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Abstract 
Anastrepha fraterculus (Diptera: Tephritidae) is among the most important fruit pests in South America, and the 
use of entomopathogenic fungi is considered a promising alternative for its control. The objective of this work 
was to evaluate the pathogenicity of Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae 
(Metschnikoff) Sorokin on larvae and pupae of A. fraterculus, along with fungal effects on adult fly longevity. 
Fungal inoculations, fly larvae or pupae were placed in Petri dishes with 1 mL/plate, and the concentrations of 
10, 15, 20 and 25 grams of commercial product/liter of water. Controls received water only. To evaluate the 
residual effect on adult flies, emerging adults were transferred to clean arenas and the adult longevity was 
monitored. Beauveria bassiana and M. anisopliae caused 93.3 and 96.7% larval mortality and 14.0 and 15.0% 
pupal mortality, respectively. The estimated LC50 and LC90 values were 22.56 and 40.87 g/L for B. bassiana, 
and of 23.45 and 42.02 g/L for M. anisopliae. Infected adult insects had shorter longevity than non-infected 
insects, with mean survival of 8.0 and 83.5 days for B. bassiana and M. anisopliae, respectively.  
Keywords: biological control, biological insecticides, mycoinseticides, fruit fly 

1. Introduction 

The fruit fly Anastrepha fraterculus (Wiedemann 1830) (Diptera: Tephritidae) is among the most important fruit 
fly pests in South America, infesting more than 100 species of both native and exotic plants (Hendrichs, Vera, De 
Meyer, & Clarke, 2015; Zucchi, 2017). The fly damage can both direct, by the female during oviposition and 
larval development in the fruit, and indirect, due to penetration of secondary pathogens through oviposition 
injuries (Zart, Fernandes, & Botton, 2010). Among the fruit fly control techniques, the use of chemical 
insecticides is the most frequent, however, due to high toxicity these products are less desirable, long no-entry 
periods and low selectivity toward natural enemies (Garcia, Brida, Martins, Abeijon, & Lutinski, 2017).  

An alternative control for these pests is the use of biological organisms which are efficient, have low 
environmental impacts and can be combined with other control techniques in an Integrated Pest Management 
Program (Lenteren, Bolckmans, Kohl, Ravensberg, & Urbaneja, 2017).  

Entomopathogenic fungi stand out as a control alternative due to easy application, efficient pest control in the 
short time, and safety toward man and the environment (Sinha, Choudhary, & Kumari, 2016). Among the most 
commonly used fungi in pest control are Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae 
(Metschnikoff) Sorokin (Ascomycota: Hypocreales) which can affect the different stages of the pest 
development (Butt, Coates, Dubovskiy, & Ratcliffe, 2016).  

When in contact with the host, the fungal spores adhere to the surface of the cuticle, germinate and produce 
specialized structures (appressoria) that allow penetration of the integument through a combination of enzymes 
and mechanical forces (Ortiz-Urquiza & Keyhani, 2013). After penetration, fungal hyphae invade and proliferate 
in the host hemolymph, leading to insect mortality (Mora, Castilho, & Fraga, 2016). 
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The action of entomopathogenic fungi on Tephritidae fruit flies has been reported for species of economic 
importance, and fungal efficiency was demonstrated for different phases of the insect's life cycle (Garcia et al., 
2017). Metarhizum anisopliae caused 86.0% mortality in immature stages of Anastrepha fraterculus (Destéfano, 
Bechara, Messias, & Piedrabuena, 2005) and B. bassiana caused 85.0% mortality in Anastrepha ludens (Loew) 
(Sánchez-Roblero, Huerta-Palacios, Valle, Gómez, & Toledo, 2012). High pathogenicity was also observed in 
larvae of Ceratitis capitata (Wied.), where B. bassiana and M. anisopliae had 73.8% and 96.6% of mortality 
(Khlaywi, Khundhair, Alrubeai, Shbar, & Hadi, 2014). These fungi also caused 100% mortality of Bactrocera 
zonata (Saunders) adults at the concentration of 3 × 108 conidia/mL (Gul, Freed, Akmal, & Malik, 2015). 
Beauveria bassiana caused 80.0% mortality in Rhagoletis indifferens (Curran) larvae and 20.0% in pupae at a 
dose of 1 × 108 conidia/gram of soil (Cossentine, Thistlewood, Goettel, & Jaronski, 2010).  

