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Abstract 

Arbuscular mycorrhizal fungi (AMF) are important components of the soil microbiota in terrestrial ecosystems, 
under the influence of various factors such as soil use and management, and can be adapted to a structure and 
diversity of fungal communities. The aim of this survey was to evaluate the influence of different systems of land 
use and management on AMF diversity in the Roraima State, Brazil. We collected soil samples in agroforestry, 
conventional soybean planting, conventional corn and native forest. After 150 days of incubation in a greenhouse, 
we extracted the spores in order to evaluate AMF, volume and to determine taxonomic identification. We found 16 
species of AMF and the genus Acaulospora was the most frequent, followed by Glomus. Soil under agroforestry 
system had the highest species richness and the native forest, the lowest. On the other hand, soybean and corn areas 
presented greater density values than agroforestry system and native forest. In the agroforestry system, SOM 
attributes, Al3+ and H + Al had influence in AMF species richness. Thus, agroforestry constitute sustainable 
alternative influencing AMF communities in these ecosystems. 
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1. Introduction 

The term “soil quality” includes different functions: ecosystem management, water maintenance and air quality 
to promote life and health of animals and plants. The soil quality can be improved with the incorporation of 
vegetal cover (for example to provide natural leaf-fall), because it assures an incorporation of nutrients into the 
soil, so aiding the maintenance of soil productivity. The ability of the soil to fulfill these functions is evaluated 
through the measurement of physical, chemical and biological properties, known as “soil quality indicators” 
(Shukla & Ebinger, 2006).  

Intensification of anthropic activities can decrease key biological processes, promoting physical degradation of 
the soil, with impacts on populations of organisms that potentiate soil aggregation, compaction and stability. 
Such actions may then interfere with plant nutrition and growth (Trindade, Grazziotti & Tótola, 2000). 

In the Amazon, most of the soil is firm, highly acidic and strongly deficient in nutrient, which may interfere in 
both growth and development of non-native plants, limiting the nature and extent of regional agriculture 
(Oliveira et al., 1999). Costa et al. (1999), studying the AMF communities under different land use and 
management systems in the state of Rondônia, northern Brazil, detected that mean AMF spore density in soils 
under the original forest cover (184 spores/100 g soil) was modified according to subsequent land use form. 
Spore numbers were reduced in soil on land where the forest had been cleared (118 spores/100 g of soil), while 
areas that were cleared then planted with legumes had a spore (179 spores/100 g of soil) similar to the one of the 
original forest.  
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In order to understand the functioning and diversity of AMFs under different systems of land use and 
management in the Roraima state, northern Brazil, the aim of this survey was to investigate the specific 
composition of AMF communities and the relationship between diversity of these organisms and chemical 
characteristics of soils. We investigated four different systems of land use: native forest, agroforestry system, 
conventional corn and soybean planting.  

2. Methods 

2.1 Sampling 

We collected soil samples in two areas of the Brazilian Agricultural Research Institute (EMBRAPA-Roraima). The 
first area, Confiança Experimental Field (02º15′00″N and 60º39′54″W), located in the municipality of Cantá, is 
characterized by forest vegetation and an Ami (Koppen) climate, with rainy season from May to July and rainfall 
between 1,795 and 2.285 mm per year (Mourão et al., 2003). The soil is classified as dystrophic Yellow Argisol, 
containing clay of low activity and textural B horizon (Solos, 1999). In this area, soil samples were collected in an 
Agroforestry System (AFS) at the age of 18 and composed of the following plant species: gliricidia (Gliricidia 
sepium), Brazil nut (Bertholetia excelsa), cupuaçu (Theobroma grandiflorum), abiu (Micropholis venulosa), 
cupiúba (Goupia glabra), coffee (Coffea canefora), rain tree (Samanea saman), peach palm (Bactris gasipaes) and 
andiroba (Carapa guianensis). 

The second area, the Serra da Prata Experimental Field (02º23′25.3″N; 060º58′59.8″W) is located in the 
municipality of Mucajaí and has a climate of type Am, with a rainy season between April and August and dry 
season from September to March, with a soil classified as Yellow Latosol. Total annual rainfall varies from 1510 to 
2145 mm per year, with an annual average of 1844 mm (Mourão et al., 2003). 

In both areas, soil samples were collected in native forest and conventional corn and soybean plantations. The 
latter two areas (10 m × 10 m plots) underwent two types of fertilization and a general correction of the soil, 
involving (for both plantations) 1500 kg of dolomitic limestone, 100 kg of potassium chloride, 500 kg of triple 
superphosphate, 50 kg of FTE/BR12 (micronutrients); Soil/corn planting fertilization: 100 kg of potassium 
chloride, 500 kg of triple superphosphate, 50 kg FTE, with 200 kg of urea (corn only). Cover fertilization was 100 
kg of potassium chloride (corn/soybean) and 300 kg of urea (corn)/hectare. 

