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Abstract 
Combining economic performance with environmental and social concern has been a developing topic in recent 
decades. Eco-efficiency analysis is a widely applied tool to assess the efficiency of agricultural systems, while 
increasingly considering their environmental and social impact. The main objective of this article is to 
accomplish a literature review on the application of eco-efficiency analysis in agricultural systems, focusing on 
methods and indicators that are most regarded for the quantitative assessment of agricultural eco-efficiency. The 
literature review found two main methods most widely applied to assess eco-efficiency: Life Cycle Assessment 
(LCA) and Data Envelopment Analysis (DEA), which are often combined. LCA is generally focused on the 
assessment of the environmental impacts of products and practices. DEA is mostly used to measure the 
eco-efficiency of decision-making units, such as farms, regions, or countries, and has no subjective focus on 
neither technical nor environmental performance. Both methods share a wide range of economic and 
environmental indicators but fail to incorporate the social dimension of sustainability into the eco-efficiency 
analysis. A simple framework, based on Data Envelopment Analysis, is offered to assess the eco-efficiency of the 
Brazilian agriculture, aiming at identifying the benefits and limitations of the analysis. 
Keywords: eco-efficiency, agriculture, data envelopment analysis (DEA) 

1. Introduction 
The environmental impact of human activities has received significant attention from interdisciplinary research 
in recent decades. Public entities and private businesses have been increasingly required to adopt policy and 
managerial choices to combine economic performance with environmental and social concern.  

The concern with sustainable activities is notably present in agricultural research. Agriculture represents only 
3.5% of the world’s Gross Domestic Product (World Bank, 2017) but is essential for human survival and social 
stability. Despite irreversible urbanization trends, 45% of the world’s population still lives in rural areas (United 
Nations Population Division, 2017); and agricultural activities employs 26% of the global labor force 
(International Labor Organization [ILO], 2017). Environmental impacts are also significant, once agriculture is 
responsible for 33% of total GHG-greenhouse gas emissions (Intergovernmental Panel on Climate Change 
[IPCC], 2014).  

Inputs of agricultural activities also have large environmental and social impacts. The expansion of land-use for 
cultivation has increased deforestation and depleted natural resources, impoverishing biodiversity. 
Agrochemicals such as fertilizers and pesticides are responsible for soil and groundwater contamination, 
inflicting health problems to rural workers and local populations. Agriculture has a significant responsibility in 
climate change and declining water resources, which are increasingly challenging the very sustainability of food 
supply and social stability (Turral et al., 2011). 

Eco-efficiency analysis has been a widely applied tool to assess the performance of agricultural systems, while 
considering their environmental impacts. The main objective of the article is to accomplish a literature review on 
the application of eco-efficiency analysis in agricultural systems. The focus of the review is on methods and 
indicators that are most regarded for the quantitative assessment of agricultural eco-efficiency.  
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The review follows the methods proposed by Pagani et al. (2015), encompassing articles published in main 
electronic databases from 1992 to 2018. This timespan is established once the term eco-efficiency was conceived 
in 1992, at the United Nations Conference on Environment and Development-Rio Earth Summit, introduced in 
the publication Changing Course of the World Business Council for Sustainable Development (Schmidheiny, 
1992). 

The specific intentions of the literature review are to: (i) select research articles in which the primary topic is 
eco-efficiency analysis applied to agricultural systems; (ii) identify, through quantitative bibliometric indicators, 
which are the main geographical, institutional and research areas of the selected articles; (iii) identify which are 
the main methods and indicators applied in the eco-efficiency analysis of agricultural systems, as well the object 
of the analysis (whether products, practices, farms, regions, countries etc.); and (iv) analyze the main purposes 
for which eco-efficiency analysis is applied to agricultural systems.  

Through these specific objectives, this article intends to contribute to scientific research by identifying the 
benefits and limitations of the eco-efficiency analysis when applied to agricultural systems. Specifically, this 
article intends to fulfill the objective of contributing to the construction of an ecoefficiency framework which 
could, through future research, add to the assessment of the sustainability of agricultural systems in Brazil—a 
country that still has large portions of land with preserved native forests of several biomes, which have been 
increasingly threatened by environmentally degrading agricultural practices. 

