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Abstract 
This study aimed to evaluate the in vitro growth and biochemical activity of Curcuma longa explants using 
different MS medium formulations and growth regulators. In all the experiments, plants were grown in MS 
medium supplemented with agar (6.5 g L-1) and pH adjusted to 5.8. In the first assay, the MS culture medium at 
70% strength, supplemented with 30 g L-1 of sucrose, and without the addition of activated carbon, resulted in 
the highest number of shoots. The sucrose concentration of 60 g L-1, combined with the addition of actived 
charcoalin half-strength MS medium, resulted in the increased root dry mass, root collar diameter, and relative 
chlorophyll index. In the second assay, the highest root collar diameter and dry matter of shoots and roots were 
found in the MS medium supplemented with 4.44 BAP, 0.46 KIN, and 1.08 NAA. The MS medium with 8.88 
BAP, 0.92 KIN, and 2.16 μM NAA resulted in the highest number of shoots (7.75), number of leaves (35), and 
shoot length (88.57 mm). The antioxidant activity was significantly higher in the treatments that resulted in 
better plantlets growth performance, demonstrating that the antioxidant activity is related to other factors such as 
a possible role of growth regulators on the elicitation of compounds in plants. Superoxide dismutase had a high 
enzymatic activity in both assays, whereas the enzymatic activity of catalase and ascorbate peroxidase was 
dependent on the culture media used. 
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1. Introduction 
Curcuma longa belongs to family Zingiberaceae and is a perennial herbaceous plant that has a rhizome with high 
nutrient contents and secondary metabolism compounds (Raina et al., 2005). From the rhizome, an 
orange-yellow-colored oil, composed mainly of curcuminoids and various volatile compounds such as 
monoterpenes and sesquiterpenes, can be extracted (Raina et al., 2005). The main active constituent of C. longa 
is curcumin, which is widely used in medicines owing to its anti-inflammatory and antitumor activity (Chen et 
al., 2011; Zhao et al., 2017) and antioxidant and antimicrobial properties (Péret-Almeida, 2005). 

Despite the numerous benefits of C. longa to human health, there is little information available on the cultivation 
techniques of this species. For the production of C. longa plantlets, the most widely used method is vegetative 
propagation through the multiplication of rhizomes (Faridah et al., 2011). However, this practice has some 
limitations, especially because the rhizomes are used for the commercialization and extraction of essential oils. 
In addition, the rhizomes are also used in the preparation of dyes and other food products. Therefore, the C. 
longa cultivators are obligated to allocate a part of the total rhizome yield for planting in new cultivation areas. 
Another limiting factor is that rhizomes may be contaminated by pathogenic fungi (Ramakrishnan & Sowmini, 
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1955). This shows that the conventional multiplication capacity of C. longa is very limited compared to other 
propagation methods (Miachir et al., 2004). 

Thus, micropropagation of ginger plants has been used with the purpose of replacing the conventional system of 
obtaining plantlets. The use of this technique guarantees a greater multiplication of plants in a short time in a 
pathogen=free manner (Ramakrishnan & Sowmini, 1955). Another advantage of in vitro cultivation is the 
possibility of controlling important factors such as flowering time, plant size, and vigor, as well as rhizome 
dormancy problems (Girardi et al., 2007).  

The culture medium is the primary factor to be determined during the establishment of a micropropagation 
protocol (George et al., 2008). The culture medium consists of several compounds and nutrients that are added in 
specific amounts to meet the requirements and ensure the growth and development of a plant (Grout, 2017). Of 
these compounds, growth regulators, nutrients, carbohydrates, and antioxidants play a prominent role in plant 
growth and development (George et al., 2008). When the composition and balance of nutrients and plant 
hormones in the culture medium is not adequate, the plantlets formation is inhibited, resulting in increased 
production costs and delay in plantlets formation (Grout, 2017). 

Among the growth regulators, cytokinins and auxins are the most frequently used plant hormones in the in vitro 
culture medium, both of which may influence both plant morphology and physiological responses, as reported by 
Antoniazzi et al. (2016). These authors showed, during their trials with C. longa, that the addition of auxins and 
cytokinins to the Murashige and Skoog (MS) medium increases the shoot fresh mass, as well as the number and 
dry mass of the roots. Sucrose is the most widely used carbon source in the majority of micropropagation 
protocols (Aros et al., 2017; Rodrigues et al., 2017). It modulates the formation of carbon chains, as plants at this 
growth stage have a negligible photosynthetic rate (George et al., 2008). In turn, the actived charcoalacts in the 
culture medium as an antioxidant, inhibiting the oxidation of compounds such as phenolics (Thomas, 2008). 

