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Abstract 
Although thiamethoxam is an insecticide widely used in agriculture, its high mobility and persistence in the soil 
can result in contamination of groundwater and alteration in biogeochemical cycles. The objective of this study 
was to verify the effect of biochar, NPK fertilizer and thiamethoxam insecticide on soil microbial properties. The 
experiment was conducted in a randomized block design composed of the doses combination of mineral fertilizer 
NPK (0 and 300 kg ha-1 of the formulated 05-25-15), and biochar (0, 8, 16 and 32 t ha-1) in the absence and 
presence of thiamethoxam. Deformed soil samples were collected in all plots in the 0 to 0.10 m layer to 
determine the activity of the enzymes: acid and alkaline phosphatase, beta glucosidase and urease, beyond the 
microbial biomass carbon (MBC), basal respiration rate (C-CO2) and metabolic quotient (qCO2). To compare 
soil microbiology before and after the application of thiamethoxam, multivariate statistical techniques were used. 
The application of biochar resulted in increased enzymatic activity of urease, acid phosphatase, increase of qCO2 
and basal respiration and reduction of MBC. In contrast, the application of the thiamethoxam insecticide 
suppressed the enzymatic activity of urease, acid phosphatase, resulting, however, in the elevation of alkaline 
phosphatase and basal respiration of the soil. Biochar application at doses greater than or equal to 16 t ha-1 
resulted in elevation of qCO2 and reduction of MBC, regardless of the absence or presence of NPK chemical 
fertilization. Biochar effect on soil microbiological attributes is less significant than the effect of thiamethoxam 
application.  

Keywords: soil microbial biomass, enzymatic activity, soil quality 

1. Introduction 

Thiamethoxam insecticide is used worldwide in agriculture for the control of a wide variety of insect pests 
(Hilton, Jarvisa, & Ricketts, 2015). In Brazil, 7% of the insecticides used are from the neonicotinoid cluster, with 
thiamethoxam being one of the main commercialized molecules (IBAMA, 2017). The high demand for the use 
of this molecule in agricultural systems requires greater attention regarding its effects on the soil microbiota. 
This concern elapses from the physico-chemical characteristics of thiamethoxam (low sorption interaction, high 
solubility), which gives it, above all, high soil persistence (Hladik, Kolpin, & Kuivila, 2014). These aspects 
result in two main concerns with its application: i) high leaching potential and consequently subsurface water 
contamination; ii) deleterious effects on the soil microorganism and the ecological chain, resulting in toxic 
effects on several organisms, including humans. 
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Studies confirm the deleterious effect of thiamethoxam on the soil microbiota, such as toxicity to bacteria 
involved in the nitrogen cycle (Filimon et al., 2015), reduction in the activity of the urease, phosphatase and 
β-glucosidase enzymes (Jyot, Mandal, & Singh, 2015) and reduction of microbial biomass carbon (MBC) and 
basal soil respiration (Portillo, Scorza Junior Salton, Mendes, & Merchant, 2015). 

Soil microorganisms have a role of great ecological and agricultural importance, working actively in the 
processes of genesis, nutrient cycling, decomposition of organic residues, synthesis of organic matter and 
degradation of organic contaminants (Kirchman, 2018; Mendes, Souza, & Reis Júnior, 2015). Therefore, it is 
necessary to study techniques to reduce the impact of agrochemicals on the soil microbiota. Due to its 
characteristics, mainly to the reactivity, the organic matter (OM) is the main component of the soil involved in 
the remediation of the contaminant potential of agrochemicals (Portilho et al., 2015; Petter et al., 2017). This fact, 
the OM also happens to be the main compartment of the soil to be improved from the point of view of handling 
techniques. However, in the tropics the maintenance of OM levels is hampered by high temperatures and 
precipitation, which requires alternative studies to maintain and/or increase soil carbon stocks. Given the high 
porosity, high molecular stability, the use of biochar is an alternative to improve carbon stocks in the soil, and 
can act as a source of nutrients and habitat for microorganisms (Li et al., 2019) and thereby minimize the 
harmful effects of thiamethoxam on the environment. In addition, although the biochar presents high molecular 
stability, after its application to the soil, processes of oxidation of the aromatic structures forming new electric 
charges and reactive functional clusters in the soil occur (Petter et al, 2017). This higher reactivity may represent 
an improvement in the retention of molecules as it occurs in organic matter (Schmidt et al., 2015). 