In view of the damage that A. fraterculus causes to many economically important fruit species and the potential 
efficiency of entomopathogenic fungi as part of an Integrated Pest Manegement (IPM) approach, the present 
study aimed to evaluate the pathogenicity of B. bassiana and M. anisopliae on larvae and pupae of A. fraterculus 
and lasting effect on adult longevity. 

2. Method 
Insect populations: The experiments were carried out at the Laboratório de Ecologia de Insetos of the Federal 
University of Pelotas-UFPel, in the district of Capão do Leão, Rio Grande do Sul, Brazil. The larvae and pupae 
of A. fraterculus were obtained from the creation of insects from the Laboratory of Insect Biology-UFPel, kept at 
25±1 ºC, and 70±10% relative humidity with 12 h photophase. The insects were transferred to Petri dishes (10 
cm in diameter x 1.5 cm in height) containing moist cotton and artificial diet based on refined sugar, wheat germ 
and beer yeast (3:1:1) (Bionis® BIONIS ® YE MF and NS), according to the methodology Salles (1992) 
modified by Nunes et al. (2013).  

Fungal isolates: The commercial B. bassiana (BOVERIL® WP PL63) and M. anisopliae (METARRIL® WP E9) 
wettable powder products were obtained from Koopert Biological Systems. Conidial viability tests were carried 
out at the Laboratório de Micologia of the Federal University of Pelotas-UFPel, using the microculture technique, 
adapted from França, Marques, Torres, and Oliveira (2006). The fungal products were diluted to the 
concentration of 1 × 104 conidia/mL of distilled water in concentration and 100 μL of the suspensions were 
inoculated on potato agar dextrose medium (PDA) in 9-cm Petri dishes. The Petri dishes were incubated at 
25±1 °C, with 70±10% RH, in the dark until colony forming units (CFUs) were sufficiently grown to be counted. 
This procedure was repeated daily for four days for each isolate used.  

Pathogenicity and lethal concentration (LC50 and LC90): Experiments were conducted in a complete randomized 
design with eight treatments and a control, all applied in 10 replicates, using fungal isolates following 
methodology by F. Q. Oliveira, Batista, Malaquias, Almeida, and R. Oliveira (2010). The commercial products 
were weighed in aliquots representing the concentrations recommended by the manufacturer for field application 
(10, 15, 20 and 25 grams of product/liter of water or 5.0 × 106, 7.5 × 106, 10.0 × 106 and 12.5 × 106 conidia/mL 
respectively). Products were transferred to flasks with 1 L of sterile water and agitated in vortex agitators until 
complete dilution. From the initial solution, aliquots of 17 μL were removed (recommended by the manufacturer) 
and were diluted in 1 mL of water (distilled and sterile) and inoculated into Petri dishes (9 cm) coated with two 
sterilized sheets of filter paper disks (autoclave at 1 atm and 121 °C for 30 minutes). The control consisted of 1 
mL sterile distilled water per container applied in similar manner as the fungal treatments. After inoculation, 10 
A. fraterculus larvae and/or pupae were inserted separately in each Petri dishes. Larvae (13-day old), 
corresponding to the stage in which the larva leaves the fruit towards the soil, and pupae with fully formed 
integument (1 day after pupation) were used in the experiments. The Petri dishes were sealed with PVC film and 
stored in incubator (25±1 °C, 70±10% RH, and complete darkness). Third instar larva and pupa mortality were 
evaluated daily until the complete emergence of the control adults (12 to 15 days).  

