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Abstract 
We aimed to evaluate whether the air temperature, soil temperature, and luminosity in a low tunnel covered with 
agricultural mesh screening affected the characteristics of kale production. The study was conducted on the 
cultivation of kale in six different growing environments. The experimental setup consisted of randomized block 
design (RBD) with factorial analysis (2 × 6) with four repetitions. The kale (Brassica oleracea L. var. acephala) 
hybrids Hi Crop and Kobe F1 were used as plant material. The growing environments were open field and 
protected environments consisting of low tunnels, each covered with a different mesh screen: red, 
thermo-reflective silver, black, tissue-non-tissue (TNT), and organza fabric. Sensors were installed within each 
environment to monitor air temperature and soil temperature. The TNT screen resulted in the highest air and soil 
temperatures and lower yield. The black mesh resulted in lower temperatures than other coverings. Organza 
fabric provided the best yield (22.8%) compared to open field and it was 9.89to42.19 % more productive 
compared to the other meshes. Organza fabric was the best environment for the cultivation of kale in tropical 
climates. These data confirm that kale biomass production was greatly affected by stress high temperature. 

Keywords: Brassica oleracea L., organza fabric, protected cultivation, tropical horticulture 

1. Introduction 
The brassicas are vegetables that present a good nutritional potential and high contents of bioactive compounds 
(Borges, Seabra Júnior, Ponce, & Lima, 2018). Kale, cabbage, cauliflower and broccoli are the most consumed 
ones and, nowadays, occupy 3.816,58 hectares of cultivated area, with production of 96.492,922 tons 
(FAO-FAOSTAT, 2018). The kale (Brassica oleracea L. var. acephala) is a specie adapted to temperate climate 
and temperatures above 32 °C affect the plant’s biomass accumulation and compromises the leaf expansion 
(Maynard & Hochmuth, 2007, Rodriguez et al., 2015). High temperatures also affect the carbon assimilation rate, 
oxygen production, transport of electrons and photophosphorylation (Allakhverdiev et al., 2008), affecting the 
photosynthesis, with consequent modifications in the productivity, besides inducing heat stress. High levels of 
radiation can also promote oxidative stress, likewise affecting the photosynthetic apparatus, inducing an 
imbalance between energy supply and energy consumption, leading to photoinhibition (Dat et al., 2000).  



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 9; 2019 

104 

The use of a protected environment becomes an efficient alternative for vegetable production in unfavorable 
climates by creating a microclimate in which it is possible to control environmental conditions, such as 
temperature, humidity, and radiation (Romanini, Garcia, Alvorado, Cappelli, & Umezu, 2010). Changing the 
internal climate of different types of protected environments depends on the type of environment and the type 
coverage used. A great variety of materials are available commercially for use in creating protected environments, 
such as shading mesh, thermo-reflective meshes, and tissue-non-tissue (TNT). Additionally, it is possible to use 
organza fabric for the same purpose. 

Among the protected environments used in the cultivation of vegetables, the low tunnel type is considered the 
least expensive and easiest to implement (Figueiredo, Malheiros, & Braz, 2002). In recent years, because of fears 
surrounding climate change, several alternatives of agricultural shade screens have been studied to reduce crop 
exposure to radiation and ultraviolet radiation (UV) light and, consequently, control soil and air temperature. 
Such shading can be used for the cultivation of primarily vegetables in seasons of high energy availability. 
Decreasing solar radiation is important because it has an effect on energy balance in terms of the fluctuation 
between sensible and latent heat in addition to the photosynthetic process (Pezzopane, Oliveira, Reis, & Lima, 
2004).  

In comparison to open field cultivation, mesh shading provides a decrease in the minimum, medium, and 
maximum values of luminosity and temperature as well as an increase in relative humidity (Rampazzo, Seabra 
Júnior, Nunes, & Neves, 2014). The manipulation of temperature that occurs within tunnels is important for 
reducing plants’ physiological stress via biochemical pathways and reducing postharvest physiological 
disturbance. A plant under thermal stress shows impaired development as well as, in severe cases, programmed 
senescence (Szabados Kováscs, Zilberstein, & Bouchereau, 2011). In particular, an excess of rainfall, high 
temperatures, and insect infestation affects the production of brassicas in tropical climates.  

