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Abstract 
Determining drought tolerance in plants is an increasingly important feature due to the reduction of water 
resources, since water stress is one of the main environmental factors that limit agricultural growth and 
productivity. The objective of this study was to evaluate the tolerance of crambe (Crambe abyssinica Hochst) 
genotypes submitted to water stress induced by polyethylene glycol during germination and early growth of 
seedlings. A randomized block experimental design was used in a factorial scheme consisting of five crambe 
genotypes (FMS Brilhante, FMS CR 1203, 1307, 1312 and 1326) and five levels of osmotic potential [0.0 
(control), -0.2, -0.4, -0.5 and -0.6 MPa] in five replicates of 40 seeds. Germination rate (%), normal seedling 
development (%), germination speed index, root and shoot length, total fresh matter, and water content of 
seedlings (%) were analyzed. Physiological quality of seeds and initial development of crambe genotypes was 
improved in the group submitted to Ψw = -0.2 MPa. Germination and vigor index of crambe seeds were 
hampered by reduction of the potential to -0.4 MPa. The genotype FMS CR 1203 was the most tolerant to water 
stress, whereas FMS CR 1307 and 1312 were the most sensitive, as corroborated by PCA. 
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1. Introduction 
Water deficit is one of the most important and complex environmental factors limiting the germination of seeds 
(Viçosi et al., 2017) and development of seedlings (Machado et al., 2017). In seeds, water deficit reduces the 
turgor pressure, negatively affecting the expansion and growth of cells (Bewley & Black, 1994), reducing the 
availability of oxygen, gas exchanges and synthesis of enzymes and hormones for digestion, translocation and 
assimilation of reserves (Marcos-Filho, 2005), resulting in a reduced germination speed index (GSI) (Kader & 
Jutzi, 2002). This exposes the seeds to the action of pathogens and attacks by insects and other pests (Machado et 
al., 2017). Water deficit also causes an increase in the dry weight of embryos, due to the need for osmotic 
adjustment, associated with the accumulation of compatible solutes (Gill et al., 2003). According to Patanè et al. 
(2013), water deficit leads to more concentrated root tissue and lower water content in the roots. Furthermore, in 
genotypes more sensitive the metabolic signaling that regulates gene expression during water deficit can be 
reduced (Coelho et al., 2010), consequently stunting the growth of the hypocotyl and radicle (Viçosi et al., 
2017).  

Plants have developed many strategies to maintain growth when water availability is restricted or inconsistent 
(Silva et al., 2016), such as ionic homeostasis and activation of the enzyme antioxidant system, to promote cell 
detoxification and growth regulation (Zhu, 2001; Silva et al., 2017). However, these responses are generally 
more pronounced in genotypes that are tolerant to water deficit. According to Kappes et al. (2010), experiments 
involving germination of seeds under different osmotic potentials are important for selection of genotypes that 
are tolerant or susceptible to water deficit.  
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Several studies have investigated the germination of seeds submitted to different osmotic potentials, to screen for 
genotypes that are tolerant to water deficit (Machado et al., 2017; Viçosi et al., 2017; Paiva et al., 2018). These 
studies have the objective of improving the establishment of crops in the field. Machado et al. (2017) observed a 
higher germination rate, germination first count, fresh and dry matter in Crambe abyssinica (Hochst.) FMS CR 
1101 genotype submitted to different osmotic potentials induced by polyethylene glycol 6000 (PEG 6000), 
which was attributed to higher tolerance to water deficit compared with the FMS Brilhante genotype. The water 
stress tolerance levels of seeds of cowpea [(Vigna unguiculata L. (Walp)] and the arabica coffee (Coffea arabica 
L.) varieties Red Bourbon and Mundo Novo compared to cultivar BA-10 utilizing PEG 6000 were evaluated 
(Paiva et al., 2018; Almeida et al., 2018). In these studies, it was possible to differentiate between 
drought-resistant and drought-sensitive cultivars by observing the level of seed germination and early 
development of seedlings. PEG 6000 is a chemically inert and nontoxic product that simulates low water 
potentials without being absorbed by seeds, due to the large size of its molecules (Villela et al., 1991). The 
application of PEG 6000 is one of the most widely used methods to identify genotypes that are tolerant to water 
deficiency by osmotic stress.  

