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Abstract 
The use of magnetizers for the treatment of irrigation water can be used in agriculture as an alternative to 
increase the growth and yield of several crops. The objective of this study was to evaluate the effect of different 
irrigation depths and magnetic treatment of water on eggplant crop cultivated in protected environment. The 
study was carried out in two experiments, in the first one, the design was completely randomized with four 
replications and two factors: water depths (50, 75 and 100% ETc) for two water qualities (water treated by 
magnetizers and water without treatment). In the second one, the design was completely randomized with five 
replicates and two factors: water depths (75 and 100% ETc) for two irrigation water treatment (water treated by 
magnetizers and water without treatment). In the second experiment was ignored the treatment of 50% of ETc in 
order to increase the number of repetitions to check if there are differences between water treated to water 
without treatment. There were no significant differences in eggplant yield and growth as function of the 
magnetic treatment of water. The water depth that provided the highest yield, number of fruits per plant and stem 
dry matter in the two experiments was 100% ETc regardless of water quality. 

Keywords: irrigation management, magnetizers, Solanum Melongena L., yield 
1. Introduction 
Due to several reasons, water sources are facing challenges and studies are required for sustainability of 
agricultural crops (Surendran, Sandeep, & Joseph, 2016).  

Eggplant (Solanum Melongena L.) belongs to the Solanaceae family as well as tomato and bell pepper having 
similar requirements (Díaz-Pérez & Eaton, 2015). Studies with eggplant plants indicated that this crop can be 
grown under water deficit (Kirnak, Tas, Kaya, & Higgs, 2002; Aujla, Thind, & Buttar, 2007; Gaveh, Timpo, 
Agodzo, & Shin, 2011; Karam et al., 2011).  

Surendran, Sandeep, and Joseph (2016) applied magnetic treatment of water in eggplant cultivation and obtained 
increasing on plant height, number of leaves, leaf area and individual fruit weight, and especially increase in 
yield of 25.8 and 17.0% under normal conditions and water saline, respectively. 

In a study with different replacement levels and different magnetic flux densities (control, 50, 100 and 200 mT) 
in irrigation water for corn crop were observed that magnetization was viable to increase grain yield, regardless 
of the magnetic flux density that was applied (Fattah & Aoda, 2008). 

Mahmood and Usman (2014) used as source of irrigation water tap water, saline water, water from a canal and 
also from a sewage system and found that the magnetization of the various water sources increased mass and 
acceleration of growth.  
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potassium chloride (60% K2O). These applications were performed 30 days before the transplantation of the 
Experiment I, in according to Trani (2014), and Ribeiro, Guimarães, and Alvarez (1999). 

After transplanting in Experiment I and II, both had fertigation with 160 kg de N ha-1 (urea) (Souza et al., 2017) 
and 120 kg K2O ha-1 (potassium chloride) (Trani, 2014) following absorption march of eggplant crop (Trani et al., 
2011).  

2.2 Experiment I: Design and Plot 

The first experiment was completely randomized with factorial arrangement (3 × 2), with three replications, the 
first factor was three water depths (50, 75 and 100% ETc) and the second factor was irrigation water treatment 
(water treated by magnetizers and water without treatment). 

The plants were spaced 0.75 m apart, and laterals rows were spaced 1.0 m apart. Each experimental unit had four 
plants. The plants beds were constructed with dimensions of 3.0 m in length, 0.5 m in width and 0.15 m in height. 
It was considered as a useful area only the two central plants in the beds. 

The eggplant seedlings cv. Napoli were produced in polyethylene trays filled with commercial substrate for 
experiment I and II. In the first experiment the transplanting was performed on 17/11/2017 and the treatments 
started 19 days after transplanting (DAT) and the last harvest was performed on 9/4/2018.  

2.3 Experiment II: Design and Plot 

The second experiment was completely randomized with factorial arrangement (2 × 2), with five replications, the 
first factor was two water depths (75 and 100% ETc) and the second factor was irrigation water treatment (water 
treated by magnetizers and water without treatment).  

The plants were spaced 1.5 m apart, and laterals rows were spaced 1.0 m apart. Each experimental unit had one 
plant. The plants beds were constructed with dimensions of 1.5 m in length, 0.5 m in width and 0.15 m in height. 
The distances between the plants were extended because in the first experiment there was difficulty moving 
between plants due to large growth. 

The seedlings were transplanted on 15/06/2018 with start of treatments at 20 DAT and had the last harvest on 
12/12/2018. 