Sampling protocol followed Nicolodi et al. (2002), four composite soil samples of approximately 1 kg were taken 
from the AFS and, conventional soybean and corn areas, in the latter two, samples were perpendicular to the 
planting line.  

The samples were conditioned in sterile plastic bags, homogenized and stored in a refrigerator (4 °C) until further 
processing. One part of the collected soil was destined for chemical analysis, the other for the extraction of spores. 

2.2 Chemical Analysis 

Macronutrient analyses were performed at the EMBRAPA/RR Soil Analysis Laboratory, using Embrapa (2009) 
methodology. The pH analyzes were done in water, potential acidity and exchangeable by titration, and the 
exchangeable acidity was extracted with 1 M potassium chloride solution. Calcium and magnesium were 
determined by flame atomic absorpion spectroscopy. For determination of the potential acidity, it was extracted 
with 0.1 M calcium chloride solution. For the determinations of P and K, a Melich 1 extractor was used, and 
phosphorus was analyzed by colorimetric reaction with ammonium molybdate and potassium by flame 
photometry (Vitoria, 1969). 

2.3 Establishment of Trap Cultures 

Trap cultures were established by mixing 50 g of native soil from each sample and homogenizing this with medium 
sand autoclaved three times at 121° C for 1 hour.  

The host was Congo grass (Urochloa ruziziensis = Brachiaria ruziziensis) (15 g of seed per pot, 2 cm of depth), 
with pots being kept in a greenhouse for 150 days and irrigated periodically. If they showed any symptoms of 
deficiency, 20 mL of nutrient solution (Hoogland & Arnon, 1950) were added (once a month) in order to meet the 
nutritional needs of the plants. Pot positions on the workbench were changed frequently and, to stimulate plant root 
production, pruning of the aerial part was carried out, when it was well developed. Trapping cultures were then 
disassembled (aerial part was removed and the rest of the material stored in plastic bags and kept at 4 °C), and 
FMA spores later extracted from the soil. 

Spore extraction was carried out by wet sieving decantation (Gerdemann & Nicolson. 1963) from 1000 g of soil 
TFSA. An aliquot of 1 mL of water/spore suspension was transferred to fluted plates for determination of the 
number of spores per mL. The suspension was examined on the plate using a Nikon SMZ-U stereomicroscope for 
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counting, selection and characterization of the spores, which were grouped into morphotypes according to 
morphology (color, size, shape). Spores were mounted on permanent slides with pure polyvinyl lactoglycerol 
(PVLG) and PVLG with Melzer’s reagent (1:1 v/v). 

Slides were kept for 5 days at room temperature and 2-3 days at 60° C in a greenhouse. Taxonomic identification 
followed the descriptions of the reference cultures stored in the International Culture Collection of Arbuscular and 
Vesicular-Arbuscular Mycorrhizal Fungi-INVAM (http://invam.caf.wvu.edu). Interpretation of the taxonomic 
characteristics was made via optical microscope observations with light-field illumination and objective of 
immersion. 

2.4 Analysis of AMF Communities 

AMF communities were analyzed both quantitatively and qualitatively. The presence of spores of a particular 
species in each sample was used to calculate the frequency of occurrence (FO) of that species, using the equation: 
Fi = Ji/k, where, Fi = frequency of occurrence of species i; Ji = number of samples in which species i occurred; and 
k = total number of soil samples. The total number of AMF species obtained represented the species richness in the 
analyzed samples.  

The diversity in the different systems was analyzed with Shannon index. Canonical Analysis (CCA) was 
performed to state correspondence between the AMF species and the chemical attributes in the different systems of 
the soil use. AMF similarity among different soils use was calculated using Bray-Curtis index and Ward’s method 
to construct the similarity dendogram. We performed the statistical analyses with software R Core Team (2018). 

3. Results and Discussion 

In the chemical characterization of the different land use and management systems, the higher pH values in soil 
under soybean and corn when compared to the AFS area can be explained by the chemical correction of the soil 
that preceded the planting of these crops (Table 1) 

 

Table 1. Soil chemical attributes in areas of native forest, agroforestry system (AFS), conventional soybean and 
corn planting in the state of Roraima. Northern Brazil. 

Trataments pH Ca2+ Mg2+ K+ Al3+ H + Al P MOS

 H2O --------------------------- cmolc dm-3 --------------------------- mg dm-3 g kg-1

Native Forest 5.70 a 2.71 a 1.04 a 0.07 b 0.03 b 3.24 b 2.75 c 29.4 a

SAF 4.60 c 0.41 c 0.15 b 0.08 b 0.70 a 7.46 a 5.29 bc 25.4 a

Soey 5.27 b 1.34 b 0.24 b 0.17 a 0.08 b 3.07 b 38.11 a 17.5 b

Corn 5.32 b 1.49 b 0.25 b 0.05 b 0.05 b 2.93 b 25.72 ab 16.9 b

Note. Means followed by the same letters in the column do not differ from each other by the Tukey test at 5% of 
probability.  