Crambe (Crambe abyssinica Hochst.) is an annual plant belonging to the family Brassicaceae, grown for 
industrial purposes as an oilseed crop. The oil is highly valuable and has multiple uses, such as to make plastics, 
lubricants and biodiesel (Carlsson et al., 2007). The oil content of the seeds ranges from 36 to 38% (Pitol et al., 
2010), higher than that of soybeans (Faria, 2014). Because it does not compete with oilseed crops used to obtain 
edible oils, its cultivation is expanding in Brazil, particularly to produce vegetable insulating oil (Oliveira et al., 
2015).  

According to Pitol et al. (2012), new varieties are being tested to expand its cultivation and improve yield in 
Brazil. At present, FMS Brilhante is the only genotype registered in Brazil. However, the genotypes FMS CR 
1312 and 1307 are considered to be candidate materials for pre-launch, and FMS CR 1213 and 1326 are still 
being tested by Brazil (Oliveira et al., 2015). The identification of genetic materials with high germinability and 
good development under environmental stress conditions like water deficit is necessary to improve productivity 
and expand the culture to regions characterized by low precipitation. Therefore, this study aimed to evaluate the 
tolerance of five crambe genotypes submitted to water stress during germination and early growth of seedlings. 

2. Methods 
The experiment was carried out at the Laboratory of Plant Ecophysiology of Federal University of Espírito Santo 
(UFES), in São Mateus, ES, Brazil, using seeds of five crambe genotypes (Crambe abyssinica Hochst., FMS 
Brilhante, FMS CR 1203, 1307, 1312 and 1326), obtained from the Mato Grosso do Sul Foundation (MS 
Foundation), an agency for research and diffusion of agricultural technologies. 

Water deficit was induced by polyethylene glycol (PEG 6000) treatments. Four solutions with Ψw = -0.2, -0.4, 
-0.5, and -0.6 MPa were applied (distilled water was used as the control treatment), according to the levels 
established by Villela et al. (1991). To avoid hypoxia by flooding the seeds, which strongly inhibits germination, 
special care was taken during application of the solutions. The seed moisture level was determined by the 
oven-drying method, at 105±3 ºC for 24 hours (Brasil, 2009). 

The crambe seeds were sterilized with solutions of 70% ethanol for 2 minutes, 1% (v/v) sodium hypochlorite for 
20 min. and the fungicide Ridomil© for 10 min., followed by triple washing with autoclaved distilled water. The 
seeds were then planted in a gerbox box (11 × 11 × 3 cm) containing washed sand moistened to 60% of retention 
capacity (Brasil, 2009) and placed in a growth room at 25 ºC with photoperiod of 16 h light and 8 h dark. 

The germination rate (%G) was determined according to the primary root emergence criterion. The percentage of 
normal plants (%NP) and germination speed index (GSI) were measured on the seventh day after sowing 
according to Brasil (2009), following Equations 1 and 2, as described by Maguire (1962).  

%G or %NP = (Σni/N) × 100                              (1) 

GSI = (G1/N1) + (G2/N2) + (Gn/n)                           (2) 

Where, %G or %NP: percentage of germination by radicle emission or percentage of normal plants, respectively; 
Σni: total number of germinated seeds; N: number of seeds placed to germinate; GSI: germination speed index; 
G1, G2, Gn: number of seeds germinated on the first, second and last day and N1, N2 and Nn: days since sowing 
on the first, second and last day.  

At the end of the germination test, the primary root and hypocotyl of normal seedlings of each replicate were 
measured using a centimeter ruler, and the results were expressed in cm seedling-1. Furthermore, to determine 
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shoot and root dry matter, the seedlings were cut and placed in paper bags, dried in a forced-air oven at 65 ºC for 
72 h and weighed on an analytical scale (0.0001 g). The results were expressed in g seedling-1. 

