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Abstract 
Aquaponics is an integrated system of recirculation aquaculture and soilless culture that mainly aims to reduce 
water requirements, reduce waste discharge and maximize nutrient use. In the present study, an aquaponic 
system consisting of a 500 L fish tank, sedimentation and pH control tank, degassing tank and three vegetable 
growing beds was assembled and tested for 17 weeks. Fifty Nile tilapias (Oreochromis niloticus) were reared and 
fed thrice daily with a complete diet containing 32% protein. Buffer of solid rocks (dead corals) were installed 
for pH control. Water convolvulus (Ipomoea aquatica) and Tokyo Bekana (Brassica rapa) were rotationally 
grown at different growth stages. Water samples were collected once a week to analyze pH and NH3/NH4

+, NO3
-, 

H2PO4
-/HPO4

2-, SO4
2-, K, Na, Ca, Mg and Fe concentrations. Fish weight increased from 50 g/fish at the 

beginning of the experiment to 228 g/fish after 15 weeks. Water pH increased from 6.0 before rearing to 7.0 on 
the 4th week and varied over the range of 6.9 to 7.0 until the end of the experiment without any additional acid or 
alkali. Total NH3/NH4

+ increased to 10.2 mg-N/L on the 2nd week and rapidly declined to levels below 2.0 
mg-N/L. Phosphate, SO4

2-, Na and Mg accumulated in the system, whereas Ca gradually increased and reached 
equilibrium at 47±2 mg/L. K and NO2

-/NO3
- varied considerably at concentrations lower than the general 

requirement of the vegetables. The first crops of vegetables initially grew well, but growth rates declined 
remarkably and latter crops showed complex nutrient deficiency. The system could be maintained for 17 weeks 
without waste discharge.  
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1. Introduction 
Aquaculture simultaneously requires charging of large volumes of input water and discharging of large volumes 
of waste water. An integrated system of recirculating aquaculture and soilless culture has been developed to 
solve these problems. Waste from aquatic animals is converted to plant nutrients by microorganisms. The 
nutrients are removed by plants in a soilless subsystem, and the clean water is recirculated back to the 
aquaculture subsystem (Lennard & Leonard, 2004; Rakocy et al., 2006; Edwards, 2015; Perez-Urrestarazu et al., 
2019). Several types of aquaponics systems have been proposed; their principal components include a fish 
rearing tank, biofilter, clarifier and soilless culture subsystem (FAO, 2014; Wongkiew et al., 2017). Fish, 
microorganisms and plants require different nutrients and environmental conditions. Fish requires Na but plants 
do not require. The pellet feed of fish usually contains high Na and low K concentrations. Unfortunately, high Na 
interferes with the nutrient uptake of plants, and plants require large amounts of K. Thus, the Na concentration 
should be maintained at levels lower than 50 mg/L, and K has to supplement in to the system (Rakocy et al., 
2006). Salt concentrations in the system increase because of the accumulation of inorganic ions such as NO3

-, 
H2PO4

-/HPO4
2-, SO4

2-, Cl-, Na+, K+, Ca2+ and Mg2+; causing increases in total dissolved solid and electrical 
conductivity (EC). Nile tilapia grows well at the EC lower than 1.0 mS/cm, but most soilless growing plants 
require higher salt concentrations (1.5 to 2.5 mS/cm). Salt from the decomposition of fish excrement alone 
generally cannot raise EC to 1.0 mS/cm, therefore there is a gap for adding some more nutrient into the systems. 
Nutrient ratios in such systems vary greatly according to the rate of fish excretion, mineralization and plant 
assimilation (Seawright et al., 1998). Optimum concentrations and ratios for plant growth are difficult to 
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maintain, leading to reduction in plant yield over extended culture period. Suitable plant species for the 
aquaponics are restricted to species well adapted to low nutrient concentrations and wide nutrient ratios.  

Intensive fish cultivation is general practiced for aquaponics to produce sufficient amounts of plant nutrients and 
reduce operating cost. Total ammonia (NH3/NH4

+) accumulation in a fish tank is a serious concern because the 
compound is highly toxic to the fish. Unionized form (NH3) and protonated form (NH4

+) are in equilibrium and 
the concentration of each form depends on the total concentration, pH and water temperature (Lekang, 2013; 
Eshchar et al., 2006; Kamal, 2006; Hargreaves & Tucker, 2004). NH3 is prevalent at high pH and toxic to fish at 
levels above 0.05 mg-N/L (Tyson et al., 2008). Plants uptake NH4

+, whereas NH3 is a substrate for nitrification. 
Ammonia must be removed from the fish tank and converted to its less toxic form (NO3

-) by nitrification. The 
nitrification produces 2 moles of H+ for each mole of ammonia, thereby pH of the water decreases 
simultaneously. The optimum pH range for nitrification is 7.0 to 9.0, whereas most soilless plants perform best 
growing in the range of 5.5 to 6.5. Thus, the water pH has to be compromised and maintained close to 7.0 by 
frequently adding of alkali materials such as KOH, NaOH, Ca(OH)2, Mg(OH)2, CaCO3, MgCO3, CaMg(CO3)2 or 
NaHCO3. Na-containing materials should be avoided because high Na concentrations interfere with K and Ca 
uptake and are toxic to plants (Lekang, 2013; Rakocy, 2012; Rakocy et al., 2006; Lennard & Leonard, 2004; 
Seawright et al., 1998). This practice requires intensive labor, low precision and high operating cost especially 
for a commercial scale.  