To decrease such climatic effects, it is necessary to adopt or create technologies that enable the cultivation of 
these species by combining tolerant cultivars with protected cultivation for the purpose of maximizing 
photosynthetic potential with maximum yield and postharvest quality. However, the response of the plants 
depends on the adaptability of the coverage material, requiring monitoring of the climatic variables inside the 
cultivation environment.  

Therefore, we aimed to evaluate the climate conditions (air temperature, soil temperature, and luminosity) in low 
tunnels covered with mesh screening and the screens’ effects on the characteristics of kale productivity.  

2. Materials and Methods  
This study was carried out at Mato Grosso State University (UNEMAT)-Nova Mutum, Brazil-latitude 13º49′44″ 
S, longitude 56º04′56″ W, and altitude 460 m. The Köppen climate classification of the area is tropical (Aw), 
with an average annual rainfall of 1,900 mm and high average temperature-average of 24 °C and average 
maximum at 34 °C (Nogueira et al., 2010). The soil is characterized as dystrophic red-yellow latosol 
(EMBRAPA, 2013).  

The randomized block design (RDB) experimental setup was used along with factorial analysis (2 × 6; two 
cultivars × six ambiance treatments) with four replicates on the experimental fields. Each experimental plot had 
15 plants, and we collected six central plants. Kale (Brassica oleracea L. var. acephala) hybrids Hi Crop (Takii, 
Brazil) and Kobe F1 (TopSeed) were used as plant material. Six different ambiance treatments were used in low 
tunnels: TNT (15 g m-2), white polyester organza mesh (organza fabric) (47 g m-2), red mesh (Chromatinet®35%), 
silver (Aluminet® 50%), and black mesh (Sombrite®35%). Open field cultivation was used as the control. All of 
the tunnels were 1 m high, 8 m long, and 1.2 m wide.  

The seeds were sown in plastic pots (250 mL) filled with the commercial substrate VIVATO® and using one seed 
per pot. The seedlings were kept in a seedling nursery and transplanted to the field 46 days after seeding. The 
transplant was performed in paired-rows with distances of 0.4 m and 1.2 m between two rows in a pair and 
between two consecutive paired-rows, respectively, and plant-to-plant spacing was 0.5 m, which corresponds to 
a population of 23,400 plants ha-¹. 

The fertilization was performed with 400 kilograms (kg) ha-¹ of P2O5, 160 kg ha-¹ of K2O, and 40 kgha-¹ of N, 
using simple superphosphate, potassium chloride, and urea as the source, in addition to 40 t ha-1 of poultry 
manure. Topdressing fertilization was performed by fertigation with 40 kg ha-¹ of N and 20 kg ha-¹ of K2O over 
five days, using ammonium sulphate and potassium nitrate as the source of nitrogen and potassium (Trani et al., 
1997). Irrigation was performed with a drip irrigation system with of 172.2 mm. Leaf fertilization was performed 
every 15 days using 1% ammonium molybdate and 1% boric acid. 
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Two type K thermocouples (Chromel+®, Alumel-®) were installed in each environment and connected to a data 
logger system for data acquisition (Campbell Scientific, data logger model CR1000) to record the air and soil 
temperatures. To analyse the soil temperature, the thermocouples were placed at a depth of 0.10 m in the center 
of each parcel. To analyse the air temperature, one thermocouple was placed at a height of 0.30 m. The data 
logger was programmed to record readings every second, to store the arithmetic means at one-hour intervals, and 
to calculate hourly averages. Meteorological data regarding rainfall and air temperature were obtained from one 
of Campbell Scientific’s automated weather stations, equipped with a pluviometer (model CS700), located 10 m 
from the experiment area. 

The experiment’s period of execution was 30 days, from the transplant period to the beginning of the harvest. 
Destructive testing was used on six plants in each plot. The temperature air and soil inside the tunnels were 
registered each hour, and the graph represents each six hours expressing thermal variations among the 
environments. The luminous incidence (LUX) inside each environment was obtained with a luximeter model 540 
Testo®, and the daily measurements were taken at 2:00 pm. 

The evaluations were regarding agronomic variables: plant height (cm), plant diameter (mm), total plant weight 
(g plant-¹), commercial weight of leaves (unit plant-¹), and commercial yield (t ha-¹). 

