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Abstract 
In north Tunisia, the Quercus suber L. forests have shown a great decline indices as well as a non-natural 
regeneration. The climate changes could accentuate this unappreciated situation. In this study, the effect of water 
deficit on physiological behavior of Quercus suber seedlings was investigated. Photosynthetic responses of 15 
months old Cork oak seedlings grown for 30 days under 40% and 80% soil water water content (control) were 
evaluated. Results showed a negative effect of water deficit and a positive effect of the intercellular CO2 
concentration increase both on photosynthesis and transpiration. Stomata conductance might play a major role in 
balancing gas exchanges between the leaf and its environment. Moreover, global warming could negatively 
affect carbon uptake of Cork oak species in northern Tunisia. Elevated CO2 leaf content will benefit Cork oak 
growing under water deficit by decreasing both photoysnthesis and transpiration, which will decrease either the 
rate or the severity of water deficits, with limited effects on metabolism. the results suggest that high intercellular 
CO2 concentration could increase water use efficiency among Cork oak species.  

Keywords: Quercus suber L., Tunisia, climate change, carbon uptake, water use 

1. Introduction 

The cork oak (Quercus suber L.) is native to western and central Mediterranean region, and appears in the 
coastal regions of southwest Europe and northwest Africa such as France, Italy, Portugal, Spain, Algeria, and 
Tunisia (Allard et al., 2013; WCSP, 2017). The most extensive forests are situated in the Atlantic coast of the 
Iberian Peninsula (Varela, 2008). Quercus suber forests cover almost 1.5 million ha in Europe (Barstow & 
Harvey-Brown, 2017) and 700 000 ha in North Africa (FAO, 2013). The Cork oak forest has played an 
important ecological and socio-economic role concerning mainly the biodiversity and sustainable forest 
production in these areas (WWF, 2016). In the northern Tunisia, It is the habitat of more than 400 different 
species (You et al., 2016). 

In the last decades, the cork oak forest has showed several declining indicators (Hasnaoui et al., 2005; Stiti et al., 
2005; Bellahirech et al., 2015). The intensity and frequency of drought and the extreme temperatures are 
considered as the main factors contributing to the degradation of the oak stands around the Mediterranean area 
(Amandier et al., 2006; HaeNaem et al., 2017). This situation could be intensified in near future due to different 
climate changes scenarios in the North African countries (IPCC, 2014). In fact, by 2050, summer drought 
periods within this region will be more severe while CO2 concentration in the atmosphere will be twice as high 
(Smith & Myers, 2018). For sustainable ecosystem management, a comprehensive understanding of the 
functional traits of this species and its response to climate change is crucial (Vessella et al., 2015, 2017; 
Duque-Lazo, 2018). In this context, natural regeneration of Q. suber seedlings in montados ecosystems is 
necessary to maintain the forest balance. Q. suber seedling establishment could be improved by modifying 
environmental conditions, such as drought and CO2 concentration in atmosphere, that affect physiological 
characteristics (Ainsworth et al., 2007; Elizabeth et al., 2007; Rzigui et al., 2015; Bouderrah et al., 2017). In fact, 
drought stress reduces plant growth by affecting the net photosynthesis capacity, respiration and nutrient 
metabolism (Jaleel et al., 2008). Net photosynthesis, stomatal conductance and transpiration decreased 
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significantly (Wang et al., 2018). According to the model of photosynthesis, drought stress had a major impact on 
carboxylation efficiency of Rubisco (Farquhar & Sharkey, 1982; Sharkey et al., 2007). Thus, Rubisco 
carboxylation and RuBP regeneration might be limiting during drought stress by measuring the net 
photosynthesis/Ci response (Wang et al., 2018). Furthermore, drought stress significantly reduced CO2 
assimilation rates at high Ci, while only with a certain degree of lowering photosynthesis rates at low Ci. For this 
reason, studies of water and carbon uses and their relationships with the soil water availability can be key 
elements to understand the effect of climate changes on species degradation (Adach, 2014; Vialet-Chabrand et 
al., 2017). Furthermore, the impact of water stress on plant structure is an important determinant of physiological 
adaptation under sever drought. In order to provide more fundamental knowledge of Q. suber seedling 
establishment and the success of natural regeneration within drought conditions, the physiological responses 
were studied in terms of photosynthetic performance, water efficiency and responses of gas exchange to Ci 
increase.  

