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Abstract 
The objective of this study was to perform the kinetics of peach drying and to adjust the experimental data 
obtained to empirical and diffusive mathematical models to evaluate the effect of temperature on the 
physical-chemical quality of the final product. The drying experiments were performed in an air circulation dryer 
with a velocity of 1.5 m s-1, the drying kinetics were performed at temperatures of 60, 70 and 80 °C. Among the 
mathematical models applied, the Page model was the one that best fit the experimental data, because it presents 
greater efficiency in the description of the drying process. The decrease in the drying rate from the initial time to 
the end of the process was observed, increasing the temperature of the air caused a reduction in the drying time. 
It was verified through the analytical solution of the diffusion equation with infinite wall geometry that the 
increase of the drying temperature caused the increase of the diffusivity and convective coefficient of heat 
transfer. Through the Biot number, it can be stated that the first-type boundary condition would also describe the 
process satisfactorily. The fresh peach slices present high water content and water activity and the drying effect 
caused significant differences in all physical-chemical parameters analyzed.  

Keywords: dehydration, Prunus persica L., mathematical models 

1. Introduction 
Peach (Prunus persica L.) is one of the most important fruits of the human diet, due to its unique flavor and high 
amount of nutrients present in its composition. However, peach fruits are highly perishable and exhibit rapid 
deterioration when stored at room temperature (Huan et al., 2019). According to Sun et al. (2019) peaches are 
usually harvested during the summer, a period that is characterized by a hot and humid climate, a fact that 
contributes to the greater susceptibility of the fruit to deterioration by microorganisms in the post-harvest period. 
Three to five days storage at room temperature would result in rapid changes in taste and texture. 

Due to their high perishability, peaches must be submitted to food preservation techniques such as drying, which 
according to Defraeyer and Radu (2018) is a fundamental technology for their preservation, because when 
drying, the availability of this fruit is increased outside its season and its nutritional content is assured, as well as 
reducing post-harvest waste. 

Conservation by drying is based on the fact that microorganisms, enzymes and the metabolic mechanism all 
require water for their activities. By reducing the amount of water available, water activity and the rate of 
chemical reactions are reduced and, as a consequence, the development of microorganisms is reduced, giving the 
product a higher quality for a longer period of time, thus, shelf life (Oliveira et al., 2015). 

According to Santos et al. (2019) the drying of agricultural products can be described by several theoretical, 
semiteoric and empirical mathematical models that can be used later in equipment designs. Considering the 
diversity of biological structures involved in the transfer of heat and mass, and the observed effects on each 
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product. Information about the conditions with which the product loses moisture is an issue that can be solved by 
incorporating widely used mathematical models (Leite et al., 2019). 

Thus, the drying process for the peach emerges as an alternative to increase its post-harvest life, as it provides 
reduction in the amount of water, resulting in longer shelf life with decreased microbial activity. The objective of 
this study was to carry out the kinetics of drying peaches at temperatures of 60, 70 and 80 °C and to adjust the 
experimental data obtained to empirical and diffusive mathematical models, to evaluate the effect of temperature 
on physico-chemical quality of the final product.  

2. Material and Methods 
The peaches cv. Hubimel was acquired in the local commerce of the city of Campina Grande, Paraiba, Brazil. 
The samples of ripe stages and auverege size were selected, sanitized and cut manually in slices (0.6 mm), with 
the help of a domestic knife and caliper. The work was developed at the Food Drying Laboratory of the Federal 
University of Campina Grande. 

2.1 Kinetics of Drying 

The kinetics of drying were carried out in an air circulation oven with an air velocity of 1.5 m s-1 at temperatures 
of 60, 70 and 80 °C (Tecnal brand TE-394/4). The peach slices with a thickness of 0.6 mm were evenly 
distributed in trays. The experimental data were expressed in terms of the water content ratio (X* given by the 
relationship between the water content differences in time, t, and equilibrium water content (X (t) – X eq) of 
initial and equilibrium water (Xi-Xeq). As described in Equation (1):  

X*(t) = 
X(t) – Xeq

Xi – Xeq
                                   (1) 

Where, X* = ratio of water content (dimensionless); Xeq = equilibrium water content (dry basis); X(t) = water 
content (dry basis); Xi = initial water content (dry basis).  