2.1 Statistical Analysis 

The data analysis was performed via variance analysis and means were compared via Tukey’s test (p ≤ 0.05) 
using the Assistat software version 7.7 beta (PT) (Silva & Azevedo, 2016).  

3. Results and Discussion 
The highest registered temperature occurred in the low tunnel covered with TNT, which reached the maximum 
temperature (average = 41.4 °C) at 2:00 pm (Figure 1). The same temperature was also observed in the organza 
tunnel, which showed the highest productivity (6.47 t ha-1) (Table 1). The lowest temperatures were verified in 
the tunnels covered with silver mesh (35.1 °C) and black mesh (35 °C) (Figure 1), with a difference of 6.2 °C 
between TNT and the black mesh. The ideal temperature for kale is 15.5-18.3 °C (Maynard & Hochmuth, 2007) 
and the average and maximum temperatures registered were 25.6 °C and 33.5 °C, respectively, which is 
unfavorable for good kale production. High temperatures compromise the leaf expansion, reduce the leaf size 
and the weight of the aerial part of the plant, mainly when the plants are cultivated under temperatures above 
32 °C (Rodriguez et al., 2015).  

The air temperature began to increase at 7:00 am in all the environments, and the highest temperatures were 
verified in the organza and TNT tunnels until 1:00 pm. A higher daily air temperature average in environments 
covered with TNT was also verified by Pires, Santos, Santos, Vasconcelos & Aragão (2013), i.e., this material 
provides higher temperatures in the hotter hours of the day (47 °C) compared to open-field cultivation (36.5 °C). 
In our study, the TNT induced the highest temperature, and in response, kale showed a low yield (4.56 t ha-1), 
similar to what was found in open field (4.53 t ha-1). Both treatments presented a lower yield than organza (6.47 t 
ha-1). Other vegetable have different results. Lettuce cultivated in high-temperature conditions and in 
TNT-protected environment, showed a higher productivity, with variations between 20 to 120%, depending on 
the used genotype, (cvs. Tainá, Baba de Verão and Veronica) (Oliveira, Grangeiro, B. S. Souza, & S. R. R. Souza, 
2006). Other study with lettuce cultivated under TNT showed the greater productivity, height, and diameter of 
head than cultivated in open field (Barros Júnior et al., 2004). 
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is higher than 40 °C, the photosystem II (PS II) is affected and the photosynthesis might be limited by 
mechanisms as the alteration of the Rubisco activity (ribulose-1,5-bisphos-phate carboxylase/oxygenase), 
regeneration rate of RuBP (ribulose 1,5-bisphosphate) or the usage rate of triosephosphate (Wise, Olson, 
Schrader, & Sharkey, 2004). The use of a protected environment has the function of providing a microclimate 
that favors the plants’ development. Thus, there is an increase in productivity and providing the cultivation in 
unfavorable periods or even for protection against climate hazards such as hail, frost, rain, and high temperatures. 
In addition, the protected environment can be used with the aim of decreasing the infestation of insects-pests, 
acting as a physical barrier. Besides the microclimatic variations that occur inside the protected environment, it is 
necessary to evaluate the plants’ productive responses, since the aim of this technology is to obtain high 
productivity.  

Red mesh was used in kale cultivation to reduce the luminous intensity and, consequently, the temperature in 
tropical climates (Li, 2006). Inside of the red mesh tunnel, we did not verify a temperature reduction (Figure 2). 
During the hottest time of the day (2:00 pm), the tunnel covered with red mesh maintained the highest 
temperatures, along with the tunnel covered with black mesh. According to Li (2006), the red mesh affects the 
quality of radiation that is transmitted to the environment’s interior. Its effect reduces the quantity of waves of 
the blue, green, and yellow spectrum bands while increasing the quantity of red and far-red waves, which are 
thermal waves, thus increasing the air temperature. The silver and black mesh were efficient at reducing the air 
temperature (Figure 1), although this is not reflected in the yield and may not occur in other species.  

