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Abstract 

Intensive exploitation of sand quarry sites inevitably results in near total destruction of plant cover and soil 
degradation. The damage done is so important that without human intervention, soil scarification and vegetable 
return to growth may take several decades. In order to conduct a site rehabilitation programme successfully 
reforestation through the plantation of a native species such as the carob tree (Ceratonia siliqua) should be the 
appropriate choice. Because of their facilitation effect, the spontaneous leguminous plants present in the site, 
specifically Lotus creticus, Retama monosperma and L. creticus associated with R.monosperma can be used as 
nurse plants. Our assumption is that they possess a rhizosphere rich in microorganisms, which may positively 
impact the growth of carob. To this end, a study is conducted in order to: a) estimate the diversity of arbuscular 
mycorrhiza fungi (AMF) living underneath the spontaneous leguminous plants of the site; b) determine their 
combined effect with other microsymbionts (i.e., total bacteria and actinobacteria) on the growth of the carob 
tree; c) draw a comparison with carob grown in bare soil and in sterile soil mixed with peat regarding its growth 
parameters and mineral nutrition. The trees were grown in plastic pots under greenhouse conditions and, after 12 
months, the results have shown that, against all odds, the soils of R. monosperma and L. criticus associated with 
R. monosperma do not significantly influence the growth of the tree whereas the impact of the soil of L. creticus 
is outright negative. On the other hand, peat improves the root and aerial growth of the tree, which shows in 
leaves number, branch number and capacity of nutrition in nitrogen. Because a little richer in actinobacteria, bare 
soil increases the length of the aerial parts and improves the tree’s phosphorus uptake.  

Keywords: leguminous plants, microsymbionts, mycorrhizae, plant associations, reforestation strategy 

1. Introduction 

After water, sand is the second most consumed resource worldwide: 400 billion tons a year. It represents a 
trading volume of 70 billion dollars a year, 56 million tons of which are consumed in Algeria, mainly used in the 
building and construction sector (Denis, 2013; Richer, 2018).  

Sand extraction in quarries leads to the loss of plant cover, and without human intervention in those damaged 
zones, vegetation is in the incapacity to regenerate itself. Moreover, the early phases of any healing process in 
these quarries would take many decades if not many centuries (Khater, 2004; Le Roux, 2002). The damage 
caused by sand extraction facilitates water and wind erosion which manifests itself as an alteration of the soils’ 
physical, chemical and biological properties (Albaladejo et al., 1988; Tuo et al., 2018). 

The introduction of the carob tree, a plant of socio-economic value, well- adapted to the soil and climatic 
conditions of the area is an essential prerequisite for the achievement of any soil restoration program, even more 
so as annual rainfall has become rare or irregular with long dry summer periods combined with anthropic 
pressure (Ait Chitt et al., 2007; Makhzoumi, 1997). 

The carob tree is a plant originating in the Mediterranean region. It is of utmost interest from both an 
environmental and socio-economic perspectives (Batlle & Tous, 1997). It is used in landscape ornamentation and 
valorization as a shady tree and in revegetation programs. It has persistent foliage and high quality wood, 
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carbon and organic matter amounts were determined as was described by Anne (1945); pH and electrical 
conduction (C) were measured using soil in suspension with pH and conductivity meters. Total nitrogen and 
available phosphorous levels were established following the method of Kjeldahl (1883) and Truog (1930) 
respectively.  

2.3 Root Coloring and Assessment of Mycorrhization Level 

Infection by AMF was observed after the coloration method described by Phillips and Hayman (1970) then 
observed under an optical microscope in order to determine the level of mycorrhization of the roots following 
Trouvelot et al. (1986). 

2.4 Spore Extraction, Enumeration and Morpho-anatomic Identification 

The spores are extracted from the rhizospheric soil using the wet sieving technique Gerdemann and Nicolson 
(1963), centrifuged in a sucrose solution to concentrate the spores then screened according to size, shape, color, 
attachment hyphae, number of layers before being observed through a binocular magnifier and enumerated. The 
results are expressed per 100 g of soil. The spores are mounted on slide and slip cover together with PVLG 
and/or Melzer reagent (Azcon-Aguilar et al., 2003) then observed under a photonic microscope. The spores are 
compared with the INVAM (2018) collection and the Glomeromycota taxonomy (Blaskowski, 2018) for 
morphologic identification.  

2.5 Bacterial Enumeration 

2.5.1 Total Flora 

Soil samples are dried and sifted, the total bacteria are counted by the conventional method of dilution 
suspension in nutrient agar (Rapilly, 1968). 