To date, the studies on this topic have reported only the isolated effects of different compounds used in the 
culture media, for establishing the micropropagation protocols for C. longa. However, it is important that these 
compounds are tested in different combinations, as the plant responses may change due to the synergistic and 
antagonistic interactions of different compounds in the culture medium or by the interaction of the medium with 
the explant (George et al., 2008; Grout, 2017). Another little-understood aspect is how the composition of the 
culture medium affects the metabolism of the plantlets. When the explant is placed in contact with the culture 
medium, a series of biochemical reactions begin to occur in the plant. This study was focused on defense 
reactions, especially against oxidative damages that limit explant growth. 

Among the substances that cause oxidative damage in plants, free radicals such as reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) are the most important ones (Noctor et al., 2018), causing extensive damage 
to lipids, nucleic acids, and proteins (Gill & Tuteja, 2010). Through their history of evolution via natural 
selection, plants have developed various defenses against oxidative damages (Noctor et al., 2018). The main 
substances responsible for this defense mechanism are a series of enzymes, including superoxide dismutase 
(SOD), catalase (CAT), and ascorbate peroxidase (APX) (Gill & Tuteja, 2010), and compounds of secondary 
metabolism, belonging to the groups of terpenoids and phenolic compounds (Matkowski, 2008; Silva et al., 2010) 
and vitamins C and E (Sies & Stahl, 1995). 

For the propagation of C. longa, information on how the culture medium composition can affect the biochemical 
activity of the antioxidant defense mechanism is still limited. Thus, as a first hypothesis, it is expected that: (1) 
plants that show limited growth according to the culture medium tend to increase the activity of all substances 
that have an antioxidant effect. Alternatively, a second hypothesis is: (2) plants exposed to a particular culture 
medium could have high antioxidant activity despite showing optimum growth in that culture medium. This 
could indicate that another antioxidant defense mechanism, which was not tested, is acting and contributing to 
promoting the explant growth, or that the culture medium compounds are acting as an elicitor (Abraham et al., 
2011; Victório et al., 2011). In addition, the growth and mineral nutrition of plantlets is likely compromised 
during growth in a less-than-optimal culture medium (George et al., 2008). 

Therefore, it is important to establish the optimal conditions for cultivation, taking into account the characteristic 
features of each species. Thus, to expand our knowledge in this area, and to provide technical expertise to the C. 
longa producers, it is necessary to establish a protocol for the use of compounds in the in vitro culture medium. 
This is because these compounds directly modulate the plant development, which can cause an increase in the 
characteristics desirable for the in vitro cultivation of C. longa, or even its death, if the quantities used exceed the 
maximum values tolerable by the species under study. Thus, this study aimed to evaluate the in vitro growth and 
biochemical activity of Curcuma longa explants using different MS medium formulations and growth regulators. 
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2. Material and Methods 
2.1 Plant Material 

Rhizomes of C. longa were collected from the garden of medicinal plants of the Unversity Paranaense (UNIPAR) 
in Umuarama, Paraná State, Brazil. The rhizomes were used as explants for the initiation of the in vitro culture. 
Explants with 15 mm (±3 mm) length were surface sterilized by immersion in 2% (v/v) sodium hypochlorite 
solution for 20 min, followed by three washes using sterile distilled water, and then used in the assays. 

2.2 First Assay-Different Compositions of MS Medium 

The first assay was used to measure the effects of the interaction among different concentrations of the MS 
medium (Murashige & Skoog, 1962), sucrose, growth regulators, and the addition or non-addition of activated 
charcoal, on the in vitro growth of C. longa. The assay had a completely randomized design (CRD) with five 
treatments (culture medium) and five replicates of four glass vials, twenty explants were used for each treatment. 

The different tested compositions of the culture media are shown in Table 1. All the culture media were 
supplemented with 6.5 g L-1 of agar (Kasvi®), and the pH was standardized to 5.8 (Antoniazzi et al., 2016; 
Ferrari et al., 2016).  