 

Amazonian soils, especially in the state of Roraima, are strongly weathered, so that chemical and biological agents 
have been acting slowly on them for thousands of years, stimulating the loss of exchangeable bases, and 
contributing to notably acid soils (Vendrame, 2011).  

Liming favors the increase of pH, base saturation and calcium and magnesium contents, decreasing the solubility 
of some ions that, in high concentration, are toxic to most cultivated plants, such as aluminum and the manganese 
(Bernardi et al., 2018). Thus, Al and H + Al levels are commonly reduced in the cultivated areas, also due to the 
liming effect. The AFS area, where no soil liming occurred, had the highest concentration of exchangeable 
aluminum and potential acidity.  

In the soil under conventional soybean and corn crops, observed soil organic matter (SOM) values indicate low 
levels of SOM (i.e., less than [1.5%]: Fageria. 2004). The higher SOM levels found in native forest area and 
agroforestry system are probably result from the significant amount of vegetal remains in the soil and the presence 
of residues of root systems of the native vegetation that were not disturbed, as well as the presence of different tree 
species associated with agricultural species. Roraima soils have a naturally low organic matter content that is 
attributed to low biomass incorporation of the natural vegetation and to the high microbial activity—a result of the 
region’s hot and humid climate (Benedetti et al., 2011). In areas with native vegetation, SOM is stable, but when 
submitted to agricultural use, a marked reduction in SOM content can occur (Salton et al., 2008). The lower SOM 
content in cultivated areas is due to soil uptake which increases the soil oxygen uptake and, consequently, 
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stimulates activity of the heterotrophic microbiota that decomposes the SOM. In turn, micobiota is reduced in such 
soil because liming favors an increase in pH, base saturation and calcium and magnesium contents, as well as 
decrease the solubility of some ions. These ions, in high concentration, are toxic to most cultivated plants, such as 
aluminum and manganese (Bernardi et al., 2018). Thus, it is possible to identify a reduction of Al and H + Al 
contents in the cultivated areas, also due to the liming effect (Table 1). The AFS area, where there was no soil 
liming, had the highest concentration of exchangeable aluminum and potential acidity. 

Levels of Ca2+, Mg2+ and K+ showed significant differences between the studied areas (Table 1). The native forest 
area had the highest levels of Ca2+ and Mg2+ when compared to the other systems. However, the concentrations of 
K+ and P were higher in the soya and corn areas. For SOM, native forest and AFS soils gave higher values 
compared to the other treatments, with 29.4 g kg-1 and 25.4 g kg-1 (AFS), 17.5 g kg-1 (soybean) and 16.9 g kg-1 
(corn).  

Soybean (39.5 spores per mL) and corn (35.6 spores per mL) presented greater density values than agroforestry 
system (20.1 spores per mL) and native forest (18.1 spores per mL) (Table 2). This result can be associated to the 
management of both soybean and corn areas, which had their soil disturbed with plowing process, making them 
more stressful to the edaphic microbiota, which may have contributed to the greater sporulation. 

According to Oehl et al. (2003), cultivated areas with high management intensity may favor species that have the 
ability to develop quick sporulation. 

The low value of spores in the native forest is related to the stability of the natural ecosystems, environments with 
two main features: (i) presence of hosts and (ii) absence of intense variations in the soil fertility. These features 
ensure the survival of species of fungi with low capacity of natural sporulation or that produce spores with low 
resistance to adverse conditions. 

In different systems of use in the Amazon, Leal et al. (2009), evaluating the occurrence and diversity of AMF, 
found spores density in native forest was significantly lower if compared to the other systems of soil use, which 
had 30 spores in 50 mL of soil recovered.  

Carneiro et al. (2009) evaluated the physical, chemical and biological attributes of Cerrado soil under different 
systems of use and management. They found low sporulation in the native environment (Cerrado: 428 spores / 50 
mL soil) when compared to planting over straw with soybean (941 spores / 50 mL soil) and corn (940 spores / 50 
mL soil) environments, which obtained almost twice more spores. These studies corroborate with the results found 
in this study where the spore density found in the native forest environment was lower than the other evaluated 
environments. The Spore density and AMF diversity are used as indicators of interference in natural ecosystems 
(Siqueira et al., 1989). 

 

Table 2. Spores density (mean±standard deviation) of arbuscular mycorrhizal fungi found in different soil use 
systems in Roraima 

Treatments spores mL-1 

Native forest 18.1±3.4 b 

Agroforesty system 20.1±5.8 b 

Soy 39.5±6.8 a 

Maize 35.6±13.6 a 

Note. The mean spores mL-1 obtained from 100 g of soil. Means followed by the same letter do not differ by 
Tukey’s test (p < 0.005). 