In order to confirm mortality due to fungal infection, dead insects and non-viable pupae were removed from the 
inoculation Petri dish and were sterilized with sodium hypochlorite (1.0%), then alcohol (70.0%) followed by 
wash in sterile distilled water (Quesada-Moraga, Martin-Carballo, Garrido-Jurado, & Santiago-Alvarez, 2008). 
After asepsis, the insects were incubated in Petri dishes (9 cm) lined with two sheets of moist sterile filter paper 
(1 ml sterile distilled water). The Petri dishes with the insects were capped and sealed with plastic film and 
stored in incubator set at 25±1 °C, RH of 70±10%, and lights off to allow fungal development on the insect 
cadaver. 
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Pathogenicity test: All conidial concentrations of both isolates showed pathogenicity to A. fraterculus, with some 
differences seen as a function of the insect stage of development. In the highest concentration for inoculations to 
the larval stage, B. bassiana and M. anisopliae caused total mortality of up to 93.3% (±14.05) and 96.7% 
(±14.05) of insects, respectively (Table 1). Inoculations at the larval stage resulted in low larval mortality, with 
10.0% (±16.09) for B. bassiana and 6.7% (±10.50) for M. anisopliae, which did not differ from the control (P = 
0.600) (Table 1). Despite being infected, the insects advanced to later stages, in which the most mortality 
occurred. In pupae, B. bassiana caused 56.7% (±27.40) and M. anisopliae caused 53.3% (±23.30) mortality, and 
both treatments differed from the control (Table 1). In adults, the mortality was 36.7% (±18.90) with B. bassiana 
and 43.0% (±22.50) with M. anisopliae, both significantly different from the control (Table 1).  

In inoculations carried out at the pupae stage, the higher mortality was 14.0% (±6.99) with B. bassiana, and 
15.0% (±6.99) for M. anisopliae. Pupal inoculations did not cause infections to the insects at later stages of 
development (adult) (Table 2).  

Our research tested B. bassiana against third instar larvae of A. fraterculus, and this isolate caused 93.3% 
mortality with application of 12.5 × 106 conidia/mL, which issimilar to the 96.7% mortality caused by M. 
anisopliae at the same dose. The high efficiency of these entomopathogenic fungi, aided by specific proteases 
produced during the infection process, which target the proteins in the insect cuticle and facilitate the fungal 
penetration into the insect body (Sinha et al., 2016). For tephritids, the action of these fungal metabolites was 
observed in C. capitata (Boudjelida & Soltani, 2011), with reduction and destruction of the cuticular proteins by 
M. anisopliae resulting in insect death.  

 

Table 1. Confirmed mortality [mean ± standard deviation (SD)] in different developmental stages of Anastrepha 
fraterculus after treatment with fungal isolates Beauveria bassiana (Balsamo) and Metarhizium anisopliae 
(Metschnikoff) in the larval stage 

Treatment 
Grams/L (Conidia/mL) 

Total 
(Mort.±SD) 

Larvae  
(Mort.±SD) 

Pupae  
(Mort.±SD) 

Adults  
(Mort.±SD) 

Beauveria bassiana (Balsamo) 
10 (5.00 × 106) 50.0±17.6b 3.3±10.5a 30.0±10.53b 16.7±17.56b 
15 (7.50 × 106) 63.3±24.59bc 6.7±14.05a 33.3±22.2b 23.3±27.43b 
20 (10.00 × 106) 76.3±16.10cd 3.0±10.5a 36.6±10.5bc 36.7±18.91b 
25 (12.50 × 106) 93.3±14.05d 10.0±16.09a 56.7±27.4c 26.6±21.07b 
Control 0.0±0.00a 0.0±0.00a 0.0±0.00a 0.0±0.00a 

F (df) 10.27 (3) 0.60 (3) 3.91 (3) 1.49 (3) 

Value P 0.0001 0.619 0.0163 0.2336 

Metarhizium anisopliae (Metschnikoff) 
10 (5.00 × 106) 50.0±17.56b 0.0±0.00a 20.0±17.2b 30.0±10.53b 
15 (7.50 × 106) 86.4±17.21c 0.0±0.00a 43.4±23.56bc 43.0±22.49b 
20 (10.00 × 106) 56.6±14.05b 3.2±14.05a 33.4±22.2bc 20.0±17.2b 
25 (12.50 × 106) 96.7±14.05c 6.7±10.5a 53.3±23.3c 36.7±24.5b 
Control 0.00±0.00a 0.0±0.00a 0.0±0.00a 0.0±0.00a 