 

Table 1. Different compositions of the Murashige and Skoog medium for in vitro growth of Curcuma longa 
explants 

Medium Constituents  Treatment M1 Treatment M2 Treatment M3 Treatment M4 Treatment M5 

MS medium 100% 50% 50% 70% 70% 

Sucrose (g L-1) 30  30  60  30  60  

Activated charcoal (g L-1) absent absent 4.5 absent 4.5 

BAP (µM) absent 8.88  8.88  8.88  8.88  

NAA (µM) absent 2.16  2.16  2.16  2.16  

KIN (µM) absent 0.92  0.92  0.92  0.92  

 

2.3 Second Assay-Effect of Different Concentrations of Auxins and Cytokinins  

The use of 6-benzylaminopurine (BAP) and kinetin (KIN) along with α-naphthaleneacetic acid (NAA) was 
tested in this in vitro assay. Concentrations of the growth regulators were established based on the results of 
Antoniazzi et al. (2016). The sterilized explants were inoculated into 350-mL transparent glass vials, containing 
MS culture medium supplemented with 30 g L-1 of sucrose, 6.5 g L-1 of agar (Kasvi®), and pH adjusted to 5.8. 
The composition of the culture media used in this assay is presented in Table 2. The assay used a completely 
randomized design with five treatments and five replicates of four glass vials. Twenty explants were used for 
each treatment. 

 

Table 2. Different concentrations of auxins and cytokinins added to the Murashige and Skoog medium for in 
vitro growth of C. longa explants 

Growth regulators 

Treatments BAP (µM) KIN (µM) NAA (µM) 

T1 0.0 0.0 0.0 

T2 4.44 0.46 1.08 

T3 8.88 0.92 2.16 

T4 13.32 0.0 3.24 

T5 17.76 1.38 7.20 

 

2.4 Growth Conditions and Measurements 

In both assays, the glass vials containing the inoculated explants were kept in a culture room at 25 °C (±2 °C) 
under 24 h of light for 90 days. All treatments were maintained at a luminous intensity of 2000 Lux from white 
light emitter diode (LED) lamps, Blumenau, model LED T8 [10W 6,000K, 100-240 Volts, 50-60 Hertz, and 
potency factor ≥ 0.92 (High potency factor)].  
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In both the assays, the following morphological characteristics were measured: number of shoots (NS), number 
of roots (NR), number of leaves (NL), relative chlorophyll index (RCI), shoot length (SL), root collar diameter 
(CD), shoot dry mass (SDM), and root dry mass (RDM). The shoot length and root collar diameter were 
measured using a digital caliper with an accuracy of 0.01 mm. The relative chlorophyll index was measured 
using a chlorophyll meter clorofiLOG®, model CFL-1030 (Falker Automação Agrícola Ltda., Porto Alegre, RS, 
BRA), for different turmeric leaves collected randomly from the glass vials. The number of roots was measured 
by counting the primary and lateral roots, excluding rootlets and root hairs. For the determination of shoot and 
root dry mass, the plantlets were separated into shoots and roots, dried in an oven at 65 °C for four days, and 
then weighed.  

2.5 Measurement of Nutrient Concentration 

The concentrations of nitrogen (N), potassium (K), calcium (Ca), copper (Cu), and zinc (Zn) in the C. longa 
shoots were measured in the two in vitro assays. Dried samples of the C. longa shoots were used (Malavolta et 
al., 1980). The accuracy of the different methods was verified by analyzing the standard reference material.  

2.6 Measurement of Antioxidant Activity by the DPPH Method 

The extracts were prepared using 1.0 g of fresh leaves and the methodology proposed by Magalhães et al. (2017). 
Free radical scavenging activity of different extracts of C. longa shoots were measured using 
2,2-diphenyl-1-picrylhydrazyl (DPPH) (Rufino et al., 2009). The results were expressed as the percentage of free 
radical scavenging activity (%FRS), according to the equation: 

aa = [(Acontrol – Atest)/Acontrol] × 100                         (1) 

where, aa is the antioxidant activity (%) Acontrol is the absorbance of the control solution without the extracts, and 
Atest is the absorbance of different extracts.  

2.7 Measurement of Enzyme Activity 

The enzymatic extract was obtained from the maceration of 200 mg of fresh leaf tissue in liquid nitrogen 
(Bonacina et al., 2017). The activity of the enzymes was expressed in enzymatic units. One unit of the enzyme 
activity (UA) was defined as the amount of enzyme that causes an increase of 0.001 unit of absorbance per 
minute, expressed as UA min-1 mg-1 of soluble protein.  

