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Abstract 
This study presents a method for detecting rice crop damage due to bacterial leaf blight (BLB) infestation. Rice 
crop samples are first analyzed using a handheld spectroradiometer. Then, multi-temporal satellite image 
analysis is used to determine the most suitable vegetation indices for detecting BLB. The results showed that 
healthy plants have the highest first derivative value of spectral reflectance of the different categories of diseased 
plants. Significant difference can be found at approximately 690-770 nm (red edge region) which peak or 
maximum of the first derivative occurs in healthy crop whereas the highest percentage of BLB showed the 
lowest in that region. Moreover, visible bands such as blue, green, red, and red edge 1 band show variation of 
correlation in the early (vegetative) to generative stage then getting high especially in early of harvesting stage 
than the other bands; the NIR band exhibits a low correlation from the early stage of the growing season whereas 
the red and red edge bands reveal the highest correlations in the later stage of harvesting. Similarly, the satellite 
image analysis also reveals that disease incidence gradually increases with increasing age of the plant. The 
vegetation indices whose formulas consist of blue, green, red, and red edge bands (NGRDI, NPCI, and PSRI) 
exhibit the highest correlation with BLB infestation. NPCI and PSRI indices indicate that crop stress due to BLB 
is detected from ripening stage of NPCI then the senescence condition is then detected 12 days later. The 
coefficients of determination between these indices and BLB are 0.44, 0.63, and 0.67, respectively 

Keywords: BLB, handheld spectroradiometer, vegetation indices, indices change 

1. Introduction 
Rice is one of the most important crops for the global population. Therefore, sustainable rice farming is 
extremely reliant on effective pest and disease management (Zhang et al., 2002). Remote sensing of agricultural 
canopies can provide valuable insights into various agronomic parameters through repeated measurements that 
do not destroy the crop sample. Remote sensing can also be used to detect, monitor, and assess crop diseases at 
different spatio-temporal scales (Franke & Menz, 2007). Many previous studies have applied remote sensing to 
crop monitoring and disease assessment. For example, Gitelson et al. (2002) analyzed the relationship between 
spectral reflectance and leaf chlorophyll content, which is a measure of crop health, and reported that 520-550 
nm and 695-705 nm are the most suitable spectral ranges for determining total chlorophyll content. Furthermore, 
the leaf area index (LAI) is the most common measure for monitoring and detecting crop diseases in a range of 
crops; for example, rice (Xiao et al., 2002; Qin & Zhang, 2005; Ghobadifar et al., 2016), tomato (Zhang et al, 
2002), wheat (Huang & Apan, 2006), and sugar beet (Mahlein et al., 2013).  
Recently, ground-based remote sensing spectral measurements have been employed as an innovative 
non-invasive technique for detecting vegetation status; this method provides a contiguous narrow wave-band 
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measure for monitoring and improved assessment of crop diseases (Adams et al., 1999; Singh et al., 2007; Das et 
al., 2015). For example, in order to promote the sustainable farming of rice crops, Gnyp et al. (2014) estimated 
above-ground biomass using hyperspectral canopy sensing to obtain an optimal measurement. Moreover, Liu et 
al. (2010) successfully demonstrated the feasibility of using visible and near-infrared regions in hyperspectral 
reflectance to detect the health condition of rice panicles (Liu et al., 2010). This technology has enormous 
applications on a small scale; however, it is difficult to represent entire farming regions through ground-based 
remote sensing.  
For conducting research on a large-scale, vegetation indices represent an effective and inexpensive way to detect 
diseased plants, which are identified by different spectral values compared to a healthy rice crop. Several 
vegetation indices have been developed to extract vegetation information from satellite images; however, there is 
a lack of satellite-derived indexes that can directly detect vegetation changes between images with different 
acquisition times. Recently, the vegetation change index (Rokni & Musa, 2019) was introduced to directly detect 
vegetation changes between two or more different time images and has been widely developed in many fields of 
research, such as land use/land cover change (Huang et al., 2019), disaster management (Martinis et al., 2018), 
and hydrology (Zhu et al., 2011). However, evaluating seasonal patterns of vegetation indices in order to assess 
specific causes of damage to rice plants remains an ongoing research challenge.  
More conventional methods for assessing disease-related plant damage involve visual detection by a pest 
observer using a sampling method; the disease area is then extrapolated based on these limited observations. 
However, this method has several limitations; i.e., it is labor intensive, time consuming (Kobayashi, 2001; Das, 
2015), and results in very approximate calculations of the area affected by the disease. Therefore, better methods 
are required to obtain more accurate plant damage assessments. Remote sensing technology is beneficial because 
it can provide detailed information on plant damage over a wide spatial area. Moreover, agricultural damage 
assessments are required to be precise, rapid, quantitative, and inexpensive (Hongo, 2015). Therefore, this study 
presents an alternative method for detecting disease-related rice crop damage that combines remote sensing with 
ground-based observations. Specifically, this study detects bacterial leaf blight (BLB) in a research area in 
Indonesia. The proposed method was measures rice crop samples in different health conditions using 
conventional ground-based measurements as well as a spectroradiometer. The resulting reflectance values are 
then used to obtain the indicative values for healthy and diseased rice crop samples. Then, multi-temporal 
satellites images are used to determine the most suitable vegetation indices for the macroscopic detection of BLB. 
Moreover, the relationship between conventional ground-based observations of BLB and the spectral reflectance 
values is determined to analyze the disease severity in the rice crop. 
2. Method 
2.1 Study Area 