2.4 Irrigation Management 

The crop water replacement was started at 7:00 in the morning every Monday, Wednesday and Friday. The 
depths were based on the crop evapotranspiration (ETc) which is the product of reference crop 
evapotranspiration (ET0) and crop coefficient (Kc). ET0 was estimated by Penman-Monteith equation (Allen, 
Pereira, Raes, & Smith, 1998) (Equation 1). Kc values considered were 0.4 (initial), 0.75 (crop development), 
1.10 (mid-season) and 0.75 (late season) (Marouelli, Silva, & Silva, 2001).  

ET0	=	 0.408 Δ Rn	–	G 	+ γ 
900

T	+	273
 U es –	ea

Δ	+ γ 1	+	0.34 U
                            (1) 

Where, ET0: reference evapotranspiration, mm day-1; Δ: slope vapour pressure curve, kPa °C-1; Rn: net radiation 
at the crop surface, MJ m-2 day-1; G: soil heat flux density, MJ m-2 day-1; γ: psychrometric constant, kPa °C-1; T: 
mean daily air temperature at 2 m height, °C; U: Wind speed at 2 m height, m s-1; es: saturation vapour pressure, 
kPa; ea: actual vapour pressure, kPa; es-ea: saturation vapour pressure déficit, kPa.  

The wind speed values considered for the ET0 calculation were 5% of the external wind speed (Prados, 1986). 

2.5 Magnetic Water Treatment 

The water treatment was carried out for a period of 24 hours in a water box (500 liters) using a magnetizer 
composed of alternating magnets sealed by a stainless steel structure. The magnetic flux density of field (B) was 
measured by the apparatus 425 Gaussmeter (LakeShore). 

The measurement of B was performed in the radial direction and the tip of the hall effect model of planar tip 
HMNT-4E04-VR Lakeshore was used. Equipment calibration was performed with the model 4060 Lakeshore 
Gauss zero chamber. The highest verified value corresponded to 100 mT (militesla) which is equivalent to 1000 
Gauss. The magnetizing device consists of a cylindrical piece of 16.8 cm in height and 10 cm in diameter, being 
shielded in stainless steel with magnets inside.  

2.6 Measurement of Plants 

The fruits which were considered for weighing showed a shiny dark purple color, longer than 14 cm and 5 cm of 
transverse diameter (Luengo et al., 1999). The sum of weight of all fruits considered per plant resulted in the 
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productivity per plant and the counting them resulted in the number of fruits per plant. The ratio of productivity 
per plant by number of fruits per plant resulted in average fruit weight. 

The water use-efficiency (WUE) (g g-1) was calculated by ratio productivity per plant (Yi) (g plant-1) by amount 
of water applied per plant (Ii) (g plant-1) according to Equation 2 (Levidow et al., 2014). 

WUEi	= 
Yi

Ii
                                      (2) 

Where, WUEi: water use-efficiency (g g-1); Yi: productivity per plant (g plant-1); Ii: amount of water applied per 
plant (g plant-1). 
The determination of the relative water content (RWC) (Equation 3) for the Experiment I on 10/04/2018 
following the methodology proposed by Jamaludin, Aziz, Ahmad, and Jaafar (2015) in which samples of leaf 
discs were taken and weighed immediately by a digital scale with a precision of 0.01 g for determination of the 
fresh weight (FW). After weighing, the samples were floated in distilled water and kept in the dark for 24 h to 
regain full turgor. Then, the leaf discs were removed and excess water was removed using a paper tissue to 
determine the turgid weight (TW). The samples were dried in a forced circulation oven at 60 °C for 48 h in order 
to reach the constant mass and determination of dry weight (DW). 

RWC	=	 FW	– DW

TW	– DW
                                   (3) 

For determination of photosynthetic pigments was used the methodology proposed by Arnon (1949) adapted by 
Lichtenthaler (1987). The methodology consists in obtaining two leaf discs, conditioning the plant material in 5 
mL of 80% acetone for seven days in the dark at 25 °C and then performing spectrophotometer readings at 663 
nm, 645 nm and 470 nm, respectively for chlorophyll A, B and carotenoids.  

Height and diameter measurements were performed at the end of the cycle using a digital measuring tape and 
caliper respectively. The leaf area was measured by leaf reader LI 3100 immediately after separation of leaves 
and stems. The roots of the plants were extracted using a root sampler with dimensions of 20 cm wide, 25 cm 
long and 25 cm deep. During the sampling the sampler was introduced into the soil with the aid of hammer. 

The evaluations of stem dry matter (SDM), leaf dry matter (LDM) and root dry matter (RDM) were performed at 
the end of the experiment. The drying of the plant parts was carried out in a forced circulation oven at 60 °C until 
reaching a constant mass. After drying, the plant parts were weighed on a precision digital scale (0.001 g). 