2.5.2 Actinobacteria 

Soil samples are dried then mixed with CaCO3, 1 g per 10 g of soil then incubated for 7 to 9 days at ambient 
temperature in an atmosphere saturated in moisture to reduce fungal flora (El-Nakeeb & Lechevalier, 1963), then 
a treatment at 55 °C to 100 °C is carried out for one hour to reduce the number of bacteria without affecting the 
number of actinobacteria (Agate & Bhat, 1963). The actinobacteria are counted by the conventional method of 
suspension dilution in casein starch agar (CAA) added to fluconazole (50 µg/ml) (Sharma et al., 2011). 

2.6 Seed Scarification and Pre-germination 

The carob seeds are scarified in sulphuric acid (95°) for 90 minutes then rinsed several times in sterile water. The 
grains are placed in petri dishes containing 0.8 per cent agar water then incubated in the dark at 28 °C for 
germination. 

2.6.1 Cultivation 

Pre-germinated seeds are placed in pots with 5 seeds per pot containing rhizospheric soils of R. monosperma 
associated with L. creticus, R. monosperma, L. creticus, a sterile peat substrate (¾ bare soil + ¼ peat) and a bare 
soil. Each treatment is repeated 5 times. The composition of the sterile peat reads as follows: M.O.: 47.9%, pH: 
7.12, N total: 20.5 mg g-1, P2O5: 14.9 mg g-1, K2O: 41.5 mg g-1.The plants are watered at a rate of 3 times a week 
with sterile distilled water. The experiment was conducted in a mini -greenhouse in natural conditions at an 
average temperature of 18.5 °C and a level of humidity of 75%.  

2.7 Growth Parameters 

The length of aerial and root parts is measured, the number of shoots and leaves counted and the fresh and dry 
weight of the aerial and root parts are determined. The foliar nitrogen content is determined by the Kjeldhal 
method (Rinaudo, 1970) and the phosphorus level by Olsen et al. (1954). 

2.8 Statistical Analysis 

All the different studied parameters were subject to principal component analysis (PCA) by using Statistica 6.0 
software. PCA was carried out for grouping the treatments with growth and microbiological parameters.  

3. Results and Discussion 

3.1 Soil Characterization 

Study of the soil structure shows that it is sandy, calcareous, alkaline, not salty, has a low CEC, and does not 
show significant difference between the samples. The soils are poor in organic matter with L. creticus and L. 
criticus + R. monosperma being the richest with rates of 0.12% and 0.14% respectively (Table 1). These results 
are characteristic of the dunes of West Algeria (Bouazza et al., 2015), close to those found in dune sites of 
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3.3 Sporal Diversity and Density 

The sporal count differs from a type of soil to another. L. creticus soil is the richest in number of spores 212/100 
g; then comes association of R. monosperma soil and L. creticus with 102 spores/100 g, R. monosperma only 
with 85 spores/100 g whereas in bare soil the number of spores is less than 10 spores/100 g (Table 3). This 
number is inferior to the one found in the Algerian steppe and the Morrocan and Tunisian coastal regions 
(Belechheb et al., 2016; Bencherif et al., 2016; Mosbah et al., 2018). It is higher than the number recorded in the 
Spanish and Tunisian dunes according to the work of Camprubí et al. (2010); Hatimi and Tahrouch (2007). 

 

Table 3. Enumeration and spore morphology characterization 

Rhizospheric soil Spores Description Spores Species Size Numbers/100 g soil Total/100 g soil

Retama monosperma 

Dark brown Glomus constrictum 183±10 µm 21 85 

Brown  Acaulospora tuberculata 156± 10 µm 34 

Small light brown Glomus aggregatum 60±20 µm 7 

Brown subglobular Non identified 90±20 µm 22 

Yellow Claroideoglomus lamellosum 136±5 µm 1 

Lotus creticus 
Brown Acaulospora tuberculata 155±20 µm 200 212 

Dark brown Glomus constrictum 133±30 µm 12 

L.creticus + R.monosperma  

Dark brown Glomus constrictum 150±20 µm 18 102 

Brown Acaulospora tuberculata 156± 10 µm 80 

Big light brown Claroideoglomus lamellosum 140±20 µm 2 

Yellow hyaline Gigaspora decipiens 120±20 µm 2 

Bare soil 

Dark brown Glomus constrictum 133±30 µm > 5 > 10 

Deep orange Glomus aurantium 100±30 µm > 5 

Brown Non identified 156± 10 µm > 5 

 

The number of spores is due to their formation, degradation and germination processes. The maximum spore 
density is reached in springtime (Smith, 1980). According to Abbas et al. (2006); Nicolson (1960) the factors 
that affect the distribution of AMF in the dunes are the vegetable cover, the degree of stability, the amount of 
organic matter and the micro-biological activity. 