The study was conducted in the Cihea rice irrigation area, Cianjur, West Java, Indonesia, located at 6o48′ to 6o51′ 
S and 107o15′ to 107o18′ E. The altitude is 200-450 m above sea level and the slope ranges from 0-40%. There 
are only two seasons in the study area; the dry season and the rainy season, with average annual precipitation of 
approximately 1000-1500 mm. The average temperature is 24.4 °C with a maximum of 30 °C from August to 
October and a minimum of 18 °C from July to August.  
The study area predominantly produces agricultural products; specifically, it is known as the third major source 
of rice production in West Java Province. The Cihea rice irrigation area is divided into three parts: upstream, 
midstream, and downstream. Rice is grown three times a year in the upper stream area and twice a year in both 
the midstream and downstream areas. Test sites in this research area are typically in the midstream area due to 
transplanting time occurring in April to May in the dry season and November to December in the rainy season. 
According to the Center of Plant Protection for Food and Horticulture of Cianjur Regency, BLB has become the 
most common plant disease in the last five years. Although plant loss related to BLB is minimal, the BLB 
infestation has become so widespread in this area that no crop is currently unaffected.  
2.2 Field Data Collection 

Field data was collected from the study area when the crops were ready for harvesting. Two types of data were 
collected; i.e., the damage assessment ratio was measured by a pest observer and spectral measurements were 
performed by a spectroradiometer. Eight sample locations were randomly chosen to ensure a representative 
distribution within the midstream area; each location consisted of three different plots. The ratio of damage in 
each plot was observed using the conventional method by a pest observer, who sampled 10 observation points in 
a diagonal pattern in each plot. Each group of rice plants was assessed to determine the percentage of BLB. 
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Additionally, spectral data were recorded at points 1 and 10 in each plot using a MS-720 Handheld 
Spectroradiometer from EKO Instruments. The wavelength of the measurement was configured in the range of 
350-1050 nm, the optical resolution was < 10 nm, the wavelength accuracy was less than 0.3 nm, and the field of 
view for the object irradiance was 45°. An incidence angle of approximately 90° was maintained at a standard 
distance of approximately 100 cm above the crop canopy. Each reading is the average of two replicate 
measurements for each object irradiance and solar irradiance value.  
Conventionally, the intensity of plant disease in the research area would be expressed both quantitatively as a 
percentage (%), indicating the amount of plants, parts of plants, or groups of plants, and qualitatively using 
categories of severity; i.e., mild, moderate, severe, or crop failure (Table 1). 

 

Table 1. Category of disease severity according to the percentage of disease infestation in the research area 

Category of severity Percentage of severity 
Mild ≤ 11 % 

Moderate 11-25 % 

Severe 25-85 % 

Crop failure  > 85% 

 