The empirical functions f (t, a, b) presented in Table 1 were fitted to the experimental data sets, using nonlinear 
regression using the LAB Fit Curve Adjustment Software (W. P. Silva & C. M. D. P. S. Silva, 2008). From the 
models presented in Table 1, the mathematical expressions for drying rate versus time are expressed as shown in 
Table 2. The results of the empirical models were evaluated using the chi-square, χ2 and coefficient of 
determination, R2 (Bevington and Robinson, 1992; Da Silva et al., 2008; Taylor, 1997; Silva et al., 2014).  

 

Table 1. Empirical models to describe drying kinetics 

Model Name Empirical expression  Reference 

Page  X* = e-at
b

 Diamante et al. (2010) 

Lewis  X* = e-at Kaleta and Górnicki (2010) 

Peleg  X* = t(a + bt) Mercali et al. (2010) 

Handerson and Pabis X* = ae-bt Diamante et al. (2010) 

 

Table 2. Drying rate expressions obtained through the empirical models 

Model Name Drying rate 

Page  dX*/dt = -abeb–1e-at
b

 
Lewis  dX*/dt = ae-at 

Peleg  dX*/dt = a(a + bt)2 

Handerson and Pabis dX*/dt = abe-bt 

 

2.2 Analytical Solution of the Diffusion Equation 

The average moisture content of the solid with infinite wall geometry at time t is given by 

                               (2) 

where, X*(t) is the moisture content at time t; Xeq is the moisture content for t→∞; Xi is the moisture content 
pa pa = 0; L is the thickness; D is the diffusivity; t is the time.  
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The number of terms of the summation was established with 16, instead of infinity, and the parameter Bn is 
given by: 

                               (3) 

Given that Bi is the Biot number and is given by the following equation: 

                                    (4) 

Where, h is the convective coefficient of heat transfer; and is the characteristic equation for the infinite wall. In 
order to obtain the process parameters D, h and Bi, the optimization of the process was done according to the 
methodology described by Da Silva et al. (2010).  

2.3 Physical-Chemical Characterization 

The moisture content, total solids, ash, pH, titratable total acidity (ATT), total soluble solids (SST), ratio 
(SST/ATT) according to the methodology of the Institute were evaluated in triplcatas, in natura and dehydrated 
peaches Adolfo Lutz (Brasil, 2008). The water activity was determined in Aqualab 3TE (Decagon, Devices USA) 
at room temperature (25 °C). The content of vitamin C was determined by the reaction of ascorbic acid with 
2.6-dichlorophenol indophenol (DCFI), according to the procedure described by Brasil (2008), and the results 
were expressed mg of ascorbic acid/100 g sample.  

2.4 Statistical Analysis 

The results of the analyzes were submitted to statistical treatment using a completely randomized design with a 
comparison test of means, using the software Assistat version 7.7 beta (Silva & Azevedo, 2016). 

3. Results and Discussion 
Table 3 shows the results obtained for the empirical models applied to the kinetics of peach drying, as well as the 
statistical indicators, chi-square (χ2) and coefficient of determination (R2).  

 

Table 3. Results obtained for the models 

Model T (°C) a b R2 χ2 × 10-3 

Page  

60 0.273 × 10-2 1.155 0.9993 1.831 

70 0.476 × 10-2 1.086 0.9996 1.552 

80 1.269 × 10-2 0.934 0.9996 1.234 

Lewis  

60 0.591 × 10-2  - 0.9977 1.,111 

70 0.476 × 10-2 - 0.9992 5.522 

80 0.127 × 10-2 - 0.9993 3.947 

Peleg  

60 0.738 × 10-2 -0.161 × 10-2 0.9892 3.464 

70 1.095 × 102 0.8388 0.9896 42.679 

80 7.807 × 101 0.8753 0.9835 20.736 

Handerson & Pabis  

60 1.042 0.631 × 10-2 0.9981 7.640 

70 1.028 0.750 × 10-2 0.9943 2.126 

80 0.974 0.898 × 10-2 0.9994 2.683 

 