2. Conceptual Background: From Productivity to Eco-efficiency and DEA 
The background for eco-efficiency analysis encompasses two widely examined concepts in social science 
research: productivity and sustainability. The former is defined within a more delimited framework and is 
regarded as a tool to measure the efficiency of economic activities. The latter, as well as adjacent concepts of 
sustainable development, comprises more diverse and less objective definitions.  

Productivity is generally understood as the capability to produce the most with the least resources. According to 
staff research from the Organization for Economic Co-operation and Development (OECD) and from the United 
States Department of Agriculture (USDA), output and input indicators can be combined to offer measures of 
production functions of single-factor productivity, multi-factor productivity and total factor productivity (OECD, 
2001; Wang et al., 2013).  

Production outputs and inputs can be expressed in monetary or quantity measures. Agricultural output, for 
instance, can be expressed either in gross value added or in the physical weight of production. Examples of labor 
input indicators are wage expenses, number of employees or hours worked. Intermediate input indicators can be 
expressed as expenses or the physical amount employed in production, such as pesticide-use measured either in 
monetary costs or the weight of active ingredient. Similarly, examples of capital inputs can be machinery 
depreciation costs or machinery utilization (number of units or measured power). 

To reach a productivity measure, one does not necessarily have to compare the numerator and the denominator in 
the same standard. For instance, in measuring labor productivity one can use the output indicator in monetary 
terms (such as sales revenue) and the input denominator in quantity terms (number of employees). The above 
revenue per employee indicator is an example of a single-factor productivity measure. One of the single-factor 
productivity measures most regarded in agriculture is the crop yield, measured as the (quantity or monetary) 
production per land-use (acres or hectares, for instance). 

Research in agricultural productivity has evolved to incorporate a comprehensive set of inputs, including labor, 
land, capital and purchased intermediate products, to reach multi-factor productivity measures. Total factor 
productivity (TFP) is measured by “the computation of an index of total output and an index of all factor inputs” 
(Christensen, 1975). The TFP is affected by technological enhancements, which produces “productivity shocks” 
(Kydland & Prescott, 1982), so that output can be increased with no significant change in input intensity. 
Furthermore, varying levels of total factor productivity can be achieved depending on “how efficiently (…) the 
inputs are utilized in production” (Comin, 2010). 

Efficiency is achieved through maximization of revenues and minimization of costs when there is no other 
combination of units that could improve production output and input consumption (Farrell, 1957). According to 
Charnes et al. (1978), when a production unit achieves maximal output for all the indicated inputs “it fulfills the 
requirements of a production function”, reaching “the efficient production possibility frontier”. Thus, efficiency 
is a relative concept, based on comparing the cost-benefit ratio of a production unit with the best practices—that 
is, with those units that make up the production possibility frontier given an available technology.  
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Eco-efficiency incorporates environmental costs to the assessment of efficiency, in order to meet sustainability 
efforts. Unlike productivity and efficiency, which are concepts well defined by literature and can be assessed by 
varied quantitative methods, sustainability encompasses less bounded concepts and more complex measurement 
attributes. 

The cornerstone for sustainability definition was offered by the Brundtland Report of the United Nations World 
Commission on Environment and Development (Brundtland et al., 1987). According to the report, sustainable 
development is the “development that meets the needs of the present without compromising the ability of future 
generations to meet their own needs”. This definition encompasses both the social needs and the environmental 
limitations for indefinite human survival. 

Thus, sustainability encompasses both physical and human development dimensions. According to Pater and 
Cristea (2016), the physical dimension of sustainability encompasses space, time, resources, and products. The 
human development dimension is settled upon economic, environmental, and social pillars—which must be 
attached to a solid institutional framework (Littig & Griessler, 2005). 

The concept of eco-efficiency tentatively bounds these physical and human development dimensions in order to 
assess the sustainability of human activities. The World Business Council for Sustainable Development 
(WBCSD) defined eco-efficiency as the “delivery of competitively priced goods and services that satisfy human 
needs and bring quality of life, while progressively reducing ecological impacts and resource intensity 
throughout the life-cycle to a level at least in line with the Earth's estimated carrying capacity” (Schmidheiny, 
1992). 