F (df) 17.29 (3) 1.320 (3) 4.409 (3) 2.610 (3) 

Value P 0.0001 0.2829 0.0097 0.0664 

Note. The means for the same fungus followed by different letters within the same column are significantly 
different (P < 0.05). Mort., Mortality; SD, Standard Deviation.  
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Table 2. Confirmed mortality [mean ± standard deviation (SD)] in different developmental stages of Anastrepha 
fraterculus exposed to treatments with fungal isolates Beauveria bassiana (Balsamo) and Metarhizium 
anisopliae (Metschnikoff) in the pupal stage 

Treatment 
Grams/L (Conídia/mL) 

B. bassiana M. anisopliae 

Pupae 
(Mort.±SD) 

Adults 
(Mort.±SD) 

Pupae 
(Mort.±SD) 

Adults 
(Mort.±SD) 

10 (5.00 × 106) 5.0±5.27ab 0.0±0.00a 7.0±4.83ab 0.0±0.00a 
15 (7.50 × 106) 14.0±6.99c 0.0±0.00a 13.0±6.74b 0.±0.00a 
20 (10.00 × 106) 10.0±4.71bc 0.0±0.00a 15.0±6.99b 0.0±0.00a 
25 (12.50 × 106) 11.0±5.67bc 0.0±0.00a 11.0±7.37b 0.0±0.00a 
Control 0.0±0.00a 0.0±0.00a 0.0±0.00a 0.0±0.00a 

F (df) 4.271 (3) 0.00 (0) 2.692 (3) 0.00 (0) 

Value P 0.111 0.00 0.606 0.00 

Note. The means for the same fungus followed by different letters of the same column are significantly different 
(P < 0.05). Mort., Mortality; SD, Standard Deviation.  

 
Lethal concentrations (LC50 and LC90): The LC50 and LC90 values for B. bassiana and M. anisiopliae did not 
differ significantly between the isolates, but there were significant differences between the developmental stages 
of the insect. After larval inoculations, the insects progressed to the pupal stage, and this stage was affected, with 
lower LC50 and LC90 (22.56 g/L and 40.87 g/L for B. bassiana, and 23.45 gr/L and 42.02 gr/L for M. anisopliae, 
respectively (Table 3). For inoculations at the pupal stage, higher product concentrations were required, with 
LC50’s at 95.73 g/L and 83.13 g/L for B. bassiana and LC90’s at 175.15 g/L and 150.90 g/L for M. anisopliae 
(Table 4). 

 

 

Table 3. Lethal concentrations (LC50 and LC90) (grams/liter) (confidence intervals) of commercial fungal isolates 
of Beauveria bassiana and Metarhizium anisopliae to larvae, pupae and adults of Anastrepha fraterculus after 
treatments in the larval stage of the insect 

  LC50 gr/L (95%FL) F (df)/P 

Larvae 
B. bassiana 135.8 (105.42-166.29)b 85.6 (1.8)/0.000015 

M. anisopliae 122.2 (48.04-196.33)b 11.436 (1.8)/0.009769 

Pupae 
B. bassiana 22.6 (20.80-24.33)a 248.1 (1.8)/<0.001 
M. anisopliae 23.5 (21.41-25.48)a 206.3 (1.8)/<0.001 

Adults 
B. bassiana 35.0(31.21-38.70)ab 193.7 (1.8)/<0.001 
M. anisopliae 32.5 (30.37-34.56)ab 500.8 (1.8)/<0.001 

  LC90 gr/L (95%FL) F (df)/P 

Larvae 
B. bassiana 243.2 (186.04-300.40)b 85.6 (1.8)/0.000015 
M. anisopliae 212.5 (76.59-348.11)b 11.4 (1.8)/0.009769 

Pupae 
B. bassiana 40.9 (36.75-45.00)a 248.1 (1.8)/<0.001 
M. anisopliae 42.0 (37.32– 46.72)a 206.3 (1.8)/<0.001 