The effect of biochar in the soil has been the subject of several studies that have shown beneficial effects on soil, 
such as increase fertility, water retention (Zhu et al., 2017), agrochemicals (Ali, Khan, Li, Zheng, & Yao, 2019; 
Hladik et al., 2014), increased microbial biomass (Lehmann et al., 2011), significant changes in the composition 
of the microbial community in clayey soils (Silva et al., 2018; Li, Liang, & Shangguan, 2017), increased 
enzymatic activities such as urease and β-glucosidase (Huang et al., 2017; Wang et al., 2017), increased 
nodulation of the root by nitrogen-fixing bacteria, nutrient cycling and carbon sequestration (Scheifele et al., 
2017). 

However, there is still a lack of studies using biochar in order to reduce the residual effect of pesticides in soil 
and its effect on long-term biological functions (Palansooriya et al., 2019). Aiming to fill this gap in the research, 
we propose in our studies to evaluate the use of biochar in the soil as a mitigating technique of the potential 
effect of the insecticide on the microbiological properties of the soil. 

2. Material and Methods 

2.1 Study Area 

The experiment was conducted at Farm Estrela do Sul in Nova Xavantina, Mato Grosso, in the Central West 
region of Brazil (14°34′50″ S and 52°24′01″ W), with an average altitude of 310 m, and the region located in the 
‘Cerrado’ biome. The climate of the region is hot and humid tropical type (Aw), according to the classification 
of Köppen-Geiger. The soil is classified according to the Brazilian system of soil classification (Santos et al., 
2018) as a Dystrophic Haplic Plinthosol, sandy loam texture, with 763 g kg-1 of sand, 67 g kg-1 of silt and 170 g 
kg-1 of clay.  

2.2 Characterization and Experimental Design of the Study Area  

Before the implementation of the experiment the area was native forest until 1985, after it was used for grazing 
with Urochloa brizantha until 2008. The experimental design was randomized blocks in a 2 × 4 factorial scheme 
with three replications. The treatments consisted of the combination of two doses of NPK fertilizer 05-25-25 (0 
kg ha-1 and 300 kg ha-1) and four doses of charcoal (biochar) as a source of pyrogenic carbon (0 t ha-1; 8 t ha-1, 16 
t ha-1 and 32 t ha-1). Each plot was composed of nine soybean/maize lines with a length of 10 m, totaling 40.50 
m2, and the useful area for evaluations of 25.20 m2. 

Before being incorporated into the soil, the eucalyptus biochar was milled and passed through a 2 mm sieve. Its 
chemical composition is shown in Table 1. This material was applied to the soil only once in December 2008, 
being incorporated at a depth of 0.10 m by means of a rotary spade. After the incorporation, the experiment was 
conducted under no-tillage system. 
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Table 1. Elemental composition (total values) of the biochar used in the experiment 

Element Unit Concentration 

Total Nitrogen (N) 

g kg-1 

3.3 
Phosphorus (P2O5 Citric acid) 0.14 
Phosphorus (P2O5 total) 
K2O 
CaO 

- 
1.9 
1.5 

MgO 0.9 
Sulfur (S) - 
Copper (Cu) 

mg kg-1 

1.0 
Zinc (Zn) 36.0 
Molybdenum (Mo) - 
Cobalt (Co) - 
Boron (B) - 
Total carbon (C) 

g kg-1 

774.0 
Humidity 50.0 
Total mineral material - 
C:N Ratio 234.5 
Specific surface area m2 g-1 41.2 
Pore volume cc g-1 0.018 
Pore diameter  µm 38.4 
Density g cm-3 0.3 
Pyrolysis temperature °C 400-500 

Source: Petter et al. (2012), and Carvalho et al. (2013). 

 

Later, in the two subsequent harvests (2008/2009 and 2009/2010 harvests) after biochar application, rice (Oryza 
sativa) was cultivated in a conventional culture system, and after all the agricultural crops until the time of 
samples collection for this experiment soybean (Glycine max) was cultivated in no-tillage system on millet straw 
(Pennisetum glaucum) that was formed in all crops 45 days before soybean planting in the experimental area. 
Fertilization was repeated every year, using the same formulation and in the same amounts. To characterize soil 
fertility in the 2015/2016 harvest, four deformed soil samples were collected from each plot in 0 to 0.10 m layer. 
Thus, simple samples were mixed composing one single sample per plot (Table 2). 