Superoxide dismutase activity (EC 1.15.1.1) was determined by measuring its ability to inhibit the 
photochemical reduction of nitroblue tetrazolium (NBT), as described by Giannopolitis and Ries (1977). The 
results are expressed as UA g-1 fresh weight (FW) min-1. Catalase activity was (EC 1.11.1.6) determined by the 
H2O2 consumption, monitored by recording the absorbance at 260 nm at the time of H2O2 addition and 1 min 
later (Havir & McHale, 1987; Anderson et al., 1995). The CAT activity was expressed in mmol H2O2 g

-1 FW 
min-1. Ascorbate peroxidase activity EC 1.11.1.11) was determined as described by Nakano & Asada (1981). The 
results were expressed in mmol ascorbate g-1 FW min-1.  

All enzymes were evaluated using 96-well flat-bottomed ELISA plates. In both assays, three technical replicates 
and three biological replicates were used. The absorbance was recorded using a spectrophotometer (UV-VIS 
Spectra Max Plus) with SoftMax Pro program 6.5.1. From the data, graphs were generated, and the standard 
deviation (n = 9) for each treatment was also calculated. 

2.8 Statistical Analysis 

The data for the morphological characteristics and the antioxidant activity were subjected to the Shapiro-Wilk 
normality test. When the data were not normally distributed, they were analyzed using the Kruskal-Wallis test (p 
≤ 0.05) in Statistica® software. Normally distributed data were analyzed using analysis of variance (p ≤ 0.05), 
and the means were compared by Tukey’s test (p ≤ 0.05) using SISVAR® 5.6 software (Ferreira, 2011).  

3. Results and Discussion 
3.1 Different Compositions of MS Medium 

The MS medium is the main culture medium used in the micropropagation of plants with high levels of nutrients 
such as nitrate, ammonium, phosphorus, potassium, micronutrients, vitamins, and amino acids (Murashige & 
Skoog, 1962). When used in its original composition, the medium is said to be in its full strength. However, the 
explants often do not express their maximum development under these conditions (George et al., 2008). Thus, 
adjustments are required, mainly in the concentration of mineral salts (Greenway et al., 2012). These mineral 
salts regulate the growth and morphology of the plant, providing essential nutrients.  
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Most micropropagation studies have reported that the application of factors isolated from the culture medium, 
and the responses obtained in previous assays, are not always replicated because of the effect of 
micropropagation protocol composition on explant growth. Thus, it is necessary to investigate how the 
morphogenic responses are modified with the composition of the culture medium, and how this can alter the 
metabolism of plants under in vitro conditions (Grout, 2017). 

The results of the assays in the present study were somewhat different from those reported in previous studies 
because of the interaction effects with the culture medium. These interactions are complex and often difficult to 
explain, because the responses are inherent to each plant species. For the characteristics measured in this assay, 
no significant effect of the culture medium was reported only for the oxidized plants. The other characteristics 
were significantly (p ≤ 0.05) affected by the different culture media. In general, the contamination was very low, 
suggesting that the asepsis method used was efficient for disinfection of the explants (Table 3). The emission of 
new shoots, one of the main characteristics of the in vitro micropropagation process, was potentiated in this 
experiment. The M4 medium resulted in double shoots (4.00) compared with the M2 and M5 media, and these 
were larger than those obtained in the M1 and M3 media, which practically did not result in any new shoots 
(Table 3). In addition, there was an increase in the number of leaves (13.0) and the number of roots (7.0), which 
were double in number than those obtained the M2 medium (Table 3). We emphasize that this culture medium 
was also shown to be efficient for the development of explants in the studies by Antoniazzi et al. (2016) and 
Ferrari et al. (2016). 

When a plant initiates the organogenesis process, the observed response is the result of the interaction between 
the medium composition and the growth regulators (George et al., 2008). These factors associated with the plant 
genotype result in the observed phenotype (Grout, 2017). The emission of a greater number of leaves, shoots, 
and roots in C. longa explants in the M4 culture medium indicated a major action of growth regulators, 
especially cytokinins, in a combination with a balanced amount of nutrients (George et al., 2008) and absence of 
activated charcoal addition. 