Kuosmanen (2005) identifies different approaches for ecoefficiency analysis to address “certain general 
challenges”, which includes the assessment of both economic and environmental impacts, “attributed to 
commodities (goods and services)” or “to organizations (firms, cities, factories) that produce the commodities”. 
Similarly, Ehrenfeld (2005) notes that eco-efficiency is “applied in practice” at the level of “processes and 
products (microscale)” or to evaluate “the performance of a company or other organizational entity” or “the 
performance of a country, region, or other macro-entity”.  

Among the approaches identified by Kuosmanen (2005) to assess the eco-efficiency of human activities are the 
Life-Cycle Assessment (LCA), the Cost-Benefit Analysis (CBA) and the Contingent Valuation (CV). But the 
author argues that these approaches, while adopting quite different methods, “tend to focus on the challenges in 
isolation”—that is, “focus on a single issue, ignoring other key challenges involved”. As such, the author calls 
for a “more unified approach to eco-efficiency measurement”.  

Bearing the need of a more comprehensive approach to address the challenges of eco-efficiency, Kuosmanen and 
Kortelainen (2005) suggested the application of Data Envelopment Analysis (DEA) to quantify economic 
performance and environmental damage “to construct an encompassing eco-efficiency index”.  

Data Envelopment Analysis (DEA) is a non-parametric model introduced by Charnes et al. (1978) to evaluate 
“the performance of a set of peer entities called Decision Making Units (DMUs) which convert multiple inputs 
into multiple outputs”, based on the principles presented by Farrell (1957) to measure efficiency. According to 
Farrell (1957), efficiency is determined by the set of possible combinations that a unit can produce from the 
available resources. The efficiency of a DMU is measured by the ratio between its productivity and the 
productivity of DMUs that display the best possible combination of products and inputs, establishing an 
efficiency frontier. 

A DEA model can be applied either to maximize production while maintaining a stable amount of inputs 
(denominated output-oriented) or to minimize inputs while maintaining the level of production (input-oriented). 
The original model was developed to analyze efficiency with constant returns to scale (CRS), assuming that, at 
the production possibilities frontier, any variation in inputs produces proportional variation in outputs.  

The model derives from a fractional programming problem, represented by Equation (1), aimed at estimating the 
efficiency of DMUo, which must be solved for each of the k DMUs evaluated. The model aims at maximizing 
the value of the division between the weighted sum of the s outputs and the weighted sum of the r inputs, subject 
to two restrictions: (i) the efficiency measures of all the units evaluated must be less than or equal to one; and (ii) 
the most appropriate weights (u and v) of the output (y) and input (x) variables need to take non-negative values. 

 

 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 7; 2020 

121 

Max ϕo	= 
∑ ujyjo
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r
i=1

 ≤	1, ∀k  

uj and vi ≥	0, ∀i,	j                                   (1) 

To facilitate the calculation, the fractional programming problem is transformed into a linear programming 
problem. This requires: (i) the transformation of the denominator of the objective function of Equation (1) into a 
constraint, assigning it a constant value (usually equivalent to 1); and (ii) the linearization of the constraint 
formulated in a fractional way. The linear programming problem represented in Equation (2) is the input-oriented 
multiplier model—because it indicates how much to reduce inputs while maintaining the level of production. In 
the multiplier model, the decision variables are the weights (vi and uj) assigned to inputs and outputs. They 
indicate the contribution of each variable in determining the efficiency level. 

Max ϕo	= ∑ ujyjo
s
j=1   

Subject to:  ∑ vixio	=	1r
i=1   ∑ ujyjk

s
j=1 	– ∑ vixik

r
i=1  ≤	0,	∀k  

uj and vi ≥	0, ∀i,	j                                    (2) 

The original DEA-CRS model was redesigned by Banker et al. (1984) to include variable returns to scale (VRS). 
In this model, the property of proportionality between inputs and outputs is replaced by a convexity property, 
which considers increasing or decreasing returns to scale at the efficiency frontier. Equation (3) presents the 
linear programming problem of the input-oriented multiplier model with variable returns to scale, where, u* is 
the scale factor: when negative, it indicates increasing returns; when positive, decreasing returns; and, if null, 
constant returns to scale. The exercises presented in Section 4 of this article use input-oriented DEA-VRS 
models. 