The present study was conducted to examine variations in nutrient concentrations in an aquaponic system and 
effectiveness of pH control. The effects of water properties and nutrient ratios on the growth rates of fish and 
vegetables were also examined. 

2. Materials and Methods 
2.1 System Description 

An aquaponic system consisting of a 500 L fish rearing tank, sedimentation and pH control tank, degas tank, 
three floating raft growing troughs and a sump tank was assembled (Figure 1). The upper part of the fish rearing 
tank was cylindrical, while the bottom part was funnel-shaped. Five air diffusers connected to a 58 Watts 
aquarium air compressor were installed to supply O2 into the water. A drain pipe a diameter of 2 inches was 
connected from the center of the bottom of the fish tank to the 175 L sedimentation tank. A 25 L cylindrical tank 
was installed inside the sedimentation tank and filled with dead coral. A drain pipe was connected from the inner 
tank to the 200 L degassing tank. Water from the degassing tank was continuously siphoned to the growing 
troughs. Each trough had a growing area of 0.75 m2 and was installed with five air diffusers and filled with 
bio-balls as the microbial substrate. The water depth in the troughs was maintained at 15 cm and overflowed to 
the sump tank. A submersible pump controlled by a floating switch was installed in the sump tank to recirculate 
the water back to the fish tank. The water level in the fish tank was maintained between 60 to 70 cm depth, and 
the recirculation water was aslant flowed back into the fish tank to generate centrifugal force for removing 
sediment from the tank. The water in the system was totally recirculated with some compensation weekly for 
evaporation loss.  

2.2 Operation and Sample Analysis 

Fifty Nile tilapias (Oreochromis niloticus) were reared and fed manually thrice daily with a complete diet 
containing 32% protein. The mean weight of the fish at the beginning of the experiment was 50.8 g/fish. Fifteen 
fish were sampled monthly for measurement of weight gain. Water convolvulus (Ipomoea aquatica) and Tokyo 
Bekana (Brassica rapa) were seeded for 1 week and transplanted to the growing troughs for 3 weeks. The 
vegetables were grown rotationally to maintain equal ages in the system throughout the experiment. The 
vegetables were harvested once a week, their roots were removed, and their fresh weights were determined. 
Fe-DTPA (11.3% Fe) was added into the system during the second week at a rate of 15 mg/L. Water samples 
from the fish tank were collected once a week to analyze pH and NH3/NH4

+, NO3
-, phosphate, SO4

2-, K, Na, Ca, 
Mg and Fe concentrations. Water pH was determined by a pH meter, NH3/NH4

+ concentration was determined 
by distillation and titration method, and NO3

- and SO4
2- concentrations were determined by using ion 

chromatography (Rayment & Higginson, 1992). Phosphate concentrations were determined by the molybdenum 
blue method (Rayment & Higginson, 1992), and K, Na, Ca, Mg and Fe concentrations were determined using 
atomic absorption spectrophotometry (Buurman et al., 1996). New solid excrement was sampled once a week, 
dried at 65 °C and combined together for chemical analysis. C and N contents in diet and excrement samples 
were determined using the dry combustion method (Buurman et al., 1996; Rayment & Higginson, 1992). Other 
portions of the diet and excrement samples were digested with a 2:1 mixture of HNO3:HClO4 for P, K, Na, Ca, 
Mg, Fe, Mn, Zn and Cu analysis (Jones, 2001). The P concentration was determined by the vanadomolybdate 
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3.2 Plant Performance 

The yields of water convolvulus and Tokyo Bekana at the beginning of culture were better than those in the 
middle and the final stages (Table 1). The yields of both vegetables decreased considerably with repeated 
cultivation. Most of the nutrient concentrations at the beginning of culture were low except Fe, but plant growth 
was excellent. The plant performance indicates that balance of nutrients, rather than their actual concentrations, 
is more important for plant growth. Yields of the water convolvulus were substantially higher than yields of the 
Tokyo Bekana in every stage of culture, indicating that the former is more suitable for aquaponic systems than 
the latter. The Tokyo Bekana grown after 7th week deteriorated under strong sunlight, indicating a problem with 
evapotranspiration which is related to K deficiency. A complicated nutrient disorder (chlorosis, interveinal 
chlorosis and stunning) was observed in the Tokyo Bekana after 7th week. A similar problem has been reported 
for lettuce (Seawright et al., 1998). However, tip-burn was not found in the current study. Lam et al. (2015) 
found that a 3:1 volume ratio of hydroponic trough to rearing tank results in optimal plant growth. The exchange 
rate of water in the growing troughs is also a factor influencing plant growth. Buzby, Waterland, Semmens & Lin 
(2016) found that most of crops they grown show higher biomass at a higher flow rate (75.7 L/min) than at a 
lower rate (18.9 L/min). 

