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Abstract 

Drought remains the primary abiotic constraint to maize (Zea mays L.) productivity globally. Maize drought 
response involves several regulatory quantitative traits and complex gene networks. Therefore, precise location 
of drought-related quantitative trait loci (QTL) is imperative for drought tolerance breeding. Despite numerous 
studies identifying several drought-related maize QTLs, some QTL from particular genetic backgrounds showed 
smaller effects or could not be identified at all in different backgrounds, affected by marker sets, experimental 
design, mapping populations and statistical methods. Herein, therefore; using 457 published maize QTLs 
conferring for 18 traits, we have performed meta-analysis of data from various experiments to obtain meta-QTL 
(MQTL), integrate these fruitful QTL and to mine candidate genes related to drought. Resultantly, 24 MQTL 
with confidence interval (CI) < 5 cm were identified to be hot regions. Additionally, 47 drought related gene loci 
were observed and several candidate genes of the hot MQTL were reorganized by bioinformatics techniques. 
Thirteen gene (sod4, taf1, rps1, nthr3, oc13, bas, apx1, asn4, pck2, nac1, gst2, ao1 and kch4) loci of hot MQTL 
regions were homologous to their corresponding gene sequences from the PlantGDB database 
(http://www.plantgdb.org/search/). Further, we used a comparative genomics approach to identify the 
homologous regions of MQTL in rice (Oryza sativa Japonica) database (http://www.gramene.org) and observed 
that drought-related rice gene ATG6 was homologous to maize candidate genes GRMZM2G027857_T01 and 
GRMZM2G027857_T02. Conclusively, our identified MQTLs with narrowed CI could be useful for 
marker-assisted selection and the candidate genes harnessed for maize drought tolerance breeding. 
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1. Introduction 

Maize (Zea mays L.) is the third most important cereal in the world after wheat (Triticum aestivum L.) and rice 
(Orzya sativa L., Golam et al., 2011). The continued rise in world human population and consequent food 
demands against the backdrop of worsening global climate change has prompted greater need for the crop (Xu et 
al., 2014; Maazou et al., 2016). However, as a result of the continuing climate change phenomenon, drought 
stress will remain the primary environmental limitation to maize productivity (Rao et al., 2016). The maize crop 
is most susceptible to drought stress at the reproductive stage (Tuberosa, 2012). Therefore, maize breeders have 
the burden of developing drought resilient crop varieties in order to sustain higher yields and global food security 
under the ravaging climate change conditions.  
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Drought tolerance breeding has remained a very tedious task because of the high variability of drought stress and 
insufficient understanding of its complexity (Hao et al., 2010). Maize drought response involves several 
regulatory quantitative traits and complex gene and metabolic networks (Li et al., 2010; Adebayo et al., 2014). 
Quantitative trait loci (QTL) analysis of maize drought tolerance involves various aspects, including 
morphological traits (such as plant height, ear position, and branches per tassel etc.), root, physiological, and 
biochemical related traits (ABA, degree of leaf senescence, photosynthesis parameters, protein content, stomatal 
conductance, osmotic adjustment etc.), and yield traits (ear length, 100-kernel weight, ears per plant, and grain 
yield etc.) among others (Lu et al., 2006; Edmeades, 2013).  

Since increasing yield potential under water-stressed conditions is the first target of all breeding programs, the 
identification of QTL for grain yield and its components becomes crucial for all QTL studies (Luo et al., 2006; 
Adebayo et al., 2014). The main indicators for identification of yield traits include number of ears per plant, ear 
weight, number of grains per ear, 100-grain weight and grain yield (Shin et al., 2015). Amongst all these, grain 
yield can best reflect the effect of drought stress (Edmeades et al., 1999). In addition, morphological characters 
have a close relationship with plant water absorption and loss. These include a well-developed root system, leaf 
morphology, plant type and anthesis-silking interval (Hall et al., 1982; Ribaut et al., 2009). 