Max φo	= ∑ ujyjo
s
j=1 	+ u*  

Subject to:  ∑ vixio	=	1r
i=1   ∑ ujyjk	s

j=1 +	u*	– ∑ vixik
r
i=1  ≤	0, ∀k  

uj and vi ≥	0,	u*∈R                                   (3) 

Kuosmanen and Kortelainen (2005) argue that DEA models have the advantage “to account for substitution 
possibilities between different performance criteria and its independence of subjective aggregation weights”. In 
other words, DEA is an objective model in which the weights of economic performance and environmental 
impacts are allocated in the best possible manner as to achieve the highest eco-efficiency score, regardless of 
subjective orientation. A decision-making unit is considered eco-efficient when no other weight-combination of 
economic performance and environmental impacts can result in a better eco-efficiency score.  

DEA models have been increasingly applied to eco-efficiency analysis, as is illustrated in the next section of this 
article, which examines the literature on the quantified eco-efficiency assessment of agricultural systems. 

3. Literature Review on Agricultural Eco-efficiency: Methods and Indicators 
3.2 Review Procedures 

As argued in the introduction, the literature review conducted in this article follows protocols suggested by 
Pagani et al. (2015). The review is guided by three main research questions: (i) Which methods/techniques are 
applied in assessing the eco-efficiency of agricultural systems? (ii) Which statistical variables are used to assess 
the eco-efficiency of agricultural systems? (iii) For which purpose is eco-efficiency analysis applied in the 
research of agricultural systems? By tentatively answering these research question, this literature review aims to 
provide empirical steps for the elaboration of agricultural eco-efficiency indicators, pointing out the benefits and 
limitations of their application.  

The first stage of the review is to establish the criteria for the literature selection, which attends the following 
sequence. (1) Publication type: articles published in academic journals, available online, in any research area, in 
English, Portuguese and Spanish. (2) Electronic databases: Web of Science (Clarivate Analytics), Science Direct 
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(Elsevier), Scopus (Elsevier), Wiley On-line Library (Wiley) and AGRIS (FAO). (3) time-period: 1992 to 2018. 
By attending these criteria, the review covers over 15 000 academic journals containing articles published since 
the inception of the eco-efficiency definition. 

The literature selection is conducted considering two main thematic axes: Eco-efficiency and Agriculture. The 
article search is performed in the above-mentioned electronic databases combining a set of keywords evolving 
from these thematic axes. The search returned 8 413 articles under the Eco-efficiency umbrella and 583 articles 
when keywords from both Eco-efficiency and Agriculture axes were combined. 

The search results were then filtered to eliminate duplicates and the 323 remaining articles had their titles and 
abstracts analyzed in order to eliminate articles not adherent to the focus of the literature review—that is, the 
quantitative assessment of agricultural eco-efficiency. The selection, search and filtering steps resulted in 90 
articles (Figure 1) that were submitted to full-text examination in order to address the three suggested research 
questions mentioned above. 

 

 

Figure 1. Article search results and filtering 

 

3.2 Main Findings and Discussion 

The 90 articles fully examined varied on geographical scope, with Europe (52 articles) and Asia (16 articles) 
being the host of the first author’s institutions in more than 75% of the articles. The remaining articles were 
spread between North America (8), Oceania (7), South America (5) and the Middle East (2). Spain (13 articles), 
Switzerland (11), Italy (8) and China (8) stand out as the most prolific countries.  

Although most of the articles come from European institutions, the most cited and the highest impact factor 
articles are, on average, from North America and Oceania, followed by Europe, Asia, and South America. The 
first author’s nationality and the location of the objects analyzed have similar geographical scope. 

Research areas are concentrated in agricultural economics and management, as well as in environmental sciences. 
The articles were published in more than 40 journals, with 13 journals publishing at least two articles. The 
Journal of Cleaner Production outstands with 18 articles published, followed by The Journal of Environmental 
Management (7 articles), Sustainability (7), Agricultural Systems (6), and Ecological Economics (4).  

No articles published before 2003 met the selection criteria. The number of publications regarding quantitative 
assessment of agricultural systems has been increasing significantly since 2010 (Figure 2).  
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323
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Figure 2. Number of publications per year 

 

The analytical examination of the selected articles reveals two preferred methods of eco-efficiency assessment. 
Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA)—either applied individually or combined 
with each other or with other methods—are present in 67 of the 90 articles (Figure 3).  