2.3 Image Collection and Pre-processing 

Ten images from one planting season taken by Sentinel 2A and 2B satellites were collected from the European 
Space Agency (Table 2). Different types of images were collected due to variations in cloud cover over the 
research areas. Sentinel 2 had a total of 12 bands: Coastal Aerosol (443 nm), Water Vapor (940 nm), and SWIR 
Cirrus (1375 nm) with a spatial resolution of 60 m; Red Edge 1 (704 nm), Red Edge 2 (740 nm), Red Edge 3 
(782 nm), and Near Infra-Red Narrow (865 nm) with a spatial resolution of 20 m; and Blue (490 nm), Green 
(560 nm), Red (665 nm), and Near Infra-Red (842 nm) with a spatial resolution of 10 m. For this study, the 
bands utilized to adjust the measurement data from the spectroradiometers were all bands with a 10-m spatial 
resolution and three of the bands with a 20-m spatial resolution (Red Edge 1, 2, 3). Image data were extracted 
using SNAP software to produce subset images of the test sites. To apply the vegetation indices and change 
detection, all images were geometrically registered and radiometrically normalized. Subsequently, resampling 
was performed to transform the images from multi-spatial resolution to a single spatial resolution. 
 

Table 2. Satellites images used in this study, which represents a full planting season of the rice crop 

Acquisition date Satellite Images Growth phase 
May 15  Sentinel 2B Vegetative 

May 30  Sentinel 2A Vegetative 

June 9  Sentinel 2A Reproductive 

June 19 Sentinel 2A Reproductive 

June 29 Sentinel 2A Ripening  

July 9 Sentinel 2A Ripening 

July 19 Sentinel 2A Harvesting 

July 29 Sentinel 2A Harvesting 

 

2.4 Data Analysis 

2.4.1 Reflectance Value Extraction 

The spectral data collected from the handheld spectroradiometer were analyzed to obtain the reflectance values 
of the rice crop. The purpose of this analysis is to identify the wavelength region that can be used to distinguish 
diseased rice crop. By assuming a Lambertian surface (Koppal, 2014), the reflectance values were estimated as: 

ρ = 
π·Id

Iu·Ω
                                        (1) 

Where, Id is the irradiance from the object; Iu is the irradiance from the sun; and Ω is the solid view angle. The 
spectral reflectance derivative is widely used to eliminate background noise and atmospheric interference, 
identify spectral overlapping, and improve the signal-noise ratio, which in turn reduces the interference factors, 



jas.ccsenet.

such as so
this analys
disease on

2.4.2 Vege

Vegetation
even a sat
Multiple v
(Table 3). 
study area
was used t
image take

 

Table 3. D

Indices 

NDVI 

GNDVI 

NGRDI 

VCI 

EVI 

PSRI 

NPCI 

 
3. Results
3.1 Spectra

The reflec
The signif
to NIR reg
green to re
percentage
in the refle
nm (red ed
percentage
diseased p
method co
Singh et al

 

org 

oil type and sam
sis, the first o

n the rice crop. 
etation Indices 
n indices are u
tellite image, 

vegetation indi
Plants with le

a have 0% BLB
to analyze veg
en on one date

Definitions of th

Normalized d

Green norma

Normalized g

Vegetation c

Enhanced ve

Plant senesce

Normalized p

 
al Signature A

tance characte
ficant differenc
gion (beyond 
ed region and 
e of BLB exhib
ectance curve,
dge region) wh
e of BLB show
plants; therefor
ould indicated 
l., 2012).  

Figure 1

mple granulari
order derivativ

used to convert
into a single 

ices are compu
ess than 5% B
B. Similar to t

getation change
 (t1) from that

Differen

he vegetation i

difference vegetat

alized difference v

green red differen

ondition index 

egetation index 

ence reflectance in

pigment chlorophy

Analysis 

eristics of rice 
ce between thr
750 nm). The
high reflectan

bit the opposit
, is presented i
hich peak or m
wed the lowes
re, disease sev
healthy and d

1. Reflectance 

Journal of A

ity, and helps 
ve of the spec

t the reflectanc
number in or

uted in this ana
LB were cons
the first order 
es. It is achiev
t in an image ta

nce = Vegetat

indices used in

tion index 

vegetation index

nce index 

ndex 

yll ratio index 

crops accordin
ree categories 
e plants consid
nce from the r
te characteristi
in Figure 2. Si

maximum of th
st in that regio
verity appears 
diseased plant

signatures of r

Agricultural Sci

41 

define the spe
tral reflectanc

ce value from 
rder to assess
alysis: NDVI, 
sidered as heal
derivative of 

ved by subtract
aken on the pr

tion index t2 –

n this study 

Form

(RNIR – RRed)/(R

(RNIR – RGreen)/(R

(RGreen – RRed)/(R

(NDVI – NDVI 

2.5(RNIR – RRed)/

(RRed – RGreen)/R

(RRed – RBlue)/(R

ng to the categ
were seen in g

dered healthy 
red edge to NI
cs. The first or
ignificant diffe
he first derivat
on. Healthy pla

to affect plan
ts exhibit diffe

rice crops acco

ience

ectral absorptio
ce was calcula

any source, s
s the vegetatio

VCI, GNDVI
lthy plants due
reflectance da
ting the vegeta
evious date (t2

– Vegetation i

mula 

RNIR + RRed) 

