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Abstract 
Intramuscular fat (IMF) plays an important role in meat quality due to its positive correlation with juiciness, 
tenderness, and flavor. However, for chickens, the molecular mechanisms underlying IMF deposition in thigh 
muscle have not yet been determined. Here, to identify candidate genes and signaling pathways related to IMF 
deposition, we deeply explored the chicken transcriptome from thigh muscles of Huangshan Black Chickens 
with extremely high and low phenotypic values for intramuscular fat content. A total of 128 genes differentially 
expressed genes (DEGs) were detected, of which 94 were up-regulated and 34 were down-regulated. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed these DEGs 
(including FABP4, G0S2, PLIN1, SCD1, LFABP, SLC1A6, SLC45A3, ACSBG1, LY86, ST8SIA5, SNAI2, HPGD, 
EDN2, and THRSP) were significantly enriched in lipid biosynthetic process, steroid biosynthetic and metabolic 
process, fatty acid metabolic process, and regulation of unsaturated fatty acid metabolic pathways. Additionally, 
we concluded an interaction network related to lipid metabolism, which might be contributed to the IMF 
deposition in chicken. Overall, we proposed some new candidate genes and interaction networks that can be 
associated with IMF deposition and used as biomarkers in meat quality improvement. 

Keywords: meat quality, IMF deposition, thigh muscle, chicken transcriptome, interaction networks 
1. Introduction 
During the past decades, the breeding of meat type poultry has been predominantly focused on increasing growth 
rate and yields of breast and thigh meat. Although the impressive progress made in these meat quality traits, 
there were some poor performances, such as larger fiber diameters, lower intramuscular fat, and higher 
proportion glycolytic fibers, which seriously decreased sensory acceptability for consumers (Du et al., 2010). It 
is an ongoing challenge to maintain growth rate meanwhile improve meat quality. As a main determinant of meat 
quality, the deposition of intramuscular fat (IMF) plays an important role in flavor of meat and can dramatically 
promote tenderness of meat. 

Previous studies have discovered some important quantitative trait loci (QTL) associated with chicken IMF, 
which are mainly located on chromosomes 1, 2, 5, 23 (Zhao et al., 2007; Sarsenbek et al., 2013; Zhang et al., 
2015). Additionally, a number of genes including CD36, ACC, and DGAT2 (Jeong et al., 2012), FABP (Serao et 
al., 2011), DGAT1 (Li et al., 2013), LPL (Zhang et al., 2015), and SLC27A1 (Qiu et al., 2017) were also 
recognized as candidate genes for IMF in chickens. However, the metabolic pathways underlying IMF 
deposition is very complicated, the molecular mechanisms affecting IMF remains poorly understood.  

With the development of high-throughput sequencing technologies, especially RNA-Seq has been widely 
utilized to explore potential candidate genes which affect important economic traits in animals. Although, 
previous studies have analyzed the transcriptome of chicken breast muscle (Cui et al., 2012), skeletal muscle (Ye 
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et al., 2014) and thigh muscle (Cui et al., 2018) utilizing microarrays, and identified some potential candidate 
genes that influence IMF deposition, no further transcriptome studies in chickens have been taken in identical 
breed with distinct IMF levels.  

As an indigenous breed in China, the Huangshan Black Chicken has a distinct appearance and quality in meat 
products. The difference in IMF content of thigh muscles makes them as great materials to understand the 
molecular mechanism of IMF deposition in chickens. In the present study, we used RNA-Seq technology to 
examine differentially expressed genes (DEGs) in thigh muscle tissues between two groups of Huangshan Black 
Chickens with extremely high and low phenotypic values of IMF content. We then proposed some new candidate 
genes and a gene network that can be related to IMF deposition by conducting integrated analysis. Thus, the 
elucidation of the precise molecular mechanisms underlying IMF traits in Huangshan Black chickens will have 
both economic and biological consequences.  