Carbon Footprint (CF) and Stochastic Frontier Analysis (SFA) are applied more than twice, whereas other 
methods—including Balance Scorecard (BSC), Cost-Benefit Analysis (CBA), Contingent Valuation (CV) and 
unreplicated econometric models—are not found in more than two articles.  

 

 
Figure 3. Number of publications according to method applyed 

 

The impact factor of the examined articles was calculated following protocols recommended by Pagani et al. 
(2015). The results show no significant difference between the impact factor of the articles which apply the main 
assessment methods found in literature (i.e., DEA and LCA). The impact factor of the articles that resorted to 
other methods was found to be lower (Figure 4). 
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Figure 4. Impact factor of the article by method of analysis 

 

Life Cycle Assessment (LCA) was dominant up to 2009. The main reason for this early-stage dominance is that 
LCA had close ties with the eco-efficiency concept in so far as it was a widely used assessment method for 
“standardization in the field of environmental management systems” as well as a “tool in support of sustainable 
development” (International Standardization Organization [ISO], 2012).  

Indeed, in 1993 the International Organization for Standardization created the Technical Committee 207, which 
established, under the sub-committee number 5, the guidelines for the Life Cycle Assessment. The LCA 
guidelines later evolved into the ISO 14045 certification, which “describes the principles, requirements and 
guidelines for eco-efficiency assessment of product systems” (ISO, 2012). 

The LCA can be described as a quantitative analysis covering a holistic set of inputs used and products and 
externalities generated throughout the entire life cycle of a product or a production process—often called from 
“cradle to grave”. This method is significantly biased towards the assessment of environmental impacts, 
neglecting the assessment of the economic efficiency (Kuosmanen, 2005). Since 2010, the more comprehensive 
Data Envelopment Analysis (DEA) has emerged as the prominent method applied to eco-efficiency 
assessment—although the Life Cycle Assessment (LCA), far from being abandoned, has also been attracting 
increasing research attention (Figure 5).  

 

 
Figure 5. Number of articles by selected methods and periods 

 

The main reason behind the sharing importance of these two methods in the eco-efficiency analysis is that they 
are preferred for specific intentions and for different categories of objects. Life Cycle Assessment has a more 
microanalytic approach, generally applied to assess the environmental impacts of products and processes. Data 
Envelopment Analysis, more focused on the efficient combination of both economic value and environmental 
impacts, with no subjective weight attribution, has a more macro perspective and is mostly applied to 
decision-making units (DMU), such as farms (when analyzing agricultural eco-efficiency), municipalities, 
regions, countries (Figure 6). 
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Figure 6. Number of articles by object of study and method applied 

 

The differences found in these two methods also lead them to diverge in dataset choices. Primary data prevail in 
the LCA method, whereas secondary data are dominant in DEA. Nevertheless, these two techniques share a wide 
range of economic and environmental variables—although both fail to incorporate the social dimension of 
sustainability into the eco-efficiency analysis.  

The examination of the selected articles on agricultural eco-efficiency reveals a wide set of statistical variables 
that can be grouped in three main categories: economic output, production inputs and environmental outputs.  

(1) Economic output indicators can be expressed in non-monetary or monetary terms. 

Non-monetary variables are usually regarded when comparing the eco-efficiency of similar products or peer 
units which produce the same goods. Indicators, such as harvested weight, are not suitable for comparisons 
between crops of different cultures—once agricultural products have different physical characteristics. An 
acreage of harvested sugarcane, for example, will surely be much heavier than an acreage of harvested cotton, 
but not necessarily more productive. 

Monetary indicators are more suitable to compare products with different physical characteristics or units with 
diversified production. Sale revenues, agricultural gross value added, and primary sector Gross Domestic 
Product are the main indicators found in the literature review. Nevertheless, price fluctuation inherent to 
agricultural products—due to external shocks (notably of climatic nature) and seasonality—can lead to 
distortions in the assessment of economic performance through these monetary indicators. When material 
indicators are suitable, monetary indicators are generally disregarded. 

(2) Production inputs can be divided into two subcategories: direct and indirect inputs.  

Direct inputs, as the terminology suggests, are inputs directly used in the agricultural activity. These inputs can 
be divided into four types: land-use, labor inputs, capital (or equipment) utilization, and purchased intermediate 
inputs (such as seeds, fertilizers, pesticides).  