 

Table 1. Yields of water convolvulus and Tokyo Bekana (fresh weight) grown at different stages 

Vegetables 
Vegetable yield (kg/m2) 

Beginning stage 
(1st-6th week) 

Middle stage 
(7th-12th week) 

Last stage 
(13th-17th week) 

water convolvulus 3.74±0.32 3.06±0.30 2.60±0.03 

Tokyo Bekana 1.95±0.04 0.73±0.14 0.27±0.06 

 

3.3 Chemical Compositions of Diet and Solid Excrement  

The chemical compositions of the fish diet and their solid excrement are presented in Table 2. N, P, Ca, Mn, Zn 
and Cu tended to accumulate in the excrement. The declining tendency of C may be due to some portions of the 
C compounds were converted to fish body and some of them converted to CO2. Concentration of K in the diet 
was much lower than that of Na. Ratio of K/Na is lower than most plant requirements. Therefore, K should be 
supplemented into the system. Seawright et al. (1998) fed Nile tilapia with a commercial diet which higher K 
than Na. This type of diet is not available in Thailand. The K and Na concentrations in the excrement were lower 
than those in the diet because both elements are easily dissolved. The Fe concentration in the excrement was 
remarkably higher than that in the diet, probably due to contamination of added Fe.  

 

Table 2. Chemical compositions of diet and solid excrement (dry weight basis) 

Elements Units Fish diet Fish excrement 
C g/kg 410.7 394.6 

N g/kg 50.9 62.4 

P g/kg 9.2 11.4 

K g/kg 8.5 2.0 

Na g/kg 132.6 75.7 

Ca g/kg 16.7 21.9 

Mg g/kg 2.2 2.7 

Fe mg/kg 498 2,786 

Mn mg/kg 52 99 

Zn mg/kg 117 863 

Cu mg/kg 12 157 

 

3.4 Water Quality and Nutrient Dynamics 

The water pH increased from 6.0 at the beginning of culture and reaching 7.0±0.1 at equilibrium from the 4th 
week of culture until the end of the experiment without adding of acid or alkali (Figure 3). Neutral pH is the best 
compromised for all living organisms in aquaponic systems. Acidic pH retards nitrification and increases N2O 
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source of the system. Ca is one of the common deficiency elements, and it has to be supplemented as Ca(OH)2 or 
CaCO3 to increase the water hardness to the optimum range of approximately 60 to 140 mg/L and buffer pH 
against acidification from nitrification. Inexpensive sources of CaCO3 such as eggshells, seashells and coarse 
limestone grit, can be used in the aquaponic systems (FAO, 2014). Seawright et al. (1998) found that Ca 
concentrations decline rapidly and must be supplemented by CaCl2·6H2O.  

The phosphate, SO4
2- and Mg concentrations gradually increased in the same trend (Figure 6), thus indicating 

that assimilation of these nutrients was less extensive than their excretion. Increase rates after 12th week of 
culture were faster that those in preceding weeks because vegetable growth was highly restricted in later stage. 
The vegetables growing area should be enlarged to avoid the excessive accumulation of these nutrients. 
Seawright et al. (1998) found that phosphate concentrations sharply decline because of precipitation of 
Ca3(PO4)2 at heater elements. The water temperature in the present study varied from 23.0 oC to 33.7 oC; 
therefore, heating was not required. 

 

 
Figure 6. Variation of phosphate, SO4

2-, Mg and Ca concentrations in the fish tank over time (input source of Ca 
came from both pellet feed and dead corals, while the other nutrients came from pellet feed alone) 

 

The Fe concentration sharply increased from 0.2 mg/L to 1.8 mg/L in the second week of culture because of 
addition of Fe-DTPA, and then gradually decreased thereafter (Figure 7). The system required approximately 
206 mg-Fe/m2 per month (equivalent to 1.8 g/m2 of Fe-DTPA). The pellet feed contained 498 mg/kg of Fe (Table 
2), which is insufficient for this system. The low Fe concentration may be a limiting factor resulting in declining 
vegetable growth after the beginning stage of culture. Fe deficiency is common in aquaponic culture. Therefore, 
Fe is regularly added in a form of chelated Fe to a concentration of 2 mg/L (FAO, 2014) Non-chelated Fe is 
unstable and precipitates rapidly. Therefore, this form should not be used. Seawright et al. (1998) reported that 
quantity of Fe consumed by their aquaponic systems exceeded quantity provided by the diet.  

 

 
Figure 7. Variation of Fe concentration in the fish tank over time (Fe-DTPA was added to the system during the 

second week of culture) 
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4. Conclusion 
The aquaponic system achieved well performance for fish production, but it was not successful for vegetable 
production. Nitrification rapidly occurred and progressed well. NH3/NH4

+ accumulated to levels higher than 2 
mg-N/L due to clogging in the recirculating pipe. Dissolution of CaCO3 from dead corals sufficiently provided 
pH buffer and Ca source of the system. Phosphate, SO4

2-, Na and Mg accumulated in the system, whereas K and 
Fe were not sufficient and should be added regularly.  
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