Finally, the water content of the seedlings was determined using the fresh and dry weight values, according to 
Equation 3. 

WC = [(Wi – Wf/Wi)] × 100                              (3) 

where, WC: water content of the seedlings (%); Wi: initial weight (fresh) and Wf: final weight (dry). 

The experiment was carried out in randomized block design with five replicates containing 40 seeds each. The 
factors were five water potential levels [control (distilled water), -0.2, -0.4, -0.5, and -0.6 MPa] and five crambe 
genotypes. The data were submitted to analysis of variance (ANOVA) and the means of the factors (genotypes 
and osmotic potential levels) were compared using the Tukey test (p < 0.05 or p < 0.001), calculated by the 
Sisvar® program (Ferreira, 2011). Principal component analysis (PCA) were performed to visualize the data 
globally and in order to identify the correlations between the osmotic potential treatments and the genotypes 
variation using R software (R Core Team, 2018). The data obtained in the evaluation of each treatment and 
genotype were initially standardized and PCA was conducted using the Factor Mine R package (Le et al., 2008).  

3. Results and Discussion 
The seed moisture content varied significantly (p ≤ 0.001) among the crambe genotypes evaluated (Table 1). The 
lowest seed moisture values were observed for the FMS Brilhante and FMS CR 1203 genotypes (5.65 and 5.69, 
respectively). In contrast, the highest values were recorded for FMS CR 1307 (Table 1). According to 
Marco-Filho (2005), the seed moisture content is related to seed vigor, since free water in the tissues increases 
various reactions, including those involved in seed deterioration, such as increased respiration, inducing the 
synthesis of adenosine triphosphate (ATP) (Kibinza et al., 2006) and malondialdehyde (MDA), in turn reducing 
cell membrane protection and increasing lipid peroxidation (Zhang et al., 2018), which occurs through the 
cascade of superoxide radicals (O2

-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH-) (Noctor & Foyer, 
1998; Zhang et al., 2018). In this study, although all crambe genotypes showed adequate seed moisture values 
(e.g., values < 9 b.u., see Table 1), the higher seed moisture values reported for FMS CR 1307 may indicate 
increased biochemical reactions, which consequently increases the chances of seed deterioration (Cardoso et al., 
2012).  

The interaction between crambe genotypes and osmotic potential levels was significant (p ≤ 0.001) for 
germination rate (%), normal seedling percentage (%), germination speed index (GSI), radicle and hypocotyl 
length and fresh matter (Figures 1-4). Total dry matter (DM) of the seedlings was significantly influenced (p ≤ 
0.001) by the isolated factors, genotypes and osmotic potential levels (Table 2).  

Overall, the crambe seeds germinated at all the osmotic potentials tested. Higher germination occurred when 
seeds were treated at -0.2 MPa (Figure 1A). Under Ψs higher than -0.4 MPa, significant decreases in germination 
occurred for all genotypes and reached minimums of 17.5%, 22%, 12%, 15% and 9.5% for FMS Brilhante, FMS 
CR 1203, 1307, 1312 and 1326, respectively, at -0.6 MPa (Figure 1A). Furthermore, in the control group (0.0 
MPa), the germination declined by about 22.7%, 82.1%, 77.5% and 36.2% in the FMS Brilhante, FMS CR 1307, 
1312 and 1326 genotypes, respectively. 

 

Table 1. Degree of seed moisture of different genotypes Crambe abyssinica Hochst 

Genotypes Crambe abyssinica Degree of seed moisture (%) 

FMS Brilhante 5.65±0.078 C 

FMS CR 1203 5.69±0.076 C 

FMS CR 1307 6.36±0.064 A 

FMS CR 1312 5.99±0.073 B 

FMS CR 1326 6.11±0.085 AB 

CV (%) 1.13 

Note. Means followed by the same letter in the column do not differ by Tukey test at 0.001 probability level 
(±SD).  

