dynamic optimization of nitrogen in plateau 
cotton yield functions with nitrogen carryover considerations. Journal of Agricultural and Applied 
Economics, 51, 1-17. https://doi.org/10.1017/aae.2019.6 

De Bruin, J. L., & Pedersen, P. (2008). Effect of row spacing and seeding rate on soybean yield. Agronomy 
Journal, 100, 704-710. https://doi.org/10.2134/agronj2007.0106 

Dillon, J. L., & Anderson, J. R. (1990). Analysis of Response in Crop and Livestock Production. Pergamon, 
Oxford.  

Farmers Coop Association of Snyder. (2019). Fertilizer Prices. Retrieved from https://www.snyderfarmerscoop. 
com/fert 

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by 
Browne and Draper). Bayesian Analysis, 1, 515-534. https://doi.org/10.1214/06-BA117A 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data 
Analysis (Chapman & Hall/CRC Texts in Statistical Science) (3rd ed.). Chapman & Hall/CRC. 
https://doi.org/10.1201/b16018 

Grimm, S. S., Paris, Q., & Williams, W. A. (1987). A von Liebig model for water and nitrogen crop response. 
Western Journal of Agricultural Economics, 12, 182. 

Haankuku, C., Epplin, F. M., & Kakani, V. G. (2014). Forage sorghum response to nitrogen fertilization and 
estimation of production cost. Agronomy Journal, 106, 1659-1666. https://doi.org/10.2134/agronj14.0078 

Harmon, X., Boyer, C. N., Lambert, D. M., Larson, J. A., & Gwathmey, C. O. (2016). Comparing the value of 
soil test information using deterministic and stochastic yield response plateau functions. Journal of 
Agricultural and Resource Economics, 41, 307. 

Haque, M., Epplin, F. M., & Taliaferro, C. M. (2009). Nitrogen and harvest frequency effect on yield and cost for 
four perennial grasses. Agronomy Journal, 101, 1463-1469. https://doi.org/10.2134/agronj2009.0193 

Holloway, G., & Paris, Q. (2002). Production efficiency in the von Liebig model. American Journal of 
Agricultural Economics, 84, 1271-1278. https://doi.org/10.1111/1467-8276.00389 

Karlen, D. L., & Camp, C. R. (1985). Row spacing, plant population, and water management effects on corn in 
the Atlantic Coastal Plain 1. Agronomy Journal, 77, 393-398. https://doi.org/10.2134/agronj1985.0002196 
2007700030010x 

Kass, R. E., Carlin, B. P., Gelman, A., & Neal, R. M. (1998). Markov chain Monte Carlo in practice: a 
roundtable discussion. The American Statistician, 52, 93-100. https://doi.org/10.1080/00031305.1998. 
10480547 

Lambert, D. M., & Lowenberg-DeBoer, J. (2003). Economic analysis of row spacing for corn and soybean. 
Agronomy Journal, 95, 564-573. https://doi.org/10.2134/agronj2003.5640 

Lewis, C. E., & Knight, C. W. (1987). Yield response of rapeseed to row spacing and rates of seeding and 
N-fertilization in interior Alaska. Canadian Journal of Plant Science, 67, 53-57. https://doi.org/10.4141/ 
cjps87-006 

Lundbergh, S., Teräsvirta, T., & Van Dijk, D. (2003). Time-varying smooth transition autoregressive models. 
Journal of Business & Economic Statistics, 21, 104-121. https://doi.org/10.1198/073500102288618810 

Luukkonen, R., Saikkonen, P., & Teräsvirta, T. (1988). Testing linearity against smooth transition autoregressive 
models. Biometrika, 75, 491-499. https://doi.org/10.1093/biomet/75.3.491 

Maddala, G. S. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University 
Press. https://doi.org/10.1017/CBO9780511810176 



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 10; 2020 

14 

McElreath, R. (2015). Statistical Rethinking. Champman and Hall/CRC. 

Mangiafico, S. S., & Guillard, K. (2005). Turfgrass reflectance measurements, chlorophyll, and soil nitrate 
desorbed from anion exchange membranes. Crop Science, 45, 259-265. https://doi.org/10.2135/cropsci2005. 
0259 

Martin, K. L., Hodgen, P. J., Freeman, K. W., Melchiori, R., Arnall, D. B., Teal, R. K., … Raun, W. R. (2005). 
Plant-to-plant variability in corn production. Agronomy Journal, 97, 1603-1611. https://doi.org/10.2134/ 
agronj2005.0129 

Mattera, J., Romero, L. A., Cuatrín, A. L., Cornaglia, P. S., & Grimoldi, A. A. (2013). Yield components, light 
interception and radiation use efficiency of lucerne (Medicago sativa L.) in response to row spacing. 
European Journal of Agronomy, 45, 87-95. https://doi.org/10.1016/j.eja.2012.10.008 

Mohammadi, G. R., Ghobadi, M. E., & Sheikheh-Poor, S. (2012). Phosphate biofertilizer, row spacing and plant 
density effects on corn (Zea mays L.) yield and weed growth. American Journal of Plant Sciences, 3, 425. 
https://doi.org/10.4236/ajps.2012.34051 

Muldoon, J. F., & Daynard, T. B. (1981). Effects of within-row plant uniformity on grain yield of maize. 
Canadian Journal of Plant Science, 61, 887-894. https://doi.org/10.4141/cjps81-132 

Ouedraogo, F., & Brorsen, B. W. (2018). Hierarchical Bayesian estimation of a stochastic plateau response 
function: Determining optimal levels of nitrogen fertilization. Canadian Journal of Agricultural Economics, 
66, 87-102. https://doi.org/10.1111/cjag.12139 

Paris, Q., & Paris, P. (1985). A von Liebig response function to nitrogen and phosphorous for hay production 
from irrigated pastures. Grass and Forage Science, 40, 213-220. https://doi.org/10.1111/j.1365-2494. 
1985.tb01739.x 

Paris, Q. (1992). The von Liebig hypothesis. American Journal of Agricultural Economics, 74, 1019-1028. 
https://doi.org/10.2307/1243200 

Paris, Q., & Knapp, K. (1989). Estimation of von Liebig response functions. American Journal of Agricultural 
Economics, 71, 178-186. https://doi.org/10.2307/1241786 

Plastina, A. (2019). Estimated Costs of Crop Production in Iowa-2019 (File A1-20, January). IA: Iowa State 
University Extension and Outreach/Ag Decision Maker. 