The aim of the present work was (i) to evaluate the hypothesis that elevated internal CO2 concentration influence 
the development (physiological and structural) of Q. suber seedlings and decrease the water stress effect; (ii) to 
evaluate the effect of water stress and leaf carbon increase on stomatal conductance, leaf transpiration, 
photosynthesis and water use efficiency of cork oak seedlings.  
2. Material and Methods 
2.1 Plant Material and Experimental Conditions 

Cork oak seeds were collected in the Ain Snoussi site (Latitude N: 36°47′50″~36°52′40", Longitude E: 
8°52′07″~8°57′01″ Altitude: 640 m a.s.l.) in December, 2008 and sown in pots in a shady site of the National 
Research Institute in Rural Engineering, Water and Forestry (INRGREF, Tunisia) in January, 2009. The present 
experiment was carried out in May and June 2010 on 15 months-aged plants. Acorns of Q. suber from a 
population at Ain Snoussi, were sown in 10L pots containing a mixture of nursery soil, peat and sand (v/v). At 4 
months of age, the seedlings were transferred from open-air conditions to green houses. Two contrasting 
treatments of water with six replicates were realized. A control treatment with a soil water content of 80% 
(control) and a stress induced treatment for a period of 30 days to reach water content level of 40%. The plants 
were grown in greenhouses in a controlled environment: with a relative humidity of about 50%, a similar 
temperature to the external one and in natural light conditions.  

Three well- developed and healthy plants from each treatment were chosen. Gas exchanges (Net photosynthesis 
(PN), stomatal conductance (Gs), and leaf transpiration (LT)) were measured with a Li-Cor Li-6400XT Portable 
Photosynthesis System (Li-Cor, Li-6400XT and were used to characterize photosynthesis in response to 
intercellular CO2 concentration (Ci) (A/Ci curves). Then, water use efficiency was calculated as a ratio of 
photosynthesis-transpiration (WUE = PN/LT).  

The values of PAR and temperature were fixed from the beginning to 1500 μmol.m-2 s-1 and 25 °C, respectively. 
During the experiment, the relative humidity was maintained around 60%. The needles of each branch were 
placed under the clamp of the chamber assimilation (6 cm²) and they were acclimatized for 35 minutes. For each 
curve, the sheet has reached a steady state corresponding to a CO2 concentration of 400 mmol.mol-1. This 
measurement lasted 30 minutes to allow the plant to acclimate to the conditions of temperature. Also, PAR, 
ventilation speed and CO2 concentration correspond to the first point of the curve. Then the CO2 concentration 
decreased to a value of 40 mmol.mol-1. Several values were recorded between 100 and 40 mmol.mol-1, and eight 
additional values were then recorded between 400 and 1800 mmol.mol-1.  

2.2 Statistic Analysis 

One-way ANOVA was performed for all collected data. Means significant differences were performed using 
Tukey’s HSD tests at p = 0.05. All statistical analyses were realized using the SPSS.17 software.  

3. Results 

It was recorded among the control set of plants (80% of water field capacity) that leaf transpiration (LT) had a 
maximum rate around 3.5 mmol m-2 s-1, and it showed a linear decrease due to the intercellular CO2 
concentration increase (Figure 1a). Under these conditions, the relative LT value decreased by 16% when the 
CO2 concentration doubled (from 380 ppm to 760 ppm). When it comes to the stressed set of plants, the 
maximum value of leaf transpiration recorded was 2 mmol m-2 s-1. It decreased linearly with CO2 increasing. It 
decreased in this case by 25% when the CO2 concentration increased 2-times as in the control situation (from 
380 to 760 ppm) (Figure 1b).  
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Figure 1. Variation of net photosynthesis (PN) depending on the internal concentration of CO2 (Ci) in irrigated 
(1a) and stressed (1b) cork oak seedlings 

 