RNIR + RGreen) 

RGreen + RRed) 

min)/(NDVI max – N

/(RNIR + 6RRed – 7

RRededge 

RRed + RBlue) 

gory of disease
green to red re
(< 5% BLB) 
IR region. Co
rder derivative

ference can be 
tive occurs in h
ants exhibit hi

nt reflectance v
erent spectral 

ording to BLB

on properties (
ated to confirm

uch as spectro
on characterist
I, NGRDI, EV
e to the fact th
ata, vegetation 
ation index va
2): 
index t1      

Re

Rou

Mo

Tuc

NDVI min) Ko

.5RBlue + 1) Hu

Lee

Me

e severity are 
egion (550-700
have low refle
nversely, plan

e, which shows
found at appr
healthy crop w
igher first deri
values. The fir
behavior (Pen

 
B disease sever

Vol. 12, No. 2;

(Fu et al., 2019
m the effect o

oradiometer da
tics (Singh, 2

VI, PSRI, and N
hat no plants i

index differen
alue of a pixel 

          

ference 

use et al., 1973 

oges et al., 2004

cker, 1979 

ogan, 1995 

uete et al., 2002 

e et al., 2008 

erzlyak et al., 1999

shown in Figu
0 nm) and red 
ectance aroun

nts with the hig
s the rate of ch
roximately 690
whereas the hig
ivative values 
rst order deriv
nuelas et al., 1

ity 

2020 

9). In 
of the 

ata or 
012). 
NPCI 
n the 
ncing 
in an 

 (2) 

9 

ure 1. 
edge 
d the 
ghest 

hange 
0-770 
ghest 
than 

vative 
1994; 



jas.ccsenet.

F

 

The first o
greater de
condition, 
healthy ric
loss of chl
3B). Yello
increasing
become cl
strong abs

 

To distingu
wavelengt

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

390

R
ef

le
ct

an
ce

 v
al

ue

-0.001

-0.001

0.000

0.001

0.001

0.002

0.002

0.003

0.003

590

R
ef

le
ct

an
ce

 v
al

ue

org 

Figure 2. First 

order derivativ
tail according 
then at green

ce; however, it
lorophyll in th
ow leaves are
 for diseased p

learer in the re
orption of refl

Figure 3. Deta

uish between h
th using the sa

0 400 410 420 430 4

A

600 610 620 6

C

order derivativ

ve spectral sig
 to BLB seve

n region (500-
t then become
he rice crop lin
 one of the k
plant occurs in

ed edge region
ectance around

ailed first orde

healthy and dis
atellites images

440 450 460 470 48

Wavelength

630 640 650 660

Wavelength

Journal of A

ves of plant sp

gnatures of vis
erity in Figure 
-550 nm) refle
s higher than h
nked to yellow
key indicators
n the red regio

n (Figures 3C a
d 700 nm (Sea

r derivatives o
and (D) 

seased plants, 
s of Sentinel-2

80 490 500 510 520

0 670 680 690

Agricultural Sci

42 

pectral signatur

sible region; g
3. From blue

ectance of the
healthy rice in

wing and dryin
s of plant stre
on, then the d
and 3D). Land
ager et al., 200

of spectral sign
red edge regio

some of the re
2 then compare

530
-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

49

R
ef

le
ct

an
ce

 v
al

ue

700
0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.005

690

R
ef

le
ct

an
ce

 v
al

ue

ience

res according t

green, red, and
e region, three
e diseased rice
n the green edg
ng of the leaf 
ess (Adams et
difference betw
d-based chloro
5).  