The signaling role for cytokinin-induced sprout emission was elucidated in Arabidopsis thaliana plants (Tank & 
Thaker, 2011). When cytokinins bind to AHK membrane receptors, a series of events is initiated by protein 
phosphorylation. This signal reaches up to the CDKA genes, which are involved in cell cycle control-G1/S and 
G2/transitions thus, intensifying the number of mitoses. Moreover, other genes linked to organogenesis, such as 
WIND1, BBM, and AP2/ERT, receive signals from cytokinins, and it is possible that these mechanisms are 
involved in sprouting of C. longa plants (Tank & Thaker, 2011). Finally, auxins can also act on the genes 
associated with the emission of shoots, such as STM and WUS (Neelakandan & Wang, 2012). Although all 
culture media were supplemented with growth regulators except for control, we affirmed that the response 
observed in the C. longa explants was a result of the interaction among these regulators, the genotype, and the 
medium composition. This is evidenced by the absence of additional activated carbon, which can adsorb the 
growth regulators of the culture medium (Thomas, 2008), and by the smaller amount of nitrogen, which is more 
suitable for the root emission (George et al., 2008). 

On the other hand, the M1 medium (full-strength MS medium and 30 g L-1 sucrose) optimized the dry mass 
accumulation and length of shoots. In turn, a reduction in the amount of mineral salts of the medium (M3 and 
M4) resulted in an increase in the root dry mass, collar diameter, and relative chlorophyll index (Table 3). The 
production of dry matter in plants is mainly associated with the presence of nitrogen and other minerals salts 
(George et al., 2008). The M1 medium was the only medium at full strength, and this should have benefited the 
accumulation of dry matter in the plants. Similarly, Ferrari et al. (2016) and Gato et al. (2017) also showed that 
the increase of mineral salts in the medium potentiated the growth of C. longa and Zingiber spectabile Griff 
plants.  

In vitro growth and root mass were observed to generally increase in the presence of a lower concentration of 
salts. The medium with 70% salts and 60 g L-1 sucrose (M5) was toxic to the roots, and significantly reduced the 
number and dry mass of the roots. Brondani et al. (2014) reported that interference by the osmotic potential of 
the medium compromises the formation of roots, as they are the first organ to come into contact with the 
medium. The roots can dehydrate or undergo cellular collapse if the osmotic potential of the medium is very high 
(Silva et al., 2017).  

Another hypothesis is the effect of antagonistic or synergistic relationships among the nutrients. In this context, 
George et al. (2008) reported that high concentrations of phosphate reduce the absorption of elemental forms of 
Zn, Fe, and Cu. At higher concentrations of K+, Ca2+, and Mg, the absorption of phosphate ions decreases if the 
pH of the solution becomes slightly alkaline, which may compromise root growth. It is possible that the 
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combination of these factors resulted in the responses observed in M3 and M5 media. In agreement with our 
results, an increase in the root biomass of Zingiberaceae family species was reported when the concentration of 
salts in the medium was reduced by 50% and 25% (Abbas et al., 2011; Santos et al., 2017; Haque & Ghosh, 
2018). 

 

Table 3. Different formulations of MS medium on Curcuma longa growth in vitro: number of shoots (NS); 
number of leaves (NL); number of roots (NR); relative chlorophyll index (RCI); shoot length (SL); root collar 
diameter (CD); shoot dry mass (SDM); and root dry mass (RDM) 

Treatments NS NL NR RCI SL (mm) CD (mm) SDM (g) RDM (g)

M1 0.00±0b 9.75±1bc 6.25±1ab 21.24±6ab 96.04±0a 10.76±2.8a 0.58±0a 0.31±6.4c

M2 1.75±1b 7.25±1c 5.75±1b 17.75±0.3b 49.62±0c 4.63±0.5b 0.18±0e 0.31±0.3c

M3 0.50±1b 10.75±2ab 4.00±0c 24.85±0a 79.37±0b 12.99±1.8a 0.28±0c 0.38±0a 

M4 4.00±0a 13.00±0a 7.00±0a 20.10±0ab 73.98±0b 5.08±0b 0.26±0d 0.34±0b 

M5 1.25±2b 10.75±1ab 4.50±1c 21.10±0ab 76.73±0b 6.35±0.2b 0.38±0b 0.12±0d 

Note. * Means followed by the same letter in the column do not differ by Tukey test (p ≤ 0.05). 