2. Method and Methods 
2.1 Ethics Statement 

All animal procedures were authorized by the Institutional Animal Care and Use Committee (IACUC) of Hefei 
University of Technology (Permit Number: DK838). In the present study, animals were sacrificed as necessary to 
ameliorate suffering. 

2.2 Animals and Sample Collection 

Huangshan Black Chickens (Anhui conservation farm for Huangshan Black Chicken, Huangshan, China) with 
the same genetic background were maintained in free-ranging flocks in a standardized farm, using a diet as: 
maize 64.0%, wheat bran 16.0%, full-fat soybean 10.0%, fish meal 5.0%, feed yeast powder 2.0%, bone meal 
1.5%, inorganic additives 0.7%, Lysine 0.3%, salt 0.3%, Methionine 0.2%. Ten male chickens with an average 
weight of 1.82 kg at 120 days old were selected randomly according to our detection. To keep the environment 
factors identical, feed and water were provided ad libitum during the experiment.  

All the chickens were fasted for 12 h, and weighed before being killed by stunning and exsanguination. The 
thigh muscle samples from the left leg of the chickens were collected within 30 min after slaughter. The samples 
for each chicken were were snap-frozen and stored at -80 °C before analysis. Meanwhile, sufficient samples 
were minced and kept at -20 °C for IMF analysis. 

2.3 IMF Measurement 

IMF content of thigh muscle was determined by Soxhlet extraction according to previous studies (Folch and 
Lees, 1957) and expressed as percentages of the muscle, on the basis of the dry weight. 

2.4 RNA Isolation and Validation 

Total RNA of the thigh muscle samples was extracted using the Trizol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. After the quality verification on gel electrophoresis, the 
concentration and purity of the RNA samples were assessed on a NanoPhotometer® spectrophotometer (Thermo 
Scientific, Wilmington, DE, USA). The integrity of RNA was assessed using the RNA Nano 6000 Assay Kit of 
the Bioanalyzer 2100 system (Agilent Technologies, CA, USA).  

2.5 RNA Sequencing 

With a final 2.0 μg/μl concentration, RNA from each sample was pooled based on the IMF content. A total of 
3μg RNA from per pooled sample was used as the input material for RNA sample preparations. Based on the 
manufacturer’s instructions, the transcriptome library was constructed using NEBNext® Ultra™ RNA Library 
Prep Kit for Illumina® (NEB, USA). Furthermore, TruSeq PE Cluster Kit v3-cBot-HS (Illumina) was used to 
cluster the index-coded samples on a cBot Cluster Generation System. After cluster generation, the library 
preparations were sequenced using an Illumina HiSeq 2000 platform, which was followed by FASTQ file 
generation and the failed reads elimination by CASAVA ver.1.8.2 (Illumina). 

2.6 Sequencing Data Analysis 

Using CASAVA ver.1.8.2 (Illumina), the sequencing-derived raw images were transformed into raw reads by 
base calling. After obtained the raw reads, we removed reads containing low quality reads, adapter and reads 
containing ploy-N to get clean data through in-house perl scripts. Additionally, the description statistics for the 
clean data, such as Q20, Q30, and GC-content were calculated for high-quality downstream analysis. The clean 
data with high quality were used for the downstream analyses. 
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2.7 Reads Mapping 

Based on the reference genome, only these reads with a perfect match or one mismatch were further analyzed 
and annotated. The clean reads were mapped to the reference genome of chicken (version UMD 4.1) using 
Tophat2 software (version 2.1.0). The index of the reference genome was built using Bowtie v2.2.3 and 
paired-end clean reads for each individual chicken were aligned to the reference genome using TopHat v2.0.12. 
In addition, HTSeq v0.6.1 was used to count the reads numbers mapped to each gene. 