The time for the occurrence of the first flower was measured by the interval between the day of transplanting 
(DAT) and the complete development of the first flower of the eggplant plant. 

2.7 Statistical Analysis 

The data were subjected to analysis of variance (ANOVA) by F test and Tukey test at 0.05 probability level using 
Software Sisvar (Ferreira, 2014) to compare the effects of factors and its interaction for all studied variables.  

3. Results and Discussion 
According to the analysis of variance there were no significant differences for the variables evaluated as a 
function of irrigation water treatment in the Experiment I (Table 1). These results differ from Surendran, 
Sandeep, and Joseph (2016) who observed a 25.8% increase in eggplant productivity under irrigation with 
magnetically treated water. However, these same authors did not find significant differences in bean plants that 
received magnetically treated water, but for water with a large amount of salts the magnetic treatment technique 
increased the yield of bean and eggplant.  
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Table 1. F values from analysis of variance for the variables of growth, productivity and photosynthetic pigment 
of eggplant as function of different water depths and magnetic treatment of water (Experiment I) 

Variables 
F values 

CV (%) Average 
Water treatment (WT) Water depths (WD) WT × WD 

Productivity 0.083ns 6.218** 0.110ns 28.06 1331.95 g plant-1 

Number of fruits per plant 1.058ns 4.279* 0.038ns 30.18 6.91 

Average fruit weight 2.505ns 0.546ns 0.497ns 19.79 192.78 g fruit-1 

Stem dry matter 0.791ns 11.797** 1.743ns 20.05 234.38 g plant-1 

Leaf dry matter 0.526ns 0.566ns 1.198ns 31.18 87.64 g plant-1 

Root dry matter 0.001ns 0.131ns 0.721ns 28.32 111.13 g plant-1 

Leaf area 0.269ns 1.299ns 2.788ns 21.65 13075.55 cm² plant-1 

Height 1.165ns 5.934* 8.314** 9.98 128.83 cm 

Diameter 1.511ns 1.070ns 5.599* 13.07 19.11 mm 

Chlorophyll A 0.001ns 2.766ns 3.198ns 7.05 0.0097 μg g-1 

Chlorophyll B 1.206ns 6.573* 12.157** 7.15 0.003342 μg g-1 

Carotenoids 3.230ns 2.375ns 4.340* 12.06 0.0042952 μg g-1 

RWC 0.070ns 0.392ns 2.835ns 6.13 82.49% 

Note. ** Significant at 0.01 of probability; * significant at 0.05 of probability; ns not significant (p > 0.05) 
according to the F-test.  

 

The application of the different water depths caused significant differences in productivity, number of fruits per 
plant, stem dry matter, height and chlorophyll B. From the statistical results obtained for productivity and 
number of fruits per plant, it can be concluded that the depth of 100% ETc differed significantly only from the 50% 
ETc depth (Figure 2).  

 

 
Figure 2. Productivity, number of fruit per plant and stem dry matter in function of water depths applied on 

eggplants. Averages followed by the same letter do not differ statistically (p > 0.05) by the Tukey test 

 

The highest mean observed was 1812.3 g and 9.1 fruits per plant for the 100% ETc (Figure 2). Bilibio et al. 
(2010a) tested in the Nápoli hybrid, 50-150% of the replacement depth and obtained the highest productivity of 
2000 g plant-1 with 150%. Karam et al. (2011) observed that the water deficit reduces productivity in comparison 
with the control treatment, however in the case of water use-efficiency the treatments with water deficit exceed 
the control treatment. 

The productivity values showed a high correlation (ρ = 0.89) with number of fruits per plant. This correlation 
agrees with the work of Díaz-Pérez and Eaton (2015) who verified high values (ρ = 0.96) and Aujla, Thind, and 
Buttar (2007) (ρ = 0.80) between the same variables.  
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Although water deficit irrigation levels caused significant differences in productivity and number of fruits per 
plant, there was no difference in the average fruit weight. This behavior was also verified by Chartzoulakis and 
Drosos (1995). 

The stem dry matter did not show significant differences between the 50 and 75% ETc depths and between the 
75 and 100% ETc depths, but it can be affirmed that there was a difference between the 100 and 50% ETc. 

There were significant differences for two photosynthetic pigments, chlorophyll B and carotenoids. Chlorophyll 
B showed a significant difference between the irrigation depth of 50 and 100% ETc, with 0.0036 (A), 0.0034 
(AB) and 0.0030 μg g-1 (B) respectively for the depths 50, 75 and 100% of ETc.  