Lettuce cultivated in tropical regions with silver, black and red mesh showed a net increase in the number of 
leaves and the leaf area index, and this effect was attributed to the lower temperature promoted by the three mesh 
(Sales, Barbosa Filho, Barbosa, Viana, & Freitas, 2014). The authors also verified a respective decrease of 4.7 °C 
and 3.6 °C in the average temperatures inside the environments when compared to the control environment 
(covered with transparent plastic), providing results that match those found in the present study. In environments 
covered with thermo-reflective meshes (silver), this effect is due to the reflection of infrared radiation (Costa, 
Santos, & Vieira, 2011), explaining the results obtained in the present study i.e., the silver mesh kale cultivation 
showed a high yield (5.83 t ha-1) (Table 1).  

Shading meshes induced a decrease in the incident radiation. Thus, they provided a decrease in the cultivation 
environment’s temperature. In environments covered with thermo-reflective meshes, this effect is due to the 
reflection of infrared radiation (Costa, Santos, & Vieira, 2011), explaining the results obtained in our study.  

Regarding the soil temperature, we observed that at 2:00 pm, there were higher temperatures recorded in the 
environments covered with TNT, organza, and red mesh (Figure 2). This effect resulted in a higher maintenance 
of the soil temperature in comparison to the other coverings that provided temperatures 1 °C lower on average. 
There were no great variations in the soil temperature variation, during the 24 h, although there was a steep 
increase beginning at 9:00 am that reached a maximum value at 2:00 pm (28 °C) in the open field and in TNT 
(Figure 2). During the day, the highest average soil temperatures were observed in the environment covered with 
TNT (Figure 2). We also observed that the soil temperatures registered between 6:00 pm and 7:00 am were 
higher than the air temperatures registered inside the environments. This happens due to the low capacity of the 
soil in the heat exchange (heat retention), since the heat flux in the interior of the soil is slower than that in the 
air (Geiger, 1980). The lowest average soil temperatures were registered in the black mesh environment, with a 
low amplitude during the day (28.7 °C maximum and 25 °C minimum) (Figure 2). In the same way, in the red 
mesh, the average soil temperatures were similar to the ones observed in the black mesh (2:00 pm); however, the 
energy absorbed in the form of heat inside this environment tends to dissipate with more difficulty. In the period 
between 6:00 pm and 7:00 am, we observed that the soil temperature inside the red mesh tunnel was similar to 
that in the TNT tunnel and was 1.3 °C higher that in the other environments. The values registered for the tunnel 
covered with organza were the same as the values verified in the open field, with an average difference of 1.3 °C. 
The tunnel covered with black mesh produced the lowest soil temperatures, followed by the environments 
covered with silver mesh (26.4 °C) and red mesh (26.8 °C). 

Even though the organza and TNT produced a rise in air temperatures (7:00 am to 2:00 pm), only the TNT tunnel 
showed the highest soil temperatures (Figure 2). A study by Rampazzo, Seabra Júnior, Nunes, and Neves (2014) 
shows that environments covered with 40 and 50% thermo reflective mesh induced the higher efficiency in the 
reduction of air and soil temperatures, as well as, in luminosity, compared to the open field. 
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The visible fraction of solar energy contains active photosynthetic irradiance and is one of the most important 
factors in determining the plants’ productivity (Bergin, Ghoroi, Dixit, Schauer, & Shindell, 2017). The 
luminosity control directly influences the photosynthetic process, exerting positive or negative effects. This 
study is important in determining the physiological needs of each species when choosing the material to be 
employed. In tropical conditions, extreme luminosity peaks are easily reached. In environments with intense 
solar radiation and high temperatures, the plants avoid excess heating of the leaves, reducing the absorption of 
this radiation (Ferrante & Mariani, 2018). Thus, photosynthesis and, consequently, the plants’ development are 
also compromised. Both an excess of and an insufficient amount of light influence the plants’ development. With 
low tunnel covered with agricultural mesh is necessary to check the luminosity, as well as air and soil 
temperature inside protected environments to improve the yield and quality of plant production. Each material 
will be dependent on the breeding status and climatic adaptation. 

Cultivation in TNT is inappropriate due to the highest air and soil temperatures in this environment. On the other 
hand, the use of black mesh produced a reduction in air and soil temperature. Even though the results in these 
two cases are opposite, neither mesh type is recommended, because of the low kale productivity. Kale cultivation 
under organza showed the best yield, demonstrating that this material can be an innovation for the kale 
cultivation in regions with high temperatures.  
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