M1-100% MS, 30 g L-1 sucrose and absence of activated charcoal; M2-50% MS, 30 g L-1 sucrose and absence of 
activated charcoal; M3-50% MS, 60 g L-1 sucrose and 4.5 g L-1 activated charcoal; M4-70% MS, 30 g L-1 
sucrose and absence of activated charcoal; M5-70% MS, 60 g L-1 sucrose and 4.5 g L-1 activated charcoal. All 
treatments except T1 received equal doses of BAP (8.89), NAA (2.16) and 0.92 (KIN). 

 

The highest amount of N (37.5) was observed in M3 medium (Table 4), which also yielded the higher 
chlorophyll index. These results are complementary because, together with Mg, N is part of the molecular 
composition of chlorophyll (Lemaire, 2015).  

It was not possible to measure the amount of N in M4 medium, but 3.0 mg kg-1 of calcium and the lowest 
amount of copper (1.9) and zinc (32.1) were noted in this medium (Table 4). In M1 medium, which presented the 
highest biomass production, the potassium content (9.10 g kg-1) was lower than in the other treatments. The 
amount of nitrogen remained above 30 g kg-1, calcium and copper remained above 4.0 mg kg-1, and zinc was 
more than 60.0 mg kg-1 (Table 4). 

The highest biomass obtained in plants in M1 medium can be explained, in part, by the absorption of nutrients 
such as nitrogen, a component of chlorophyll (Lemaire, 2015), and calcium, a component of the middle lamella 
of plant cell wall and a modulator of calmodulin (White & Broadley, 2003). Copper and zinc, in addition to 
acting as co-factors of several enzymes, have a role in the final stage of lignin production in plants, as they 
regulate important enzymes of this process (Demotes-Mainard et al., 2008; Yruela, 2009). Studies on medicinal 
plants have revealed that the plants receiving extra doses of these micronutrients in the culture medium form 
more biomass in the shoots and contain fewer abnormal plantlets (Trettel et al., 2017; Trettel et al., 2018). In this 
study, no extra dose of micronutrients was added. However, the M1 medium was at full strength and had no 
activated carbon.  

Initially, it was assumed that the medium containing actived charcoal land higher concentrations of sucrose 
should favor the growth of C. longa. Previous studies have shown that species of Zingiberaceae grow best in MS 
medium at full strength, supplemented with 60 g L-1 sucrose (Jala, 2012; Ferrari et al., 2016). Actived charcoal is 
added to restrict a possible toxic effect of the released compounds. According to Thomas (2008), actived 
charcoal can retain the toxic substances present in the medium, but can also adsorb vitamins, growth regulators, 
and especially, micronutrients such as Cu and Zn. About the responses verified in shoot growth analyzes despite 
M2 and M4 medium revealed low levels of Cu and Zn (Table 4), higher amounts of shoots and leaves were 
verified in this medium with the absence of actived charcoal and lower amount of sucrose. 

In this case, the actived charcoal did not restrict Cu and Zn uptake, as M3 and M5 media had higher amounts of 
these micronutrients (Table 4). These results corroborate those reported by Trettel et al. (2018b), where Ocimum 
basilicum plantlets maintained in MS medium with 60 g L-1 of sucrose and 4.5 g L-1 of actived charcoal did not 
show an increased plantlets growth, and these micronutrients did not contribute to adsorption of Cu and Zn.  

It is noteworthy that in this experiment the reduction of salts in the MS medium with the supplementation of 
higher concentrations of growth regulators negatively interfered the growth response of shoots in M3 and M5 
media, not be detrimental to the growth of the root system that was increased in M3. As mentioned before, 
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L-1 sucrose and absence of activated charcoal; M5- 70% MS, 60 g L-1 sucrose and 4.5 g L-1 activated charcoal. 
All treatments except T1 received equal doses of BAP (8.89), NAA (2.16) and 0.92 (KIN). 

3.2 Effect of Different Concentrations of Auxins and Cytokinins 

The plant hormones act in cell division, senescence, metabolic synthesis, and several other aspects of the plant 
development process (Prins et al., 2013; Souza & Lüettge, 2015). Some studies have indicated that high 
concentrations of BAP can reduce the size of shoots during the micropropagation of herbaceous plants 
(Antoniazzi et al., 2016). Other trials for plants of the Zingiberaceae family found that concentrations lower than 
2.0 mg L-1 of BAP were better for plantlets development (Aros et al., 2017), which was also corroborated by the 
results of this study. 