 

A total of 16 AMF species belonging to 5 families were found in the soil samples (Table 3). The most frequent 
species were those belonging to the genus Acaulospora, followed by the genus Glomus. Acaulospora mellea and 
Glomus sp1 were species that occurred most frequently in the different studied systems. The genera Acaulospora 
and Glomus occurred in all areas, always at higher percentages compared to the other recorded species. The 
genus Ambispora was found in the conventional soybean system. The species Claroideoglomus etunicatum 
occurred only in the agroforestry system. Gigaspora sp., and Dentiscutata heterogama occurred in conventional 
corn and soybean crops, respectively. Stürmer et al. (2018) identified of 23 AMF species of soils under savanna 
vegetation in Roraima, through field samples and culture traps. Species included Gigaspora margarita, 
Dentiscutata heterogama and Glomus sp1. They also highlighted the importance of soil chemical parameters, as 
determinants of AMF diversity, considering they were positively correlated with higher Glomus abundance.  
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Table 3. Frequency of occurrence (%), Shannon index and species richness of arbuscular mycorrhizal fungal 
species in distinct land use systems in the state of Roraima 

Familys/Species of AMF NF AFS PCS PCM FO (%) 

Acaulosporaceae 
Acaulospora sp. (sp1)    1 25 
Acaulospora foveata (sp2)  3   25 
Acaulospora lacunosa (sp3)  2   25 
Acaulospora laevis (sp4)  1   25 
Acaulospora mellea (sp5) 3* 8 4 1 100 
Acaulospora morrowiae (sp6)  1   25 
Acaulospora rehmii (sp7)  1   25 
Acaulospora tuberculata (sp8)   1  25 

Ambisporaceae 
Ambispora leptoticha (sp9)   1  25 

Claroideoglomeraceae 
Claroideoglomus etunicatum (sp10)  1   25 

Glomeraceae 
Glomus sp1 (sp11) 14 9 9 7 100 
Glomus sp2 (sp12)  2 1  50 
Glomus sp3 (sp13)   2  25 
Glomus sp4 (sp14)   1 1 50 

Gigasporaceae 
Gigaspora sp. (sp15)  1   25 
Dentiscutata heterogama (sp16)   1 3 50 

Total Richness 2 10 8 5  

Index of Shannon (H’) 0.47 1.90 1.66 1.26  

Note. NF: native forest; AFS: agroforestry system; PCS: conventional soybean planting; PCM: conventional corn 
planting; FO: Frequency of occurrence. H’: Shannon diversity index. If two variables have different letters, they 
are significantly different (*) number of spores of each species or genus of AMF.  

 

The diversity expressed by the Shannon index indicated the agroforestry system as the most diverse system of 
AMF. Native forest presented significant lower diversity when compared to conventional corn and soybean. 
According to Siqueira et al. (1989), the diversity and sporulation of AMF is an indicator of the level of interference 
in natural ecosystems, because of low sporulation in native vegetation when compared to agroecosystems.  

Low sporulation in native vegetation is related to the stability of the natural ecosystems, regarding the constant 
presence of hosts and absence of intense variations in the fertility of the soil. This contributes to the survival of 
species of these fungi with low natural sporulation capacity or that produce spores with low resistance to adverse 
conditions. In the conventional corn and soybean systems, which had the highest AMF spore densities, with areas 
under constant soil disturbance, such as plowing, which contributed to AMF stress and subsequent higher 
sporulation rates. In this survey, sample from soil under conventional cultivation systems contained large volumes 
of spores compared to the other systems. Stressful condition triggered by soil revitalization and fertilization 
processes probably caused the AMF to produce abundant amounts of infective propagules (Freitas et al., 2004).  

The higher number of spores found in conventional soybean and corn planting may also have been influenced by 
changes in soil pH since these areas were previously corrected. According to Costa (2010), acidic soils that 
undergo liming interfere with the density of rhizosphere spores.  

In addition to the 16 species recorded in the field (Table 3), it was recovered, through the trap culture technique, 
Rhizophagus sp. in the AFS and two new species: Rhizophagus intraradice and Scutellospora pernambucana in 
PCM. The technique was also efficient in other FMAs surveys conducted in the Brazil. Leal et al. (2009), for 
instance, evaluating arbuscular mycorrhizal fungi isolated in soil traps under different systems of use in the 
Amazon, recovered 24 species, having found the genera Acaulospora, Glomus, Entrophospora, Gigaspora, 
Archaespora, Scuttellospora and Paraglomus.  

Differently of the values found in the study by Leal et al. (2009), a study carried out by Stürmer and Siqueira (2011) 
in different land use systems in the Amazon region, evaluating the richness and abundance of FMAs, verified the 
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