2.8 Differential Expression Analysis 

Differential expression analysis of different groups (the high and low groups with phenotypic values for IMF 
content) was identified using the DESeq R package (1.10.1) based on the negative binomial distribution. 
Furthermore, the Hochberg and Benjamini method was used to adjust the p-values for controlling the false 
discovery rate (Benjamini and Hochberg, 1995). Genes with a FDR value < 0.05 and jlog2-fold changej > 2 were 
assigned as differentially expressed. 

2.9 Functional Enrichment Analysis 

GO and KEGG pathway enrichment analyses of the DEGs were implemented by the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) website (Huang et al., 2007). GO terms and KEGG pathways 
with a hypergeometric test from the R package (P < 0.1, FDR-adjusted) were considered significantly enriched 
among the DEGs. Pathways with fewer than three known chicken genes were discarded. 

To validate the repeatability and reproducibility of the sequencing results, qRT-PCR was carried out to detect 10 
randomly selected DEGs. Primers were designed via Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/ 
input.htm) and are shown in Supplementary Table S1. qRT-PCR was carried out in triplicate with the 
LightCycler® 480 SYBR Green I Master Kit (Roche Applied Science, Penzberg, Germany) in a 15 μ L reaction 
on a ABI7500 (Applied Biosystems Inc., USA), using the following program: 95 °C for 10 min; 40 cycles of 
95 °C for 10 s, 60 °C for 34 s, and 72 °C for 10 s; 72 °C for 6 min. The mRNA levels of the DEGs were 
normalized by the housekeeping genes GAPDH and β-actin, and the relative gene expression values were 
calculated using the 2-ΔΔCt method. Finally, the correlations between RNA-Seq for 10 genes and the mRNA 
expression level from qRT-PCR were estimated using R (V3.2). 

3. Results 
3.1 Differences in IMF Content 

The IMF content of 20 samples in thigh tissues was detected using soxhlet extraction method and the data were 
shown in Table 1, respectively. Of these, according to the value of the IMF content, the pooled RNA of sample 
1-3 and sample 4-6 were selected as IMFL1 and IMFL2 while sample 7-9 and sample 10-12 as IMFH1 and 
IMFH2 to explore the chicken transcriptome by paired-end RNA sequencing. 
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Table 1. Analysis of IMFs in thigh muscle of Huangshan Black chickens 

Sample IMF content (%) Group Mean±SD (%) 

sample1 2.72  

IMFL1 2.69±0.05 sample 2 2.63  

sample 3 2.72  

sample 4 2.28  

IMFL2 2.22±0.05 sample 5 2.18  

sample 6 2.20  

sample 7 3.80  

IMFH1 3.86±0.06 sample 8 3.88  

sample 9 3.90  

sample 10 3.90  

IMFH2 3.93±0.03 sample 11 3.94  

sample 12 3.95  

sample 13 2.93    
sample 14 3.43    
sample 15 3.71    
sample 16 3.54    
sample 17 2.86    
sample 18 3.15    
sample 19 2.99    
sample 20 3.22    

Note. IMFH1and IMFH2 means samples with extremely high phenotypic values for intramuscular fat content; 
IMFL1and IMFL2 means extremely low phenotypic values, respectively. 

 

3.2 RNA Sequencing of Thigh Muscle Tissue 

We acquired a total of 240.02 million clean reads with an average of 60.01 million (range, 57.85 to 62.40 million) 
for each sample (Table 2). Alignment of the sequence reads against the chicken reference genome UMD 4.1 
yielded 71.39-72.61% of uniquely aligned reads across the four samples, of which 76.1-76.8% fell in annotated 
exons, 5.9-7.7% were located in introns, and 16.1-17.2% fell in intergenic regions (Supplementary Figure S1). 
The data sets analyzed are available in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank) and the 
BioProject ID is PRJNA471361. Furthermore, the correlation coefficient (R2) between the four individuals 
within the IMFH and IMFL groups was calculated based on the FRPM value of each sample and was shown to 
be 0.937 and 0.964, respectively, indicating that the similarity of the two biological samples within each group 
was sufficiently high (Supplementary Figure S2). 