Adults 
B. bassiana 63.5 (55.25-71.92)ab 193.7 (1.8)/<0.001 
M. anisopliae 63.1 (57.99-68.27)ab 500.8 (1.8)/<0.001 

Note. The means followed by different letters within the same column are significantly different (P < 0.05).  
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After application to the larval stage, B. bassiana (12.5 × 106 conidia/mL) caused 36.7% mortality in adult insects 
and M. anisopliae (7.5 × 106 conidia/mL) caused 43.0% mortality of adults. These pathogens usually cause host 
death in the larval or pupal stages, about 24 to 96 hours after conidial adhesion to the insect cuticle (Sinha et al., 
2016; Garcia et al., 2017). However, some insects may survive to adulthood even when infected, perhaps due to 
a strong immune system, which produces antimicrobial peptides and phenoloxidases, or encapsulates the hyphae, 
reducing or preventing fungal development and the synthesis of toxins (Dubovskiy et al., 2013; Lu & Leger, 
2016). In addition, hemolymph pressure, pH and temperature in insect hemocele may contribute to delayed 
pathogen development, resulting in insect mortality only after adult emergence (Meyling & Eilenberg, 2007; 
Ortiz-Urquiza & Keyhani, 2013).  

Adult A. fraterculus that developed from inoculated pupae did not show fungal growth; however, pupal mortality 
by pathogen action was observed. The absence of infected adults from pupal inoculations may be due to the 
rapid kill during the pupal phase due to toxic metabolites secreted by fungi soon after pupal cuticle penetration 
(Sinha et al., 2016). The sublethal effect of fungi on adult insects from inoculations of immature stages has been 
reported previously (Bechara et al., 2011; Bissoli, Correia, & Barbosa, 2014). However, with the present study, 
we observed 20.0% mortality on the first day after the adult emergence, reaching 50.0% mortality by the sixth 
day, and total mortality by the 12th day. The mortality of adult insects in this period prevents damage to fruits 
because it occurs before the end of the preoviposition period (7 and 14 days after adult emergence) (Zart et al., 
2010).  

4. Conclusions 
Beauveria bassiana and M. anisopliae showed high efficiency in the control of A. fraterculus, with lower lethal 
concentrations (LC50 and LC90) in third instar larvae inoculations.  

The pathogenicity of B. bassiana to A. fraterculus larvae was evaluated for the first time, showing promising 
effects similar to those by the fungus M. anisopliae.  

The sublethal effect of these entomopathogenic fungi on adult insects after conidial applications to the larvae 
reduced adult longevity. Additional field work is needed to verify the efficacy of similar treatments in the field. 

References 
Bechara, J. I., Destéfano, R. H. R., Bresil, A. C., & Messias, C. L. (2011). Histopathological events and detection 

of Metarhizium anisopliae using specific primers in infected immature stages of the fruit fly Anastrepha 
fraterculus (Wiedemann, 1830) (Diptera: Tephritidae). Brazilian Journal of Biological, 71, 91-98. 
https://doi.org/10.1590/S1519-69842011000100014 

Bissoli, G., Correia, A. C. B., & Barbosa, J. C. (2014). Seleção de fungos patogênicos para controle de larvas e 
pupas da mosca-das-frutas Ceratitis capitata (Diptera: Tephritidae). Científica, 43, 338-345. https://doi.org/ 
10.15361/1984-5529.2014v42n4p338-345 

Boudjelida, H., & Soltani, N. (2011). Pathogenicity of Metarhizium anisopliae (Metsch) on Ceratitis capitata L. 
(Diptera: Tephritidae). Annals of Biological Research, 2, 104-110. https://doi.org/10.1590/S1519-566X2006 
000300014 

Butt, T. M., Coates, C. J., Dubovskiy, I. M., & Ratcliffe, N. A. (2016). Entomopathogenic Fungi: New Insights 
into Host-Pathogen Interactions. Advances in Genetics, 94, 307-364. https://doi.org/10.1016/bs.adgen. 
2016.01.006 