Land-use is generally measured by the area used for production, which is a non-monetary variable. Monetary 
value of land was disregarded by all but three of the articles examined, due to regional property price differences. 
The few monetary examples of land input are either rental or depreciation costs. 

Labor inputs found in the literature review include the number of workers and hours/days worked, when 
non-monetary variables are considered, or the cost of labor (such as wages and compensations) when monetary 
variables are regarded. 

Similarly, capital equipment can be calculated either by material variables (the number of machines or the 
combined power of the machines) or monetary variables (the capital depreciation of the equipment). The same 
applies to intermediate inputs—for instance, the amount (in weight) or the cost (in monetary terms) of fertilizers 
and pesticides. 

The literature review found that it is preferred, but not mandatory, to compare economic output and direct 
production inputs in the same terms (either material or monetary). 
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The indirect production inputs most regarded by the articles reviewed refer to energy consumption or costs, 
generally fuel and electricity. Other indirect indicators eventually considered include natural resources (notably 
irrigated water) and governmental subsidies. 

(3) Environmental outputs are divided into positive and negative outputs.  

Examples of positive outputs, by far less regarded in the articles reviewed, are preserved areas, reforestation, and 
recovery of springs and degraded areas. All the examples were found to be expressed in non-monetary terms. 

Negative environmental outputs are far more abundant in the literature of eco-efficiency assessment of 
agricultural systems. The most regarded indicators are: (i) greenhouse gas (GHG) or carbon dioxide (CO2) 
emissions, usually following methodological guidelines offered by The Intergovernmental Panel on Climate 
Change (IPCC, 2006); and (ii) nitrogen (N) or nitrogen-phosphorus-potassium (NPK) balance, measured by the 
Soil Surface Balance Method (OECD, 2001).  

Many other negative environmental indicators found in the reviewed articles include: (i) the intensity of pesticide 
use, either measured by the weight of active ingredients or through the method of Environmental Impact 
Quotient of Pesticides (EIQP) developed by Kovach et al. (1992); (ii) impact on biodiversity, usually calculated 
by the Shannon Diversity Index (Spellerberg & Fedor, 2003); and (iii) degraded areas, soil erosion, water 
depletion, and waste and residues. 

The eco-efficiency analysis of any product, process or decision-making unit should contain at least one variable 
from all three main categories. Ideally, a more comprehensive analysis should include as many indicators as 
possible.  

Indicator choices for the eco-efficiency assessment of agriculture are often performed based on two relevant 
factors. First, data quality and availability—which can be regarded as the main limitation for quantitative 
eco-efficiency assessment. Second, the purposes for which the eco-efficiency analysis is applied to agricultural 
systems. 

The paramount motivation for applying eco-efficiency analysis is the sustainability assessment of economic 
activities. Surrounding this central motivation, many specific objectives of the analysis are found through this 
literature review (Figure 7). One prominent objective, found both when LCA or DEA were applied (but 
somewhat more frequent with the latter), is guidance for environmental public policies—notably in European 
studies.  

 

 

Figure 7. Objetives of the eco-efficiency analysis of agricultural systems 

 

Picazo-Tadeo et al. (2011), for instance, summarize the purpose of their studies as such:  

“Assessing eco-efficiency might help policy-makers to design agricultural policies more capable of 
achieving the general objective of agricultural sustainability and, particularly, the sustainability of specific 
agricultural systems” (p. 1163). 
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Tendall and Gaillard (2015) call for greater integration between environmental and social policies, even though 
they have failed to include social indicators in their eco-efficiency modeling: 

“There is (…) a need for adequate policy intervention if productivity and ecoefficiency are to be maintained 
under the future climate, and climate change mitigation is to be achieved. Our results (…) show that the 
environmental impacts of agricultural adaptation to climate change are influenced by socio-economic 
scenarios as much as by climate change scenarios: policies affecting socio-economic aspects may have a 
high potential to counter the effects of adaptation to climate change” (p. 49). 

Vlontzosa and Pardalos (2017) suggest that quantified eco-efficiency could be a useful tool for ex-ante 
examination of public policies intended to reduce environmental damages: 

“The quantification of environmental performance could be a starting point for planning and implementing 
policies and incentives towards a more efficient usage of energy related inputs in agricultural production 
and assess the impact of these policies before their implementation” (p. 160). 