 

At the start of the germination process, the seeds are water dependent (phases I, II and II) (Bewley, 1997). 
During phase III, which is characterized by cell elongation, radicle emission occurs and the rate of seed 
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imbibition tends to decelerate (Bewley, 1997; Bove et al., 2001). In this study, the reduction of germination 
reported for the FMS Brilhante, FMS CR 1307, 1312 and 1326 genotypes in the control group (Ψs = 0 MPa) 
may have occurred due to fast seed imbibition, which can cause damages to the embryo, as reported by Bewley 
and Black (1994). Furthermore, the reduction of germination from -0.4 MPa on ward suggests osmotic 
interference in enzymatic activity, delaying meristematic development and retarding root emergence (Bewley et 
al., 2013). According to Marco-Filho (2015), low germination rates are related to membrane disorganization, 
followed by tissue death in different parts of seeds, especially meristematic tissues. In this study, the seed 
germination of all crambe genotypes was inhibited at -0.4 MPa, except for FMS CR 1307. Under in not adequate 
water potential, inhibition of seed imbibition capacity occurs, which limits the activation of the main metabolic 
pathways that act directly or indirectly on seed germination (Marcos-Filho, 2005).  

The percentage of normal plants was zero for both FMS CR 1307 and 1312 genotypes when the seeds were 
treated at -0.6 MPa. Therefore, the seeds of FMS CR 1307 and 1312 that showed some germination (denoted by 
radicle emission) (Figure 1A) did not generate normal seedlings (Figure 1B). The formation of abnormal 
seedlings of these crambe genotypes treated at -0.6 MPa suggests dysfunction and/or damage to the 
biomembrane system, caused by the progressive loss of protoplasmic turgor and increased concentration of 
cellular solutes (Bruni & Leopold, 1992). The lower values of germination and normal plants (Figure 1A and B) 
reported for both crambe genotypes may indicate greater susceptibility to water deficit caused by PEG.  

Reductions in GSI occurred in all genotypes with the reduction of water potential (Figure 1C). According to 
Dell'Aquila (1992), reduction in GSI values is a common response to water deficit and can be attributed to the 
impaired synthesis of proteins in embryonic tissues due the low hydration. The FMS CR 1203 genotype showed 
higher values of GSI when submitted to 0.0 and -0.4 MPa (14.4, 3.2, respectively). In contrast, lower GSI values 
were reported at 0.0 and -0.2 MPa (7.2 and 7.9, respectively) for FMS CR 1307 and -0.4 MPa (1.5) for FMS CR 
1312. Rapid germination generally corresponds to seed vigor, leading to faster emergence of seedlings in the 
field (Marcos-Filho, 2015). In this study, the higher GSI observed for the FMS CR 1203 genotype suggests 
higher probability that the seeds reached the next phase of the biocycle (Oliveira et al., 2015), because an 
increase in the GSI under water deficit conditions indicates less susceptibility to pathogens, insects and other 
pests (Machado et al., 2017), increasing the success of seedling development. 
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tolerant to water deficit (Machado et al., 2017). Thus, the results obtained in this study are relevant to evaluate 
the behavior of crambe genotypes under critical osmotic potentials for germination and early growth of seedlings. 
Finally, the PCA analysis corroborated the higher stress tolerance previously observed for FMS CR 1203, 
because even when increasing the intensity of water deficit, no differences in germination and seedling growth 
were noted. Furthermore, the grouping of FMS CR 1307 and 1312 corroborates the lower tolerance to water 
deficit. 

4. Conclusions 
The physiological quality of seeds and initial development of crambe genotypes are improved by Ψw = -0.2 MPa 
and germination and vigor index of crambe seeds are hampered by the reduction in the potential to -0.4 MPa. 
The genotype FMS CR 1203 is the most tolerant to water stress, whereas FMS CR 1307 and 1312 are the most 
sensitive. 
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