 

Table 2. Basic sequencing data for each sample 

Sample_name IMFH1 IMFH2 IMFL1 IMFL2 

Total reads 60063910 62401086 57857950 59716094 

Total mapped 42879675 (71.39%) 45311164 (72.61%) 41473305 (71.68%) 43052414 (72.1%) 

Multiple mapped 1021027 (1.7%) 1029884 (1.65%) 1013360 (1.75%) 1190835 (1.99%) 

Uniquely mapped 41858648 (69.69%) 44281280 (70.96%) 40459945 (69.93%) 41861579 (70.1%) 

Non-splice reads 24719076 (41.15%) 26119518 (41.86%) 23288965 (40.25%) 25891090 (43.36%) 

Splice reads 17139572 (28.54%) 18161762 (29.1%) 17170980 (29.68%) 15970489 (26.74%) 

Note. IMFH1and IMFH2 means samples with extremely high phenotypic values for intramuscular fat content; 
IMFL1and IMFL2 means extremely low phenotypic values, respectively. 

 

3.3 The Identification of DEGs Related to IMF Metabolism 

Using the RPKM method, the differential gene expression profile between IMFH and IMFL was examined. In 
total, 128 genes were detected significantly different between IMFH and IMFL groups. Of these, 34 genes were 
down regulated while 94 genes were up regulated. Additionally, the volcanic plot of the two comparison groups 
was displayed in Figure 1. Furthermore, using integrated analysis of RNA-Seq and gene function, the top 20 
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comparisons (IMFH1 vs IMFL1, IMFH1 vs IMFL2, IMFH2 vs IMFL1 and IMFH2 vs IMFL1). To confirm 
results from the RNA-seq, qRT-PCR was conducted and fold-changes in gene expression between the two 
methods were correlated (r2 = 0.98) in Huangshan black chickens. Thus, these results showed that RNA-Seq are 
still recommended to facilitate the accurate detection. 

According to integrated analysis on basis of 128 common known DEGs, 14 DEGs (FABP4, G0S2, PLIN1, SCD1, 
LFABP, SLC1A6, SLC45A3, ACSBG1, LY86, ST8SIA5, SNAI2, HPGD, EDN2, and THRSP) related to IMF 
metabolism were detected in this study. Among them, Fatty acid binding protein 4 (FABP4) had significantly 
up-regulated in this study (P < 0.01), which was in accordance with that observed in previous reports (Cui et al., 
2018). FABP4 plays an important role in systemic metabolic homeostasis and lipid-mediated biological 
processes through the regulation of diverse lipid signals (Bag et al., 2015; Floresta et al., 2017). As a lipid 
chaperon, FABP4 is responsible for the transportation and metabolism of free fatty acid in adipocyte. 
Correspondingly, our study revealed that FABP4 was near to the peak positions of two QTLs for fat traits. These 
results strongly supported the view of up-regulation of FABP4 in thigh tissue, revealing that thigh tissue had the 
stronger lipid biosynthesis. 

Metabolic regulation is essential for all biological functions. As a multifaceted regulator, the G0/G1 switch gene 
2 (G0S2) is abundantly expressed in metabolically active tissues and involved in a variety of cellular functions 
including proliferation, metabolism, apoptosis and inflammation (Zagani et al., 2015). Particularly, recent studies 
revealed that G0S2 acts as a molecular brake on triglyceride (TG) catabolism by selectively inhibiting the 
activity of rate-limiting lipase adipose triglyceride lipase (ATGL) (Yim et al., 2016; EI-Assaad et al., 2015; 
Zhang et al., 2017). Similarly, our study revealed that the expression levels of G0S2 had significantly 
up-regulated in thigh tissue. In addition, G0S2 was near to the peak positions of two QTLs for fat traits. In 
summary, we therefore speculated that G0S2 may be a promising candidate gene for intramuscular fat percentage 
in chickens. 