 

Table 2. Analysis for fertility purposes of a Plinthosol subjected to four doses of charcoal (biochar) as a source 
of pyrogenic carbon (0 t ha-1; 8 t ha-1, 16 t ha-1 and 32 t ha-1) and two doses of NPK fertilizer 05-25-25 (0 kg ha-1 
and 300 kg ha-1) in the municipality of Nova Xavantina (MT) in the 2015/2016 harvest 

Biochar pH P K Ca Mg H+Al Al SB CEC V% OM 

t ha-1  ---- mg dm-3 ---- ------------------------- cmolc dm-3 -------------------------  g dm-3 
No fertilization 
0 3.82 18.4 63.0 0.37 0.18 4.35 0.87 0.73 5.08 14.2 11.5 
8 3.80 10.2 61.7 0.25 0.12 4.40 1.06 0.53 4.93 10.6 10.5 
16 3.85 14.78 57.5 0.37 0.16 4.40 0.83 0.65 5.05 13.3 10.6 
32 3.80 17.73 64.8 0.42 0.20 4.93 1.03 0.78 5.30 13.7 10.7 

300 kg ha-1 of NPK 
0 3.78 24.40 68.5 0.29 0.12 4.35 1.01 0.58 4.93 12.6 11.5 
8 3.89 35.35 67.5 0.65 0.37 4.03 0.73 1.13 5.15 19.1 13.5 
16 3.88 53.05 65.0 0.49 0.16 4.45 0.80 0.80 5.25 15.4 11.8 
32 3.85 35.38 80.0 0.56 0.23 4.58 1.02 1.00 5.58 17.9 10.9 

Note. pH at CaCl2; P and K determined by Mehlich-1; Ca, Mg and Al exchangeable extracted by KCl; H + Al 
extracted by calcium acetate; SB: sum of bases ;CEC: cation exchange capacity at pH 7; V%: soil base saturation; 
OM: soil organic matter determined by sodium dichromate.  
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2.3 Soil microbiological Analyzes 

After eight years of biochar incorporation, 2018, deformed soil samples were collected with the aid of a Dutch 
auger in 0 to 0.10 m layer to determine their microbiological attributes. The collection was carried out when the 
soybean crop was in full bloom. During the collection the samples were packed in polystyrene boxes containing 
ice to maintain the temperature until dispatch to the laboratory. 

After the first sampling, the thiamethoxam insecticide (record dose 105 g ha-1 of active) was applied with 
pressurized CO2 pump throughout the experimental area (soybean crop). After 48 hours of application, a new 
soil sample was taken to determine its microbiological attributes, as described in the first collection. Soil 
moisture was in the same condition as the first collection. 

The activities of four soil enzymes were determined: β-glucosidase, acid phosphatase, alkaline phosphatase 
according to the methods described by Tabatabai (1994), and urease by the method of Kandeler and Gerber 
(1988). These methods are based on the colorimetric determination of p-nitrophenol (yellow color) formed after 
the addition of colorless substrates specific to each enzyme evaluated. 

For each soil sample, three analytical replicates were performed in the laboratory. The soil enzymatic activity 
was expressed in μg p-nitrophenol released per gram of dry soil per hour. For the determination of β-glucosidase, 
phosphatases (acid and alkaline), and urease, the respective substrates were used 
p-nitrophenol-β-D-Glucopyranoside 0.05 M (PNG 0.05 M), nitrophenol phosphate 0.05 M (PNP 0.05 M) and 
urea solution Absorbance readings ranged from 400 nm to β-glucosidase, 490 nm to acid phosphatases, 400 nm 
to alkaline phosphatase, and 690 nm to urease.  

The soil basal respiration rate (C-CO2) was determined by the method described in Anderson and Domsch 
(1993), and microbial biomass carbon (MBC) by the fumigation-extraction method described by Vance et al. 
(1987) and Brookes et al. (1985). With data from the biological analyzes, the metabolic quotient (qCO2) was 
determined. The qCO2 is the amount of C-CO2 produced by unit of soil microbial biomass per unit time (mg 
C-CO2 mg-1 MBC hour-1) (Anderson & Domsch, 1993). 

2.4 Statistical Analysis 

Residual normality and variances homogeneity among treatments were confirmed by the Shapiro Wilk and 
Levene tests, respectively. To compare soil microbiological attributes before and after the application of 
thiamethoxam insecticide, the data were standardized to have mean 0 and variance 1, followed by performing the 
following multivariate statistical methods: hierarchical cluster analysis, k-means and main components. 

A hierarchical cluster analysis was performed only for the insecticide factors and biochar doses, calculating the 
Euclidean distance between the “accesses” or plots, for the set of 7 variables, and using the Ward algorithm to 
obtain similar accesses clusters. The result of the analysis was presented in graphical form (dendrogram), which 
assisted in the identification of the clusters. 