The regulators and their concentrations affected most of the evaluated characteristics, and only the number of 
roots was not different across treatments (Table 5). M3 (8.88 BAP, 0.92 KIN, 2.16 NAA) showed the best results 
in terms of the number of shoots (7.75), leaves (35), and shoot length (88.57 mm), followed by M4 and M2 
(Table 5). There was a decrease in shoot numbers with increasing amounts of regulators (T5: 17.76 BAP, 1.38 
KIN, 7.20 NAA). The same was observed with the number of leaves and collar diameter (Table 5). 

Collar diameter, shoot dry mass, and root dry mass were the highest in M2 (4.44 µM of BAP, 0.46 µM, of KIN, 
and 1.08 µM of NAA), followed by M3 and M1 (Table 5). The root and shoot dry mass were twice the value in 
M2 medium relative to the M5 medium, where the worst means were observed. The decrease in shoot dry mass 
is directly related to the lower number of shoots observed with the higher doses of regulators used in this assay 
and may be indicative of the phytotoxicity of the BAP growth regulator (George et al., 2008). 

The organogenesis process depends on the concentration of each regulator in the medium, and each part of the 
plant has a different response to changes in auxin and cytokinin concentrations (Pozo et al., 2005). Plant cells in 
culture have the unique potential to alter their developmental program in order to adapt to in vitro conditions. 
This is because the response of this cell to hormones will depend on the activation of specific transcription 
factors, sensitivity to auxin, transporters, and membrane receptors (Neelakandan & Wang, 2012). Therefore, it 
was expected to have a differentiated response to the concentration of regulators in shoot growth and C. longa 
root system. 

 

Table 5. Different concentrations of auxins and cytokinins in the growth of Curcuma longa: number of shoots 
(NS); number of leaves (NL); number of roots (NR); relative chlorophyll index (RCI); shoot length (SL); root 
collar diameter (CD); shoot dry mass (SDM); and root dry mass (RDM) 

Treatments NS NL NR RCI SL (mm) CD (mm) SDM (g) RDM (g)

T1 2.50±1b 22.00±4b 8.50±1a 19.05±2b 71.75±6b 6.46±0bc 0.41±0b 0.37±0,1c

T2 7.00±1a 26.00±4ab 7.75±1a 26.51±5ab 81.84±7ab 8.29±1a 0.46±0,1a 0.46±0a 

T3 7.75±1a 35.00±6a 7.75±2a 27.95±7ab 88.57±3a 6.02±0bc 0.35±0c 0.38±0,1b

T4 7.25±1a 32.25±6a 8.25±1a 23.74±5ab 80.39±6ab 7.12±1ab 0.31±0,2d 0.36±0d 

T5 3.50±1b 21.50±3b 7.25±1a 28.76±1a 90.48±3a 5.27±1c 0.23±0e 0.29±0e 

Note. * Means followed by the same letter in the column do not differ by Tukey test (p ≤ 0.05). 

T1-control; T2-4.44 (BAP) + 0.46 (KIN) + 1.08 (NAA); T3-8.88 (BAP) + 0.92 (KIN) + 2.16 (NAA); T4-13.32 
(BAP) + 3.24 (NAA); T5-17.76 (BAP) + 1.38 (KIN) + 7.20 (NAA). 

 

High availability of N (40.22 g kg-1) and Zn (45.50 mg kg-1) was verified in M3 medium (Table 6), which 
presented good results for leaf number, as well as the number and length of shoots (Table 5), however, a low 
amount of Cu (0.60) was observed in this treatment. With the increase in the doses of regulators, an increase in 
the levels of potassium absorption by the C. longa was observed, whereas calcium levels remained similar in all 
culture media (Table 6). 
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The root system growth was potentiated in the MS culture medium supplemented with 4.44 μM BAP, 0.46 μM 
KIN, and 1.08 μM NAA. 

The antioxidant activity in the first assay was the highest in the full-strength MS medium supplemented with 30 
g L-1 of sucrose, and without the addition of activated carbon, whereas, in the second assay, it was significantly 
higher than other treatments in the MS medium supplemented with 8.88 μM BAP, 0.92 μM KIN, and 2.16 μM 
NAA.  

Superoxide dismutase had the highest enzymatic activity in both assays, whereas the enzymatic activity of 
catalase and ascorbate peroxidase was dependent of the culture media used, with high CAT activity in media M1 
and M4 (assay 1), and M2 and M5 (assay 2), and high APX activity in media M5 (assay 1), and M3 and M4 
(assay 2). 
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