Depending on diversity, characterized by shape, color and size of the spores, we have noted the presence of 6 
genera: Glomus, Acaulospora, Gigaspora, Claroideoglomus, two kinds of spores have not been identified. We 
have also observed that the genera Glomus and Acaulospora are the most abundant in these types of soil (Figure 
4). These results are in accordance with those found by Bouazza et al. (2015); Nehila (2016) along the Algerian 
coastline as well as those recorded in the coastal dunes of Spain in the work of Camprubí et al. (2010). They 
were all able to identify only 3 genera including Glomus, Scutellospora, Gigaspora and Glomus being the most 
abundant. As was observed in their findings, it seems that the kind Glomus is the most ubiquitous thanks to its 
aptitude to adapt to the drastic environmental conditions such as the dryness and salinity of the soil (Błaszkowski 
et al., 2002). 

Despite the fact that L. creticus is the richest in number of spores produced, it contains the least diversity (2 
morphotypes). Conversely, R. monosperma contains the largest diversity of AMF spores but fewer in count 
(Table 3). This means that the vegetable species controls the quantity and quality of AMF.  
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micro-organisms with the carob tree; in fact, they are possibly even considered as deleterious micro-organisms 
(DRMO). It may be due to deleterious rhizo-bacteria (DRB) or fungi as it was shown by Schippers et al. (1986); 
Suslow and Schroth (1982).  

The level of P and the aerial length present a positive correlation as well as the frequency of mycorhization and 
the number of actinobacteria which characterize bare soil. The rise of the level of P in the leaves is due to good 
phosphorus assimilation in the soil through the ability of microbes to solubilize phosphates (otherwise insoluble 
in metallic complexes or in hydroxyapatite) and to release them (Rodriguez & Fraga, 1999), in this case 
actinobacteria which present a positive correlation with the level of phosphorus. 

As reported by Franco-Correaa et al. (2010); Hamdali et al. (2008); Oliveira et al. (2009) actinobacteria such as 
Streptomyces, Micrococcus, Micromonospora, Kitasatospora and Thermobifida have the capacity to solubilize 
phosphates. They enhance the plant’s growth through production of siderophore as a solubilization mechanism. 
Siderophore chelation of phosphoric absorbent like aluminum, iron and calcium increases solubilization of 
phosphates (Hamdali et al., 2008). These observations explain why the soil, rich in actinobacteria, has a 
beneficial effect on the growth of the upper aerial part of the plant. 

PCA analysis also reveals that substrate with peat (sterile soil + peat) has a positive effect on the increase of N 
level in the leaves and improves the growth parameters of the root and aerial parts. Therefore, there is a positive 
correlation between root length, root weight, leaves number, branch number and fresh weight on the one hand, 
and sterile soil + peat on the other. This is probably due to peat which serves as an adjuvant, rich in nutrients for 
the plant, and to its beneficial physical properties and great exchange capacity of nutrients, particularly N and P 
(De Kreij & Van Leeuwen, 2001; Raviv et al., 1986). Nonetheless, sterile soil + peat does not positively correlate 
with aerial length, although certain studies like that of Zaller (2006) demonstrate that in the case of certain 
varieties of tomato, commercial peat has a positive effect on elongation, therefore on aerial length. 

4. Conclusion 

As far as the carob tree is concerned, the spontaneous leguminous plants L. criticus, R. monosperma and the 
association L. creticus and R. monosperma, cannot be used as nurse plants. They do not help and even impair its 
growth, through the effect of their rhizospheric microsymbionts (bacteria, actinobacteria and endomycorrhizal 
fungi). However, sterile soil added to peat has a positive impact on the growth of the tree and its mineral 
nutrition in nitrogen. Moreover, actinobacteria are widespread in bare soil and have an impact on phosphorus 
uptake. 

Thus, in order to implement a reforestation program by the carob tree in the soil and climatic conditions of the 
region, it is sound to select the most efficient actinobacteria strains in phosphorus solubilization. The use of peat 
as a substrate improves the tree’s nutrition in nitrogen. This combination may therefore be used as a biofertilizer. 
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