Whereas drought stress might occur throughout the maize growing period whenever the crop is grown without 
irrigation, flowering period is the most susceptible to drought stress (Tuberosa et al., 2002). Under water-limited 
conditions, ear growth slows, eventually retarding silk emergence. Consequently, the length of the ASI increases 
significantly, which may lead to complete abortion of ears and the plant becomes barren (Maazou et al., 2016). 
Thus, maize drought tolerance is a consequence of coordination amongst morphological, physiological and 
biochemical characters, and will also depend on genotypes (Li et al., 2010). Additionally, maize drought 
tolerance related agronomic traits are not only influenced by external environment, but also controlled by a vast 
array of genes with minor effects. To this end, precise quantitative trait loci (QTL) identification becomes the 
focal point when researchers apply molecular biology to study the trait (Arcade et al., 2014).  

Over the previous two decades, a mounting body of literature underlying yield-related, plant type, root-related 
and physiological traits have been published; the number of identified QTL on all maize chromosomes (Chr) 
related to water deficit tolerance has increased significantly (Hao et al., 2010). However, there is an obvious 
issue that few identical QTL were identified even in the same environment in the same experimental population 
by different researchers or different years (Li et al., 2010). Moreover, most data showed that partly or wholly 
non-overlapping QTL are affected by different combinations and/or experiments conducted in different 
environments (Orf et al., 1999; Rong et al., 2007). Since maize drought tolerance is under highly complex 
genetic control, it is difficult to manipulate, making it hard to predict the usefulness of QTL for marker-assisted 
selection (MAS). The integration of QTL data from diverse resources to compare their locational position 
consistence and specifying co-locations with candidate genes is therefore imperative for selecting QTL for 
breeding applications (Hanocq et al., 2007). Despite numerous studies identifying several drought-related maize 
QTLs, some QTL from particular genetic backgrounds showed smaller effects or could not be identified at all in 
different backgrounds, affected by marker sets, experimental design, mapping populations and statistical 
methods (Li et al., 2010). The lack of repeatability of QTL effects across different populations and across 
environments limits the use of this kind of QTL for MAS by plant breeders. Further, it is very difficult to 
identify the functional drought-tolerant genes and then develop effective molecular markers inside them (Hao et 
al., 2010). Therefore, integrating these ‘initial’ QTL, developing a consensus map, and exploiting consensus 
QTL and their underlying genes becomes a crucial short cut to assist breeding activities. 

Meta-analysis is a statistical analysis that combines data from different sources in a single study, and can 
overcome the limits of individual studies by analysing generally all practical data to achieve a more informative 
and truthful conclusion (Wang et al., 2006). It combines data from independent researches to identify consensus 
QTL across studies, validate QTL effects from across environments or genetic backgrounds and to refine QTL 
positions on the consensus map (Rong et al., 2007; Swamy et al., 2011). This method has been proved an 
efficient way for use in maize (Goffinet & Gerber, 2000), wheat (Wang et al., 2016), soybean (Wang et al., 
2017), grasses (Swamy et al., 2011), potato (Danan et al., 2011) and rice (Courtois et al., 2009). Although QTL 
and other loci gathered from multiple maps remain a manual and tedious task, this is a critical step to reveal 
co-locations between genes and QTL. To take advantage of QTL meta-analysis method in maize breeding, 
several researchers are aiming at diverse agronomic characters by integrating the results from different 
experiments. For instance, Xiang and co-workers (2012) integrated 241 QTL for correlations of ear rot (ER) and 
grain moisture content (GM) from 29 studies in maize and observed 29 MQTL and 44 MQTL for ER and GM, 
respectively chromosomally located differently. Thus, meta-analysis has been widely used in map integration in 
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crops such as wheat (Hanocq et al., 2007), maize (Truntzler et al., 2010), grasses (Swammy et al., 2011) and 
cotton (Lacape et al., 2010). 

Discovering genes involved in the quantitative traits is the first step in understanding biological processes 
underlying these traits. QTLs often have long confidence intervals (CIs), therefore, it is difficult to map genes 
related to agronomic traits (Semagn et al., 2013). Fortunately, meta-analysis could narrow down the CI of 
integrated QTLs to increase about twofold precision in estimation of QTL position compared to the initial QTL 
position of the corresponding region (Goffinet & Gerber, 2000).  