In the analysis of the statistical indicator (R2), all models presented values above 0.980; with the lowest values of 
R2 obtained for the Peleg model (0.990 > R2 > 0.980) at all applied temperatures. However, only mathematical 
models with determination coefficients (R2) above 0.990 were considered as good adjustments. Thus, the best 
Page model was fitted to the experimental data, because for all the applied temperatures, presented the highest 
values for this indicator. 

High R2 values were also obtained for the Lewis and Handerson and Pabis models, but according to Silva et al. 
(2019) for a model to adequately fit the experimental data, it is essential that besides R2 be greater than 0.99 the 
chi-square χ2 should be as low as possible. Therefore, in relation to the values of the lowest values were obtained 
for the page model ranging from 1.831 to 1.234 × 10-3 when there was a temperature variation of 60 to 80 °C. 

It was also observed that the parameter “a” of the empirical squalls (Page and Peleg) showed a tendency to 
increase with increasing drying air temperature, the same parameter for the models of Handerson and Pabis and 
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Table 5. Physical-chemical characterization of peach in natura 

Parameters  In natura 

Moisture content (% w.b)1 89.66±0.36 

Total Solids (%) 10.34±0.36 

Water activity (aw) 0.946±0.25 

pH 6.66±0.14 

Titratable total acidity-ATT (% citric acid) 0.47±0.05 

Total Soluble Solid-SST (°Brix) 12.5±0.19 

Ratio (SST/ATT) 26.60±0.61 

Vitamin C (mg of ascorbic acid 100 g-1 sample) 88.63±0.64 

Ashes (%) 0.59±0.02 

Note. 1 wet basis. 

 

The physical-chemical analysis performed on the fresh peach shows that it is a fruit of high content and activity 
of water, with total solids content of 10.34%. Such conditions are related to the stability of the fruits, since the 
greater water content leads to the proliferation of deteriorating microorganisms. Such values of water content and 
activity are close to those found by Dermesonlouoglou et al. (2019), whose values were 87.99% and 0.9815, 
respectively. 

The pH, titratable acidity, total soluble solids and found ratio, reveal that the fruit has characteristic little acid, 
sensory sweetened, primarily due to higher levels of total sugars, which provides sensory characteristics 
preferred for direct consumption and industrialization (Goncalves et al., 2017). Lower pH values were found by 
Dermesonlouoglou et al. (2019) and Ullah et al. (2016), with values of 3.7 and 3.57, respectively. The same was 
observed for the vitamin C content, in which the values found were higher than those presented by Mir et al. 
(2018), whose initial value was 10 mg of ascorbic acid 100 g-1 sample, to cultivar Shan-e-Punjab. However, 
Sousa et al. (2018), found values close to those found in this work, pH and vitamin C of 6.7 and 110 mg of 
ascorbic acid 100 g-1 sample, respectively, for the cultivar Rubimel. The results show that the variation between 
the physical-chemical characteristics found in this work and those observed in the mentioned literature may be 
due to the differences between the cultivars, stage of maturation, system and place of production.  

The average ash content of fresh fruit is similar to that presented in the Brazilian Table of Food Composition 
(Taco, 2011), whose value is 0.5% for aurora peach.  

All the physical-chemical parameters analyzed for the dried peach (Table 6) were statistically significant (p > 
0.05), for the effect of drying temperatures. The moisture content was lower when there was an increase in the 
drying temperature (80 °C), being inversely proportional to the concentration of total solids. Showing greater 
efficiency of the drying process at the temperature of 80 °C. Second Ferrão et al. (2019) drying causes chances in 
taste, colour and texture that results in unique properties. However, relatively rigid and permanent cell distortions 
are common in dehydrated products, which impart an aspect of surface wrinkling, of varying degrees (Fagundes 
et al., 2005). 