The increase of photosynthesis (PN) with increasing leaf CO2 concentration had a logarithmic shape, saturating 
its value of 25 mol.m-2 s-1 in irrigated plants and 10 mol.m-2 s-1 in stressed plants set (Figure 2a). PN increased by 
50% (from 10 to 15 mol m-2 s-1) when the intercellular CO2 concentration increased 2-times (from 380 to 760 
ppm) in irrigated plants. PN increased from 4 to 6 molm-2 s-1 in stressed plants which was lower than irrigated 
ones  (Figure 2b).  
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Figure 2. Relationships between leaf transpiration (LT) and leaf CO2 concentration (Ci) in the irrigated (2a) and 
stressed (2b) cork oak seedlings 

 

The mean values of water use efficiency (WUE) were higher under stressed conditions but they increased with 
increasing CO2 (Figure 3a). In the control conditions, WUE increased very slightly. An increase of the current 
CO2 concentration (by 2-times) could affect an increase of WUE value in stressed plants more than in the control 
(Figure 3b). 
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Figure 3. Relationships between water use efficiency (WUE) and intercellular CO2 concentration (Ci) in irrigated 

(3a) and stressed (3b) cork oak seedlings 

 

A decreasing trend in stomata conductance (GS) with CO2 increases was observed for Cork oak seedlings under 
irrigated and stressed conditions (Figure 4). GS value was maximal at the lowest Ci concentration of 40 mmol 
mol-1 in the irrigated plants. This value reached 700 mmol.m-2 s-1 but decreased quickly to 200 mmol.mol-1 for a 
CO2 concentration of 760 ppm. However, the trend in stressed plants was less evident with lower values 
recorded in stressed set. Furthermore, positive and high correlation coefficients between internal CO2 
concentration and the net photosynthesis and water use efficiency were obtained (Table 1).  
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Figure 4. Relationships between stomatal conductance (GS) and intercellular CO2 concentration (Ci) in irrigated 

(4a) and stressed (4b) cork oak seedlings 

 

Table 1. Correlations coefficients between Ci and physiological parameters (LT, PN, Gs WUE) in watered and 
stressed cork oak seedlings 

 LT Gs PN WUE 

Ci-W 0.05 0.35 0.86 0.65 

Ci-S 0.15 0.15 0.78 0.85 

 

4. Discussion 
The present study showed a positive effect of the increased CO2 concentration in leaves on water stress 
adaptation of Cork oak seedlings. In fact, several studies showed that limited water availability often reduces 
photosynthesis in many species (Tenhunen et al., 1987; Chaves, 1991) such as Quercus sp. (Peña-Rojas et al., 
2003). Several studies showed that water status has a stronger impact on gas exchange than changes in leaf CO2 
concentration (Morgan et al., 2004; Xu et al., 2014; Chen et al., 2015). Thus high Rubisco activity during 
drought may also indicate the alleviation of metabolic limitations caused by drought damages rather than stomata 
limitations imposed by elevated CO2 (Chen et al., 2015). Within a climate changes context, the decrease in 
stomatal conductance (GS) under elevated atmospheric CO2 conditions may limit the CO2 fixation rate but 
promote the water use efficiency (WUE) to benefit plant growth (Leakey et al., 2009; Sreeharsha et al., 2015). 
Such behavior of oak was observed within other Mediterranean environments. Stomata conductance could be the 
key element for explaining the combined effects of water shortage and CO2 assimilation increase (Gao et al., 
2015; Xu et al., 2016). Stomata closure, which decreases in carbon dioxide (CO2) availability to mesophyll cell 
chloroplasts, has been considered as the main limiting factor for CO2 assimilation in response to water deficit 
(Lawlor, 2000; Lawlor & Cornic, 2002). Stomata CO2 responses differs from one species to another (Bierhuizen 
& Slatyer, 1964; Warrit, Landsberg, & Thorpe, 1980). Differences are not limited to interspecific contrasts but 
occurred also within the same species under environmental conditions, such as water deficit. The current 
findings showed that stomata conductance in responses to Ci values for stressed plants were lower than those of 
irrigated plants; so, it is modified by water availability (van Oosten et al., 1994). It was shown also that Gs 
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decreased with CO2 increase of internal CO2 concentration (Van Oosten et al., 1994). Therefore, most species 
showed that the degree of stomata opening decreases with the CO2 concentration increasing either around or 
inside the leaf (Brodribb et al., 2009). In fact, stomata conductance of stressed plants at 40 mmol mol-1 of 
intercellular CO2 concentration averaged 50% less compared with the irrigated ones. Drought conditions, 
showed stomatal closure, as indicated by lower Gs, marked a decline in photosynthesis, especially at high Ci 
concentrations (Kimball et al., 1993; Morison & Lawlor, 1999). Increasing internal CO2 concentration lead to an 
increase of net photosynthetic rate while, under drought stress, this elevation is less important. Therefore, in such 
conditions, plants close their stomata to avoid further water loss (Dulai et al., 2006). The decrease in P(n) with 
water deficiency was related to lower Rubisco activity rather than to ATP and RuBP contents (Tezara, 2002).  