In the present study; therefore, we used QTL meta-analysis strategy to integrate and reanalyze QTL for three 
agronomically important traits in maize; including yield, plant height and flowering time, under drought stressed 
conditions. Additionally, we developed a consensus map and identified consensus QTL for these traits, and have 
provided MTQL markers with high effects and narrowed confidence intervals (< 5 cm) for possible employment 
in marker assisted selection or fine-mapping QTL for gene mining. Moreover, we used some bioinformatics 
tools to dig-out some candidate genes responding to drought stress that were harboured in diverse chromosomal 
regions. Further, we used a comparative genomics approach to identify the homologous regions of MQTL in rice 
(Oryza sativa Japonica). We hope that several promising MQTL and candidate genes identified herein could be 
useful for MAS and maize drought tolerance breeding.  

2. Method 

2.1 Maize Quantitative Trait Loci (QTL) Data Collection  

In this study, we surveyed the QTLs detected under water-deficit condition or under both water-sufficient and 
water-deficit conditions. We used twenty-two studies on maize yield and yield-related traits (yield, kernel weight, 
kernel row number, kernel number per ear, kernel number per row, ear diameter, ear length, ear weight, kernel 
length, kernel width; published from 1994 to 2017), seventeen reports on flowering-date-related traits (male 
flowering time, female flowering time and anthesis-silking interval; published from 1994 to 2017), and fourteen 
researches on maize plant-type-related traits (plant height, ear height; published from 1994 to 2012) (Table 1). 
The English and Chinese literature were retrieved from the PubMed (http://www.ncbi.nlm. nih.gov/pubmed), 
and the China Knowledge Resource Integrated Database (CNKI; http://www.cnki.net) and Baidu Scholar 
(http://xueshu.baidu.com), respectively. The information including QTL names, map names, traits, likelihood of 
odd (LOD) score, proportion of variance explained (R2), marker and linkage group, QTL position, “QTL from” 
and “QTL to” was then reorganized.  

2.2 Refinement of Maize QTLs  

In QTL position refinement procedure, the most important parameter is each QTL map position (most likely 
position and confidence interval) and the proportion of phenotype. When a QTL position was not available in the 
paper, the 95% confidence interval was calculated according to Darvasi and Soller (1997) using the following 
formulae:  

CI = 530/(NR2)                                     (1) 

CI = 163/(NR2)                                     (2) 

where, Formular 1 was suitable for both backcross population and F2 population, and formular 2 was suitable for 
recombinant inbred line (RIL) population. CI is the confidence interval of a QTL, N is the population size, and 
R2 is the phenotypic contribution of a QTL.  

 

2.3 Consensus Map Construction  

It is vital to verify connectivity between input maps before performing the construction of the consensus map 
(Hanocq et al., 2007). In order to list markers which were not consistent in the different individual maps, in the 
current study, we used the command “InfoMap” of the BioMercator 4.2 software (http://www.mybiosoftware. 
com/biomercator-2-1-genetic-maps-qtl-integration.html) (URGI, Versailles, France). For each linkage group, 
InfoMap display some descriptive statistics about the marker maps to determine if the input data can be used for 
creating a consensus map. Then, we used the “ConsMap” command of the MetaQTL software BioMercator V4.2 
(URGI, Versailles, France) to create a consensus marker map. The method implemented in MetaQTL is based on 
a Weighted Least Square (WLS) strategy (Arcade et al., 2014). For this analysis, the population size and the type 
are necessary (in the input data) to determine the accuracy. We used the high-density genetic linkage map IBM2 
2008 Neighbors (Intermated B73 × Mo17 Map) as reference map, which covered 8054.28 cm and consisted of 
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15 991 markers. The original maps of QTL collected from different researches (which used different 
backgrounds, populations and methods) were compared with the reference map to generate a consensus map.  

 

Table 1. Bibliography of Quantitative Trait Loci (QTL) used in this study 

Parent lines 
Population 
size 

Population 
type 

Environment Marker type 
Analytical 
method 

Traits Reference 

Mo17×H99 150 F2:3 2 RFLP CIM GY KW EN EL ED CD KD KR Veldboom & Lee (1996)

SD34×SD35 120 F3 2 RFLP IM GY EN ASI Agrama & Moussa (1996)

Ac7643S5×Ac7729/TZSRWS5 234 F3 2 AFLP IM and CIM MF FF ASI Ribaut et al.(1996) 

Ac7643S5×Ac7729/TZSRWS5 234 F3 2 AFLP IM and CIM GY KN EN Ribaut et al. (1997) 