nature in (A) bl
ons 

eflectance valu
ed (Table 4). A

90 500 510 520

0 700 710 720

D

B

 
to BLB disease

d red edge reg
e categorize cr
e crop is decre
ge region, whi
caused by BL
t al., 1999). A
ween healthy a
ophyll-producin

lue, (B) green,

ues were catego
According to th

0 530 540 550

Wavelength

730 740 750

Wavelength

Vol. 12, No. 2;

e severity 

gions are show
rop show the 
easing than th
ich likely refle

LB (Figures 3A
A slight chang
and diseased p
ng crops have 

, (C) red, 

orized accordi
he average spe

560 570 580

760 770 780

2020 

wn in 
same 

hat of 
ects a 
A and 
ge of 
plants 

very 

 

 

ng to 
ectral 

590

790



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 2; 2020 

43 

value for each category, longer wavelengths are generally related to larger spectral values in both healthy and 
diseased plants. Furthermore, the more severely diseased the rice crop, the greater the spectral value in blue, 
green, and red wavelengths; however, the opposite is true for red edge and NIR wavelengths. 

 

Table 4. Average reflectance values of rice crop according to BLB severity 

Band Wavelength 
Average reflectance value Absolute difference 

Healthy 6-11% > 11%  6-11% > 11% 

Blue 450-520 0.0311 0.0347 0.0352  0.00360 0.00047 

Green 540-580 0.0638 0.0690 0.0655  0.00519 0.00354 

Red 650-680 0.0570 0.0640 0.0680  0.00706 0.00401 

Red edge 700-780 0.2223 0.2132 0.1907  0.00903 0.02256 

NIR 785-900 0.3003 0.2809 0.2484  0.01948 0.03242 

 

3.2 Satellite Image Analysis 

3.2.1  Correlation between BLB, Spectral Bands, and Vegetation Indices 

 

 

 

Figure 4. Correlation between BLB occurrence and (A) the reflectance value in each band and (B) vegetation 
indices using linear regression (coefficient of determination, R2) 

 

Reflectance patterns throughout the planting season reveal a large amount of information about vegetation 
changes at all wavelengths. Understanding these patterns is also important for interpreting the seasonal changes 
in vegetation indices (Hatfield & Prueger, 2010). Because multiple spectral bands and vegetation indices were 
used in this study, statistical analysis was conducted to highlight notable results and understand the correlation 
between BLB infestation and the reflectance values for each band and indices (Figure 4). It can be shown that 
generally, BLB has high correlation at the harvesting stage. Figure 4A shows correlation between BLB 
percentage and each band of Sentinel-2. Visible bands such as blue, green, red, and red edge 1 band show 
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variation of correlation in the early (vegetative) to generative stage then getting high especially in early of 
harvesting stage than the other bands; the NIR band exhibits a low correlation from the early stage of the 
growing season whereas the red and red edge bands reveal the highest correlations in the later stage of harvesting. 
Figure 4B shows clearer that high correlations are observed when the rice crop is in the ripening to harvesting 
stage. This indicates that disease incidence gradually increases with increasing age of the crop. It shows that 
NPCI, PSRI, and NGRDI have the highest correlation with BLB infestation in the rice crop. It is common 
knowledge that the function of the red and NIR bands are to analyze vegetation conditions; however, this study 
reveals that BLB infestation is more closely related to the red and red edge bands. That is, the vegetation indices 
with higher correlations with BLB use the red band but not the NIR band (NPCI, PSRI, and NGRDI), whereas 
indices that use the NIR band (NDVI, VCI, EVI, and GNDVI) exhibit lower correlations.  

3.2.2 Seasonal Change in Vegetation Indices 

 

 

 

Figure 5. (A) Seasonal pattern and (B) vegetation index differencing results for the NGRDI 

 

The seasonal change patterns for NGRDI, NPCI, and PSRI are shown in Figures 5, 6, and 7. These three indices 
are related to chlorophyll content on the canopy. Rice crops with high BLB severity have high NGRDI from the 
vegetative phase that begins to decrease in the generative phase and reaches a minimum in the harvesting stage 
(Figure 5A). Additionally, Figure 5B reflects that the rice crop started to become yellow at the transition between 
the vegetative stage and the generative stage (Diff_4). The reason for this yellowness is unclear because the 
indices do not indicate the condition of the crop itself. 
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Figure 6. (A) Seasonal pattern and (B) vegetation index differencing results for the PSRI 

 

 

 