The identification of accesses in the clusters was also performed by the k-means analysis (Hair et al., 2009), 
which belongs to the class of methods of non-hierarchical and unsupervised clusters. In the clusters analysis by 
k-means, a multivariate analysis of the variables between the established clusters was performed. 

Two principal component analyzes were performed: i) with biochar and insecticide factors, and ii) with biochar, 
insecticide and fertilization factors. 

3. Results 
3.1 Hierarchical Analysis 

In order to define the number of clusters by dendrogram it is considered “jumps” or expressive variations in the 
distance of connection between the accesses. Among the Euclidean distances from 6 to 9, there was an 
expressive separation of clusters allowing the definition of 4 clusters (Figure 1). The accesses grouped in clusters 
1 and 2 represent the soil without the application of thiamethoxam insecticide, however, it is verified that the 
biochar doses of 16 and 32 t ha-1 modified the microbiological attributes of the soil when compared with the 
doses of 0 and 8 t ha-1. After applying thiamethoxam insecticide in the soil, it was verified that only 32 t ha-1 
dose of biochar was able to alter the soil microbiological attributes, isolating the accesses in cluster 4. 

From the analysis of hierarchical cluster, it was evident that the application of the thiamethoxam insecticide 
associated to biochar incorporation altered the microbiological attributes of the soil. However, this analysis alone 
does not allow the visualization of these changes between the established clusters. 
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mineralization was observed with the application of biochar in sandy soils; the biochar serves as micro-habitat 
for the soil microbiota through its pores that protect the colonies of fungi and bacteria from natural predators, 
thereby the enzymes remain for a longer period in the soil (Petter et al., 2018; Scheifele et al., 2017; Pietikäinen, 
Kiikkilä, & Fritze, 2003). Furthermore, biochar porosity increases the water availability, as noted in the study of 
Petter et al. (2016), and Carvalho et al. (2013) in the same soil of our study. In periods of scarcity, this water 
retention in the biochar pores can promote greater survival of microorganisms (Junna, Bingchen, & Gang, 2014), 
especially during drought periods. 

The decrease of the microbial biomass carbon (MBC) and increase of qCO2 demonstrates that the soil microbiota 
was under stress. Some studies report that MBC is closely related to the C/N ratio and soil organic carbon (SOC) 
(Li et al., 2017), decreasing significantly after biochar application biochar (Dempster, Gleenson, Solaiman, Jones, 
& Murphyet, 2012; Santos, Madari, & Tsai, 2013). Our results indicate that biochar application in the soil 
reduces MBC proportionally to the applied doses (Table 3). There are several possible reasons that would 
explain these results: i) the high molecular stability of polycondensed aromatic structures of the biochar carbon 
formed by the slow pyrolysis at high temperature, resulting in recalcitrant C and more resistant to degradation by 
microorganisms (Pietikäinen et al., 2019; Chintala et al., 2015; Farrel et al., 2013). Although, the biochar applied 
in this experiment contained C-labile, after eight years of its application, it was practically no longer observed. 
This effect was verified in a three-year study after biochar application and incorporation in this same soil and 
experiment, where it was characterized that there still was C-labile (oxidizable) from biochar available (Petter et 
al., 2016). The origin of this C-labile would be related to the condensable compounds formed in the biochar 
pyrolysis process; ii) with the permanence of the biochar to the soil, the oxidation of the biochar carbon-labile 
associated to a possible positive priming effect in the native OM may have contributed to the reduction of 
C-labile and increase of the C-recalcitrant in the soil, resulting in an organic matrix with high C: N ratio. This 
effect would result in greater difficulty of gain for MBC or even MBC loss, as verified in the present study; iii) 
no less important, the long residence time of biochar in the soil can induce changes in the mineralization rate of 
the SOC as suggested by Li et al. (2018), especially carbon from recent soil inputs. This may be related to the 
modification of the microorganisms’ abundance related to the C and N cycle of the soil, observed by Xu et al 
(2014). 

4.2Thiamethoxam in Soil Microbial Properties 

The reduction of urease and acid phosphatase enzymatic activity may be directly related to the toxicity of the 
insecticide on the soil microbiota, corroborating the results of Filimon et al. (2015), which verified the decrease 
of urease and acid phosphatase in the presence of thiamethoxam and its toxic effect on the bacteria involved in 
the nitrogen cycle. It is well known in the literature (Moreira & Siqueira, 2006) the perception of the sensitivity 
of soil nitrifying bacteria to agrochemicals as herbicides, fungicides and insecticides. 