As a central regulator of fatty acid metabolism, stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the synthesis 
of monounsaturated fatty acids (MUFAs), mainly palmitoleate and oleate, which are important in the regulation 
of lipid and glucose metabolism in metabolic tissues. In addition, SCD1 is mainly regulated by sterol responsive 
element binding protein (SREBP)-1c, cyclic AMP response element binding protein 1 (CREB1) and peroxisomal 
proliferator-activated receptors (PPARs) at the transcriptional level, which were regulatory factors inducing the 
expression of SCD1 along with enzymes of denovo fatty acid biosynthesis (ALJohani et al., 2017). Likewise, 
nucleotide variants of SCD1 were able to produce significant effects on fatty acid composition, such as milk fat, 
physicochemical composition, and the quality characteristics in animals (Wen et al., 2018). Among others, the 
expression levels of SCD1 had significantly up-regulated in our recent study. Hence, SCD1 was considered as a 
major gene affecting fat traits.  

Similarly, the expression levels of THRSP, PLIN1, SLC1A6, SLC45A3, ST8SIA5, SNAI2, and LY86 had 
significantly up-regulated in thigh tissue (P < 0.01). As the previous reported, thyroid hormone responsive 
(THRSP) gene encodes a small acidic protein involved in control of lipogenic enzymes (Liaw & Towle, 1984), 
perilipin 1 (PLIN1) is a lipid droplet-associated protein and has the important function in the regulation of 
adipocyte lipolysis and lipid storage (Zhou et al., 2016), solute carrier family 1 member 6 (SLC1A6) and solute 
carrier family 1 member 6 (SLC45A3) are purported to transport sugars, thereby playing an important potential 
role in maintaining intracellular glucose levels and the synthesis of long-chain fatty acids (Deng et al., 2007; 
Shin et al., 2012). ST8 Alpha-N-Acetyl-Neuraminide Alpha-2, 8-Sialyltransferase 5 (ST8SIA5) is involved in 
metabolism and transport of proteins for subsequent modification. However, no previous studies have linked 
SNAI2 or LY86 with lipid differentiation and further study of these genes seems to be warranted.  

On the other hand, the expression levels of LFABP, ACSBG1, HPGD, and EDN2 had significantly 
down-regulated in our study. Liver-type fatty acid-binding protein (LFABP), also frequently known as fatty 
acid-binding protein 1 (FABP1), is involved in intracellular lipid transport from cell membrane to the 
intracellular sites of fatty acid utilization (Rodriguez et al., 2017). Acyl-CoA Synthetase Bubblegum Family 
Member 1 (ACSBG1) is an acyl-CoA synthetase mediating the activation of long chain fatty acids for the 
synthesis of cellular lipids, and degradation via beta-oxidation. Additionally, the protein encoded by this gene 
possesses long-chain acyl-CoA synthetase activity. However, the precise biological functions of HPGD and 
EDN2 are not known and further research is required to understand the molecular mechanisms of these genes on 
lipid metabolism in chickens.  

Meanwhile, the regulatory network underlying chicken IMF deposition was explored by KEGG pathway 
analysis. As expected, the well-known PPAR pathway was found and 5 DEGs (novel gene, PLIN1, ACSBG1, 
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SCD1, and LFABP) involved in PPAR signaling pathway here were screened, which have been proven to be 
functional in lipid metabolism, such as PLIN1, ACSBG1, SCD1, and LFABP. Of special interest, three pathways 
(fatty acid metabolism, fatty acid biosynthesis and glycine, serine and threonine metabolism) also were enriched, 
and it was revealed that these three pathways may be the points for the interaction. These findings provide new 
clues for revealing the molecular mechanisms underlying IMF metabolism in chickens. This novel speculation 
and its detailed mechanism through pathways related to lipid metabolism identified here needs further validated. 
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