Several studies have investigated the CO2 responses of stomata conductance in leaves (Brodribb, 1996; Kelly et 
al., 2016). Physiological traits, leaf structural and biochemical characteristics may also play an essential role in 
plant response to high CO2 concentration (Ayub et al., 2011). Some suggestions estimated that Gs increase in 
response to the reduction of the intercellular CO2 concentration caused by mesphyll photosynthesis (Marchi et al., 
2008; Jin et al., 2011). In fact, Studies reported that Ci was correlated to light intensity, mesophyll assimilation 
and stomata conductance (Xiong et al., 2018). Ci declined as Gs increased. Abid et al. (2016) showed that 
drought application at Alfalfa leaves led to a high reduction on net photosynthetic rate, stomata conductance and 
chlorophyll content per cons leading to an increase on the the WUE and on intracellular CO2 concentration (Ci). 
Previous studies indicated that the fixation of CO2 in the Calvin cycle is sensitive to environmental conditions 
(Greer et al., 1986; Altaweel et al., 2007). Under these stressful environmental conditions, the inhibition of 
protein synthesis do to interruption of the fixation of CO2 might be expected to accelerate the decrease in 
photosynthesis.  

In the same context, Wang et al. (2018) had found that under drought conditions, photosynthetic rate (PN), 
stomata conductance (Gs), transpiration rate (E) and intercellular CO2 concentration (Ci), showed a strong 
positive correlation with the water potential state.  

Comparing different Mediterranean oaks, Ksontini et al. (2007) showed a higher reduction of stomata 
conductance, related to the decrease of predawn leaf water potential, occurred earlier with Q. faginea, Q. 
coccifera kept its stomata partly open at a water potential of -3 MPa. Q. suber behaved somewhat intermediate, 
while both photosynthesis and stomata conductance were correlated and showed a slight decrease.  

Picon (1996) showed that transpiration rate was lower under elevated Ci, reflecting compensation between leaf 
area and stomata control of transpiration. Hawever carbon isotope discrimination decreased in drought state and 
increased in Ci. While, Aranda et al. (2007) had indicated a relationship between stomata conductance, water 
and net photosynthesis on leaf area basis confirming that seedlings in higher irradiance conditions maintained a 
higher rate of carbon uptake at a particular stomata conductance, implying that shaded seedlings have lower 
water use efficiency independently of the water availability.  

5. Conclusion 
This study confirmed the hypothesis that Q. suber seedling development is positively influenced by an increase 
in internal CO2 concentration, as indicated by an increase in photosynthesis, which also induced the higher 
production of assimilates for growth. However, net photosynthesis is negatively affected by water stress even 
with the increase of intercellular CO2 concentration.  

In addition, the reduction in stomata conductance and transpiration promoted higher water use efficiency 
especially in stressed plants. An increase in the intensity and frequency of summer drought with climate change 
might have a negative impact on natural Q. suber regeneration, due to the suppression of the positive effects of 
elevated intercellular CO2 concentration. Therefore WUE is the most interesting criteria to monitor the cork oak 
forest. Further research on the water use efficiency on stand level and of different provenances is probably an 
important way to understand and to evaluate the effect of climate changes on the cork oak species.  
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