In the experiment II, there were significant differences in productivity, number of fruits per plant, average fruit 
weight, stem dry matter, leaf dry matter and diameter under the effect of water depths (Table 2). These variables 
were higher when they received the 100% ETc irrigation depth. There were no significant differences for the 
effect of water treatment and its interactions.  

 

Table 2. F values from analysis of variance for the variables of growth, productivity, development and water 
use-efficiency of the eggplant as function of different water depths and magnetic treatment of irrigation water 
(Experiment II) 

Variables 
F values 

CV (%) Average 
Water treatment (WT) Water depths (WD) WT × WD 

Productivity 0.053ns 8.432* 0.66ns 24.25 4345.13 g plant-1 

Number of fruit per plant 0.058ns 18.485** 0.114ns 25.93 17.85 

Average fruit weight 0.627ns 7.898* 0.05ns 15.02 253.44 g fruit-1 

Stem dry matter 1.744ns 9.146** 0.023ns 34.79 304.84 g plant-1 

Leaf dry matter 0.864ns 15.851** 1.53ns 22.44 108.27 g plant-1 

Height 0.323ns 2.758ns 0.323ns 8.32 123.00 cm 

Diameter 0.187ns 13.241** 3.010ns 5.90 21.06 mm 

WUE 0.012ns 0.066ns 0.548ns 26.14 13.63 g g-1 

First flower 0.070ns 2.514ns 2.514ns 8.92 56.9 DAT 

Note. ** Significant at 0.01 of probability; * significant at 0.05 of probability; ns not significant (p > 0.05) 
according to the F-test.  

 

There was no difference for WUE as function of water treatment and water depths. Kirnak, Tas, Kaya, and Higgs 
(2002) verified that the highest water use-efficiency occurred with the replacement of 80% of the total. 
Díaz-Pérez and Eaton (2015) found a reduction in water use-efficiency with the increase of irrigation depths.  

The average productivity in the experiment II (4345.13 g plant-1) was 226.2% more than the average obtained in 
the experiment I (1331.95 g plant-1), this difference was probably due to the difference in spacing and climate 
conditions. 

Bilibio et al. (2010b) obtained the highest productivity 1720 g plant-1 when was used as the irrigation criterion 
the highest water tension in the soil (-15 KPa) which provided higher water replenishment. Diaz-Pérez and Eaton 
(2015) verified that the 67% ETc depth induced moderate water stress, causing no damage to growth, 
productivity and gas exchange, with similar results with irrigated plants under 100% ETc.  

The 75% ETc depth resulted in a 28% reduction in the productivity compared to the 100% ETc (Figure 4A), but 
there were no differences for the water use-efficiency variable, therefore, the use of the depth of 100% ETc was 
more productive. The values of eggplant yield in response to water deficit approximated the values observed by 
Kirnak, Tas, Kaya, and Higgs (2002) found a reduction in productivity of 12 and 28%, respectively, for 80 and 
70% of replacement of the water estimated by Pan Evaporation.  
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Figure 4. A) Productivity, number of fruit per plant, B) average fruit weight, stem and leaf dry matter in function 
of water depths applied on eggplants. Averages followed by the same letter do not differ statistically (p > 0.05) 

by the Tukey test 

 

In Figure 4, it was verified that the average fruit weight was higher with the 75% water depth, this may explain 
the highest productivity with 100% ETc was due increasing of number of fruits and not due fruit growth 
therefore having more number of fruits the average fruit weight decreased.  

The highest stem dry matter and leaf dry matter were observed with the application of the 100% ETc depth, 
being respectively 376.5 and 126.9 g (Figure 4B). The stem diameter showed significant differences for the 
different depths applied, being 20.04 and 22.07 mm respectively for 75 and 100% of ETc. Bilibio et al. (2010b) 
verified that the stem diameter showed a linear decreasing response due to the reduction of soil moisture and the 
largest diameter value found was 16.81 mm.  

About the effect of the treatments on the development of the plants, the date of the first flower was evaluated, 
however, no significant difference was verified for the formation of the first flower in the plants (mean = 56.9 
DAT). Bilibio et al. (2010b) studied the effect of water depths on eggplant crop and verified that the first flower 
appeared between 10 and 34 DAT.  

4. Conclusion 
Magnetic treatment of irrigation water did not influence the productivity and growth of eggplant plants. 

The 100% water depth of ETc provided higher productivity value and number of fruits per plant compared to 
water depths expressing water deficit regardless of water quality.  

Eggplant plants cultivated with 100% ETc water depth showed higher stem and leaf dry matter accumulation.  
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