Richardson, J. W., Schumann, K., & Feldman, P. (2006). Simetar: Simulation for Excel to analyze risk. 
(Unnumbered Staff Report). Department of Agricultural Economics, Texas A&M University, College 
Station, Texas. 

Rossini, M. A., Maddonni, G. A., & Otegui, M. E. (2011). Inter-plant competition for resources in maize crops 
grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops 
Research, 121, 373-380. https://doi.org/10.1016/j.fcr.2011.01.003 

SAS. (2014). Base SAS 9.4 Procedures Guide. SAS Institute, Cary, NC.  

Shapiro, C. A., & Wortmann, C. S. (2006), Corn response to nitrogen rate, row spacing, and plant density in 
eastern Nebraska. Agronomy Journal, 98, 529-535. https://doi.org/10.2134/agronj2005.0137 

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model 
complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583-639. https://doi.org/ 
10.1111/1467-9868.00353 

Srivastava, R. K., Panda, R. K., Chakraborty, A., & Halder, D. (2018). Enhancing grain yield, biomass and 
nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated 
conditions. Field Crops Research, 221, 339-349. https://doi.org/10.1016/j.fcr.2017.06.019 

Swanson, E. R. (1963). The static theory of the firm and three laws of plant growth. Soil Science, 95(5), 338-343. 
https://doi.org/10.1097/00010694-196305000-00008 

Tembo, G., Brorsen, B. W., Epplin, F. M., & Tostão, E. (2008). Crop input response functions with stochastic 
plateaus. American Journal of Agricultural Economics, 90, 424-434. https://doi.org/10.1111/j.1467-8276. 
2007.01123.x 

Testa, G., Reyneri, A., & Blandino, M. (2016). Maize grain yield enhancement through high plant density 
cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 72, 28-37. 
https://doi.org/10.1016/j.eja.2015.09.006 



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 10; 2020 

15 

Tumusiime, E., Brorsen, B. W., Mosali, J., Johnson, J., Locke, J., & Biermacher, J. T. (2011). Determining 
optimal levels of nitrogen fertilizer using random parameter models. Journal of Agricultural and Applied 
Economics, 43, 541-522. https://doi.org/10.1017/S1074070800000067 

U.S. Department of Agriculture. (2018). Oklahoma Annual Statistics Bulletin. Washington, DC: U.S. Department 
of Agriculture, National Agricultural Statistics Service.  

von Liebig, J. (1863). The Natural Laws of Husbandry. D. Appleton and Company, New York. https://doi.org/ 
10.5962/bhl.title.17740 

Raun, W. R., Freeman, K. W., Mullen, R. W., & Westerman, R. L. (2002). Soil-Plant Nutrient Cycling and 
Environmental Quality. OK: Oklahoma State University Department of Plant and Soil Sciences.  

Widdicombe, W. D., & Thelen, K. D. (2002). Row Width and Plant Density Effects on Corn Grain Production in 
the Northern Corn Belt. Agronomy Journal, 94(5), 1020-1023. https://doi.org/10.2134/agronj2002.1020 

Worku, M., & Astatkie, T. (2011). Row and Plant Spacing Effects on Yield and Yield Components of Soya Bean 
Varieties Under Hot Humid Tropical Environment of Ethiopia. Journal of Agronomy and Crop Science, 197, 
67-74. https://doi.org/10.1111/j.1439-037X.2010.00441.x 

Zhu, S., Vivanco, J. M., & Manter, D. K. (2016). Nitrogen fertilizer rate affects root exudation, the rhizosphere 
microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107, 324-333. https://doi.org/ 
10.1016/j.apsoil.2016.07.009 

 
Notes 
Note 1. Our overview closely follows Paris and Knapp (1989), Dillon and Anderson (1990), and Paris (1992). 

Note 2. Tembo et al.’s (2008), Tumusiime et al.’s (2011), and Boyer et al.’s (2013) inclusion of yearly random 
effects in their LRP specification hybridizes cases 1 and 2. 

Note 3. SAS PROC NLMIXED was used to estimate a LRP with maximum likelihood, while PROC MCMC 
was used to estimate the function using Bayesian MCMC. 

Note 4. For example, PROC MCMC in SAS 9.4 (SAS Institute, Cary North Carolina), or bayesmh in STATA 
15.0 (College Station, TX). 

Note 5. Stillwater, Oklahoma reported an average temperature of 73 °F and average rainfall of 4.33 inches from 
April to September in 2017 and 2018 when the experiments were conducted. 

Note 6. In principle, the KS test is a non-parametric t-test. 

Note 7. Stochastic Efficiency with Respect to a Function (SERF) is another method to rank risky technology 
preferences if one is willing to assume a functional form that measures utility. Stochastic dominance is a 
nonparametric approach that does not require one to posit a utility function or risk aversion levels. 

Note 8. We attempted to estimate the LRP using maximum likelihood in SAS’s PROC NLMIXED, but the model 
did no converge and the standard errors could not be calculated. This occurred because of the limited degrees of 
freedom available in the trials we analysed. 
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