On the other hand, the increase of enzymatic activity of β-glucosidase and alkaline phosphatase with the 
application of thiamethoxam may be related to the soil microbiota modification selecting through selective 
pressure microorganisms capable of producing these enzymes, as well as providing energy in their degradation. 
A study by Myresiotis, Vryza, and Papadopoulou-Mourkidou (2012) showed that the increasing of bacterial 
growth resulted in greater degradation of thiamethoxam. The β-glucosidase enzyme is essential for carbon 
degradation to generate energy for the microorganisms through the catalysis of cellobiose hydrolysis into two 
glucose molecules (Adetunji et al., 2017). Thus, the selective microbiota possibly acted on the degradation of 
thiamethoxam resulting in momentarily high levels of β-glucosidase. 

Thiamethoxam degradation in soil primarily involves bacterial activity of Pseudomonas sp genre, resulting in 
metabolites of the ‘magic-nitro’ cluster (=N-NO2) and subsequently transformed into metabolites such as 
nitroguanidine, desnitro/guanidine (THX-II) and urea (THX-III) (Pandey et al., 2009). According to these 
authors, ‘magic-nitro’ clusters (=N-NO2) can be converted to bacterial enzymes in a nonspecific way, which 
would explain in part the increase in the activity of β-glucosidase and acid phosphatase even in momentary 
events after the application of thiamethoxam.  

It is noticeable while on one hand biochar provides increased enzymatic activity of urease and acid phosphatase, 
on the other hand, thiamethoxam provides precisely the reduction of the activity of such enzymes, showing that 
biochar little attenuates the deleterious effect of this molecule on soil microbial activity. This fact is further 
confirmed by the reduction of MBC, increase of qCO2 and C-CO2 with the application of both. These results 
reinforce the need for long-term studies after application of biochar on microbial activity in agricultural areas 
submitted to the intensive use of agrochemicals, since they have high sorption interaction with biochar, 
especially polar pesticides. Thus, this greater sorptive interaction could provide greater availability of access of 
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microorganisms to these molecules and provide long-term significant change in the community and microbial 
activity, whose results may alter the biogeochemical cycles of nutrients in the soil and the growth and 
development patterns of the plants. 

4.3. NPK fertilizer in Soil Microbial Properties 

The increase of qCO2 and reduction of the MBC of Plinthosol in the presence of chemical fertilization, 
independent of biochar dose seems to be related to the adaptation of microorganisms to the soil environment 
with Biochar + NPK. These results confirm the observations of recent studies in which high doses of biochar (> 
16 t ha-1) provided lower biodiversity when compared to control soil (Santos, 2013), reduction of enzyme 
activity and microbial abundance, besides alter the microbial community structure (Huang et al., 2017). The 
reports justify the hypothesis above, since it was expected that, with the application of chemical fertilization, 
there would be higher MBC due to the greater contribution of vegetal residues. 

Thus, it seems that the biochar interferes in the soil organic matter dynamics and this on the microbial activity in 
the presence of chemical fertilization under three main points: i) lower biodiversity and alteration of microbial 
community structure; ii) priming effect on organic carbon derived from plant residues as previously discussed, a 
fact that would reduce the effect of the higher contribution of labile carbon on plant residues on MBC; iii) 
presence of inhibitor substances (ethylene, phenolic compounds) of soil microbial processes in the presence of 
high biochar doses (Deenik, McClellana, Ueharaa, Antal, & Campbell, 2010; Spokas et al., 2010). 

5. Conclusions 
Microbial properties of Plinthosol showed different responses after eight years of biochar incorporation. The 
increase of biochar doses resulted in an increase in the production of urease and acid phosphatase enzyme, 
increase of qCO2 and basal respiration and reduction of MBC. The application of biochar in larger doses than or 
equal to 16 t ha-1 resulted in elevation of qCO2 and reduction of MBC. 

The application of thiamethoxam insecticide suppressed the enzymatic activity of urease and acid phosphatase, 
resulting in elevation of alkaline phosphatase and reduction of basal respiration of the soil. 

The application of thiamethoxam insecticide led to more significant modifications on the soil microbiota than 
biochar. 

The application of biochar in the soil did not attenuate the negative effects of thiamethoxam on the soil 
microbiota. 

The results of the present study suggest that the application of biochar in the soil may result after long term in 
significant transformations in the soil microbiota, either through the selection of microorganisms or the alteration 
of microbial and enzymatic activity. 
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