Kuosmanen (2014) acknowledges the need to further deepen research to reach a “more comprehensive 
eco-efficiency or productivity analysis and for the evaluation and design of agri-environmental policies in 
Europe” (pp. 68). Other authors (Aldonondo-Ochoa et al., 2014) and many Chinese studies also offer 
recommendations for public policies (Zhou et al., 2013; Wang et al., 2014; Xing et al., 2018). 

Alongside public policy guidance, recommendations for enhancing economic and environmental efficiency of 
decision-making units stands out as another specific purpose commonly found in the reviewed articles with 
higher impact factor. Most articles focus on crop or dairy farms (Nemecek et al., 2011; Jan et al., 2012; Shortall 
& Barnes, 2013; Hochman et al., 2014; Kulak et al., 2015; Masuda, 2016; Pereira et al., 2016). But geographical 
regions and countries are also broadly studied (Halkos et al. 2006; Repar et al., 2017; Pang et al., 2016; Pokhrel 
& Soni, 2017). 

Pollution control was also found as an outstanding research purpose (Kuosmanen & Kuosmanen, 2013; Kuo et 
al., 2014; He, Wan et al., 2016; Reboledo-Leiva et al., 2017). Also related to greenhouse gas emission and 
climate change, some articles aimed at building scenarios under a future climate (Niero et al., 2015; Vlontzos & 
Pardalos, 2017). Other research included assessment of preservation costs and payment of ecosystem services 
(Rosano-Peña et al., 2018) and obtainment of environmental credentials (Müller et al., 2013). 

It is important to notice that many authors, from a wide geographical range, have acknowledged that the 
eco-efficiency analysis of agricultural systems face important limitations due to limited availability of reliable 
and harmonized input data (Rodrigues et al., 2010; Bengtsson & Seddon, 2012; Todorovic et al., 2016; Corrado 
et al., 2018; Xing et al., 2018). Vlontzos and Pardalos (2017), commenting on their research, alert that “there is a 
need for further research on both the architecture of the model, and on the inputs being used, in order to improve 
its reliability and applicability”. 

4. A Simple Framework for the Eco-efficiency Analysis of the Brazilian Agriculture 
In order to achieve the objective of highlighting the benefits and limitations of eco-efficiency applied to 
agriculture, this fourth section of the article delivers three simple models in order to encompass the proposed 
eco-efficiency framework for Brazilian agriculture. Brazil has a continental size. The exercises conducted in this 
article compare the performance of the Brazilian economy at a state-level. Brazil is divided in 27 states, 
officially denominated as Units of the Federation (UFs).  

The first exercise is aimed at delivering a single-factor productivity measure for each UF, tentatively avoiding 
distortions associated with different physical characteristics or price fluctuations of agricultural products. The 
second exercise includes a broader set of outputs and inputs into an input-oriented DEA considering variable 
returns to scale in order to obtain a technical efficiency score for the UFs. In the third model, environmental 
variables are included in the input-oriented DEA with variable returns to scale, thus encompassing both technical 
and environmental dimensions, in order to deliver eco-efficiency scores of all 27 Brazilian UFs. DEA is chosen 
once the literature review revealed this method as the most adequate for the eco-efficiency analysis of 
geographical regions. 

4.1 Single-Factor Productivity: Index of Weighted Agricultural Productivity (IWAP) 

The first model, aimed at delivering a land productivity measure for the Brazilian economy, compares the weight 
of production (in tons) with harvested area (hectares). The source of these data is the 2017 annual agricultural 
production survey of the Brazilian national statistics institute (IBGE).  
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Nevertheless, eco-efficient units have higher probability of becoming sustainable—a stochastic relation which 
implies that eco-efficiency can be successfully applied to identify economic inefficiencies and unwanted 
environmental costs (for both degradation and preservation).  

This article concludes by suggesting further research to improve the quality of economic, social, and 
environmental indicators and to enhance the methods, models, and techniques applied to the eco-efficiency 
analysis of agricultural systems.  

Another topic for future research could include the examination of the factors exogenous to the production 
function which can influence the eco-efficiency of decision-making units. This could be very important, 
particularly, to assess the eco-efficiency of countries, or regions within a country, with different socio-economic 
and edaphoclimatic characteristics. 
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