Cossentine, J., Thistlewood, H., Goettel, M., & Jaronski, S. (2010). Susceptibility of preimaginal western cherry 
fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) to Beauveria bassiana (Balsamo) Vuillemin 
Clavicipitaceae (Hypocreales). Journal of Invertebrate Pathology, 104, 105-109. https://doi.org/10.1016/ 
j.jip.2010.02.006 

Destéfano, R. H. R., Bechara, I. J., Messias, C. L., & Piedrabuena, A. E. (2005). Effectiveness of Metarhizium 
anisopliae against immature stages of Anastrepha fraterculus fruitfly (Diptera: Tephritidae). Brazilian 
Journal Microbiolology, 36, 94-99. https://doi.org/10.1590/S1517-83822005000100018 

Dubovskiy, I. M., Whitten, M. M. A., Yaroslavtseva, O. N., Greig, C., Kryukov, V. Y., Grizanova, E. V., … Butt, 
T. M. (2013). Can insects develop resistance to insect pathogenic fungi? PLoS ONE, 8, 1-9. 
https://doi.org/10.1371/journal.pone.0060248 

Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042. 
https://doi.org/10.1590/S1413-70542011000600001 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 16; 2019 

139 

França, I. W. B., Marques, E. J., Torres, J. B., & Oliveira, J. V. (2006). Efeitos de Metarhizium anisopliae 
(Metsch.) Sorok. e Beauveria bassiana (Bals.) Vuill. sobre o percevejo predador Podisus nigripisnus 
(Dallas) (Hemiptera: Pentatomidae). Neotropical Entomology, 35, 349-356. https://doi.org/10.1590/ 
S1519-566X2006000300009 

Garcia, F. R. M., Brida, A. L., Martins, L. N., Abeijon, L. M., & Lutinski, J. (2017). Biological control of fruit 
flies of the genus Anastrepha (Diptera: Tephritidae): Current status and perspectives. In D. Lewis (Ed.), 
Biological control: Methods, applications and challenges. Biological Control of Fruit Flies of the Genus 
Anastrepha (Diptera: Tephritidae): Current status and perspectives (pp. 26-35). Hauppauge: Nova Science 
Publishers. 

Gul, H. T., Freed, S., Akmal, M., & Malik, M. N. (2015). Vulnerability of different life stages of Bactrocera 
zonata (Tephritidae: Diptera) against entomogenous fungi. Pakistan Journal of Zoology, 47, 307-317.  

Hendrichs, J., Vera, M. T., De Meyer, M., & Clarke, A. R. (2015). Resolving cryptic species complexes of major 
tephritid pests. ZooKeys, 540, 5-39. 

IBM SPSS. (2013). SPSS for Windows 22.0. SPSS inc. Chicago, IL. 

Khlaywi, S. A., Khundhair, M. W., Alrubeai, H. F., Shbar, A. K., & Hadi, S. A. (2014). Efficacy of Beauveria 
bassiana and Metarhizium anisopliae to control mediterranean fruit fly, Ceratitis capitata. International 
Journal Entomology Research, 2, 169-173.  

Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using 
invertebrates and microorganisms: Plenty of new opportunities. BioControl, 63, 39-59. https://doi.org/ 
10.1007/s10526-017-9801-4 

Lezama-Gutiérrez, R., Trujillo-De-La-Luz, A., Molina-Ochoa, J., Rebolledo-Dominguez, O., Pescador, A. R., 
López-Edwards, M., & Aluja, M. (2000). Virulence of Metarhizium anisopliae (Deuteromycotina: 
Hyphomycetes) on Anastrepha ludens (Diptera: Tephritidae): Laboratory and field trials. Journal Economic 
Entomology, 93, 1080-1084. https://doi.org/10.1603/0022-0493-93.4.1080 

Lu, H. L., & Leger, R. J. S. (2016). Insect immunity to entomopathogenic fungi. Advances in Genetics, 94, 
251-285. https://doi.org/10.1016/bs.adgen.2015.11.002 

Meyling, N. V., & Andeilenberg, J. (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and 
Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. 
Biological Control, 43, 145-155. https://doi.org/10.1016/j.biocontrol.2007.07.007 

Mora, M. A. E., Castilho, A. M. C., & Fraga, M. E. (2016). Fungos entomopatogênicos: Enzimas, toxinas e 
fatores que afetam a diversidade. Revista Brasileira de Produtos Agropecuários, 18, 335-349. 