Figure 7. (A) Seasonal pattern and (B) vegetation index differencing results for the NPCI 
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PSRI and NPCI show similar characteristics to each other. PSRI and NPCI are high in the early stages of the rice 
season then start to decrease and become high again in the later stages or when the crop is ready to be harvested 
(Figures 6A and 7A). NPCI shows greater variability than PSRI from the later phase of the vegetative stage into 
the early generative stage. The PSRI values indicate decrease conditions of rice crop at harvesting stage (from 
July 19), whereas NPCI values suggest that the crop condition is decreasing from the ripening stage (from June 
29). The differencing results of both indices also show some similarities (Figures 6B and 7B) that the change in 
vegetation conditions begins from the generative phase. According to PSRI, the stress level of the rice crop 
increases from Diff_5 (difference between July 9 and June 29). Conversely, according to NPCI, the stress level 
starts to increase earlier, in Diff_4 (difference between June 29 and June 19) which indicates that the effects of 
BLB are notable at this time, and senescence is detected 12 days later. 

4. Discussion 
Using first order derivative method can show that the significance difference of healthy and diseased crop were 
in green and red edge region. For vegetation analysis, green region is closely related to the greenness whereas 
BLB affection caused plant becomes yellowing and dry. Red edge also important to because the steep change of 
reflectance occurs in this region. This region’s position also categorized as main inflexion point of the red-NIR 
slope and can be used to estimate the chlorophyll content (Clevers et al., 2010). For BLB affection, it attacks the 
leaf tissue and destroys the chlorophyll so that the channels of nutrient and energy distribution become 
obstructed.  
Green and red band were used in NGRDI’s formula, but the result did not show significance difference. NGRDI 
is commonly used to estimate the vegetation fraction and is considered as a phenology indicator for biomass 
estimation (Wan et al., 2018). Although statistically this indices show high correlation with BLB occurrence but 
the actual relationship were not compatible. PSRI and NPCI show different result compare to NGRDI. The 
similar NPCI and PSRI patterns can be explained by the fact that these indices focus on the chlorophyll ratio and 
plant senescence. These show a slight change for diseased plants after the reproductive stage then increase as the 
crop matures and the leaf color begins to change. NPCI is more sensitive to changes in chlorophyll in the later 
stages of rice growth due to the decreasing demand for nutrients (Hatfield & Prueger, 2010). Conversely, PSRI is 
designed to maximize the sensitivity of the ratio of bulk carotenoids, such as alpha-carotene and beta-carotene, 
to chlorophyll. An increase of PSRI indicates increased stress in the canopy, the onset of canopy senescence, and 
plant ripening (Das et al., 2015). Higher values indicate a greater possibility that the rice crop is under stress 
conditions that could lead to nutrient deficiency. 
Statistical analysis using linear regression to see the correlation and significance variable were used in this study 
(Table 5). P-value for each indices were showed based on the acquisition date. This result supports the satellite 
image analysis that BLB occurrence mostly can be seen in the later phase (harvesting stage). PSRI is an effective 
indices that has the highest correlation and significance to BLB occurrence with 0.013 (α = 0.05) as well as 
NPCI with significance value 0.031. Coefficient of determination for NGRDI, NPCI, and PSRI are 0.44, 0.63 
and 0.67 respectively. This shows that Sentinel-2 with 10-m spatial resolution is useful to detect BLB disease in 
rice crop. This study could be improved by incorporating external factors such as altitude, rainfall, and sample 
chlorophyll contents, as well as satellite images with a better spectral, spatial, and temporal resolution. 
Limitation of this analysis is that it cannot detect rice crop condition in the vegetative phase, especially after 
transplanting, due to rice crop coverage is too small compare to the water coverage. 
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Table 5. Linier regression analysis for NGRDI, NPCI and PSRI 
Acquisition Date NGRDI NPCI PSRI 
5/15 
5/30 
6/9 
6/19 
6/29 
7/9 
7/19 
7/29 

0.969 
0.612 
0.815 
0.709 
0.675 
0.600 
0.946 
0.120 

0.335 
0.382 
0.492 
0.829 
0.484 
0.148 
0.804 
0.008* 

0.866 
0.625 
0.166 
0.769 
0.394 
0.194 
0.475 
0.004* 

Significance-F 0.272 0.0031* 0.013* 

Multiple R 0.654 0.785 0.817 

R2 0.438 0.626 0.668 
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