This behavior was verified by the parameter of water activity (aw), which ranged from 0.409 to 0.358, at 
temperatures of 60 ° C and 80 °C, respectively. These values are consistent with the data presented by Zhang et 
al. (2017), who found values of water activity ranging from 0.327 to 0.376, for drying of cylinders of peaches 
affected by osmotic pretreatment.  
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Table 6. Physical-chemical characterization of dehydrated peach slices 

Parameters 
Convective drying 

60 °C 70 °C 80 °C 

Moisture content (%d.b)1 11.0a 10.03b 9.22c 

Total Solids (%) 89.0c 89.97b 90.78a 

Water activity 0.409a 0.379b 0.358c 

pH 6.52a 6.43b 6.32c 

Titratable total acidity (% Citric acid) 1.26c 1.59b 1.82a 

Total Soluble Solid (°Brix) 13.0b 13.67a 14.17a 

Ratio (SST/ATT) 10.32a 8.61b 7.78c 

Vitamin C (mg of ascorbic acid/100g sample) 70.85a 64.42b 51.45c 

Ashes (%) 0.66b 0.71a 0.72a 

Note. 1 dry base; Letter superscripts equal in the same line do not present significant difference at the 5% 
probability level.  

 

The pH decreased in the drying process and the temperature increased. Inversely proportional to pH, the 
titratable acidity increased, ranging from 1.26 to 1.82% citric acid, at temperatures of 60 °C and 80 °C, 
respectively. The titratable acidity data are consistent with those reported by Zhang et al. (2017), in the study 
with peach jiubao. 

The total soluble solids content increased up to 1.67 °Brix when compared to the fresh slices (Table 5) in relation 
to the dehydrated slices, with the increase of the drying temperature. This behavior results from the lower water 
content, and the solids concentration. The ratio ratio (SST/ATT) decreased compared to fresh fruit. The decrease 
in the ratio ratio is due to the increase of the acidity after the dehydration process, at the temperatures analyzed. 
According to Brasil (1996), this relationship is used as an indication of the degree of maturation of the fruit, 
evidencing the predominant flavor in the same, whether sweet or acid, or if there is a balance between them.  

Vitamin C, considerably reduced at temperatures of 60 and 80 °C, expected result, since the drying conditions of 
the peach slices greatly affect the retention of vitamin C in the dehydrated product. According to Shewale and 
Hebbar (2017), the degradation of ascorbic acid depends on several factors, which include oxygen, metal ion 
catalysis, light, temperature and moisture content. The retention of vitamin C was higher than the values found in 
studies of drying kiwi slices (Pham et al., 2018), and dried apples by different processes (Shewale & Hebbar, 
2017), which observed a mean loss of 56.23% of vitamin C, compared to dried fruit, for the conventional hot air 
drying system.  

The temperature of 60 °C was considered to be more suitable for the drying of peach slices, since the treatment 
allowed the better preservation of vitamin C of the product when compared to the other samples that presented 
greater degradation of vitamin c. 

The ash content increased in proportion to the increase in the drying temperature, since, with increasing 
temperature, the efficiency of the fruit dehydration process increased. The values obtained in the present study 
are within the range suggested by the Adolfo Luttz Institute (Brasil, 2008), which suggests the ash content in 
foods, such as dehydrated fruits varying from 0.3 to 2.1%. 

4. Conclusion 
The Page model was the one that best described the drying process of the peach because it had the largest R2 and 
the smallest. There was a decrease in the drying rate from the initial time to the end of the process. The analytical 
solution of the diffusion equation with infinite wall geometry showed increased diffusivity and convective 
coefficient of heat transfer with increasing drying temperature. The Biot number indicated that the first-type 
contour condition would also satisfactorily describe the process. The fresh peach showed high content and water 
activity and the addition of drying air temperature caused an increase in the total soluble solids content, ash 
content and acidity. However there was reduction in water content, water activity, vitamin C and pH. 
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