Nunes, A. M., Costa, K. Z., Faggioni, K. M., Costa, M. L. Z., Gonçalves, R. S., Walder, J. M. M., Garcia, M. S., 
& Nava, D. E. (2013). Dietas artificiais para a criação de larvas e adultos da mosca-das-frutas sul-americana. 
Pesquisa Agropecuária Brasileira, 48, 1309-1314. https://doi.org/10.1590/S0100-204X2013001000001 

Oliveira, F. Q., Batista, J. L., Malaquias, J. B., Almeida, D. M., & Oliveira, R. (2010). Determination of the 
median lethal Concentration (LC50) of mycoinseticides for the controlo of Ceratitis capitata (Diptera: 
Tephritidae). Revista Colombiana de Entomolologia, 36, 213-216. 

Ortiz-Urquiza, A., & Keyhani, O. N. (2013). Action on the surface: Entomopathogenic fungi versus the insect 
cuticle. Insect, 4, 357-354. https://doi.org/10.3390/insects4030357 

Osorio-Fajardo, A., & Canal, N. A. (2011). Selection of strains of entomopathogenic fungi for management of 
Anastrepha obliqua (Macquart, 1835) (Diptera: Tephritidae) in Colombia. Revista Facultad Nacional de 
Agronomia Medellín, 64, 6129-6139.  

Quesada-Moraga, E., Martin-Carballo, I., Garrido-Jurado, I., & Santiago-Alvarez, C. (2008). Horizontal 
transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) 
(Diptera: Tephritidae). Biological Control, 47, 115-124. https://doi.org/10.1016/j.biocontrol.2008.07.002 

Salles, L. A. B. (1992). Metodologia de criação de Anastrepha fraterculus (Wied., 1830) (Diptera: Tephritidae) 
em dieta artificial em laboratório. Anais da Sociedade Entomologica do Brasil, 21, 479-486. 

Sánchez-Roblero, D., Huerta-Palacios, G., Valle, J., Gómez, J., & Toledo, J. (2012). Effect of Beauveria 
bassiana on the ovarian development and reproductive potential of Anastrepha ludens (Diptera: 
Tephritidae). Biocontrol Science Technology, 22, 075-1091. https://doi.org/10.1080/09583157.2012.713090 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 16; 2019 

140 

Sinha, K. K., Choudhary, A. K., & Kumari, P. (2016). Entomopathogenic Fungi. In Omkar (Ed.), Ecofriendly 
pest management for food security (pp. 475-505). Academic Press: London, UK. 

Statsoft. (2013). Statistica (data analysis software system) (Version 13). StatSoft Inc., Tulsa, OK.  

Toledo, J., Campos, S. E., Flores, S., Liedo, P., Barrera, J. F., Villasenor, A., & Montoya, P. (2007). Horizontal 
transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae) under laboratory and field 
cage Conditions. Journal Economic Entomology, 100, 291-297. https://doi.org/10.1603/0022-0493(2007) 
100[291:HTOBBI]2.0.CO;2 

Wilson, W. M., Ibarra, J. E., Oropeza, A., Hernandez, M. A., Toledo-Hernandez, R. A., & Toledo, J. (2017). 
Infection of Anastrepha ludens (Diptera: Tephritidae) adults during emergence from soil treated with 
Beauveria bassiana under various texture, humidity, and temperature conditions. Florida Entomologist, 100, 
503-508. https://doi.org/10.1653/024.100.0302 

Zart, M., Fernandes, O. A., & Botton, M. (2010). Biology and fertility life table of the South American fruit fly 
Anastrepha fraterculus on grape. Bulletin Insectology, 63, 237-242.  

Zucchi, R. A. (2017). Fruit flies in Brazil-Anastrepha species their host plants and parasitoids. Retrieved from 
http://www.lea.esalq.usp.br/anastrepha 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