Ki3×CML139 472 F2 2 RFLP CIM ASI FF FH Khairallah et al. (1998) 

B73×H99 142 RIL 2 RFLP, SSR and AFLP IM MF FF ASI FH Sari-Gorla et al. (1999) 

B73×H99 142 RIL 2 RFLP, SSR and AFLP IM EN EL KN EW KW Frova et al. (1999) 

Lo964×Lo1016 171 F3 2 RFLP IM GY Tuberosa et al. (2002) 

Huangzao4×Ye107 184 F2:3 2 SSR CIM ASI GY ES Li et al. (2003) 

N87-1×9526 183 F2:3 2 SSR CIM FH ASI GY EH MF FF Gao (2004) 

A118×91huang15 139 F2:3 2 SSR IM FH EH MF FF ASI GY Wu (2005) 

X178×B73 234 F2 2 SSR CIM MF FF ASI KN EW EN  
CW GY KW FH EH 

Xiao (2005) 

N87-1×9526 183 F2:3 2 SSR CIM GY Gao et al. (2005a) 

N87-1×9526 183 F2 2 SSR CIM ASI FF MF Gao et al. (2005b) 

Zong3×87-1 221 RIL 2 SSR CIM EL KN KW Lu et al. (2006) 

5003×p138 450 RIL 2 SSR CIM FH GY Jiang (2006) 

D5×7924 180 F5:6 4 SSR CIM EH FH GY ES ASI Zhu (2008) 

Huangzao4×Ye478 235 F2:3 2 SSR CIM FH Wang (2008) 

N87-1×9526 183 F2:4 2 SSR CIM GY ASI FH Fu et al. (2008) 

B73×H99 142 RIL 2 RFLP, SSR and AFLP IM MF FF ASI FH EL EW KW KN Marino et al. (2009) 

CML444×SC-Malawi 236 RIL 4 RFLP and SSR CIM KW GY KN MF ASI FH Messmer et al. (2009) 

Huangzao4×Qi319 230 F2:3 4 SSR CIM GY KN KW KR EL ED CD EW Peng et al. (2010) 

D5×7924 180 F2:3 2 SSR CIM EH FH GY ES ASI Zhu et al. (2011) 

D5×9381 215 F3:4 2 SSR CIM GY ASI EL ED FH KN Wang (2011) 

Lin1×Xiang97-7 160 F2:3 4 SSR CIM ASI KW GY FH Chen et al. (2012) 

Chang7-2×TS141 218 F2:3 4 SSR CIM EN Zhao et al. (2017) 

Langhuang×TS141 202 F2:3 4 SSR CIM EN Zhao et al. (2017) 

X178×B73 234 F2:3 6 SSR and AFLP IM and CIM ES GY ASI Hao et al. (2017) 

Note. (Population type: RIL = recombinant inbred line; F2:3, F2:4, F3:4, F5:6 = segregating populations at 
different stages); Environment: number of geographical locations; (Marker type: SSR = simple sequence repeat, 
RFLP = restriction fragment length polymorphism, AFLP = amplified fragment length polymorphism); 
(Analytical method: IM = interval mapping, CIM = composite interval mapping); (Traits: FH = plant height; EH 
= ear height; ASI = anthesis-silking interval; FF = female flowering; GY = grain yield; KW = kernel weight; EN 
= ear number; EL = ear length; ED = ear diameter; CD = cob diameter; KD = kernel diameter; KR =  kernel 
row number; ES = ear-setting; BIO = biomass; CW = cob weight).  

 

2.4 QTL Projection and Meta-Analysis 

We created a consensus map and QTL of individual experiments were projected based on the common marker 
between the original map and reference map by means of a homothetic function described by Chardon et al. 
(2004). Some controversial markers between original and reference maps were deleted to make sure the analysis 
was accurate. When the consensus map was built, meta-analysis was used to determine the existence of the 
consensus QTL and locate the confidence interval (CI). Map projection and QTL meta-analysis were performed 
using the BioMercator 4.2 software. Although the software has been given five models, the lowest Akaike 
Information Criterion (AIC) value is believed to be optimum. In the model, the position of each QTL in LG 
decided the consensus QTL position. The formular for meta-analysis was according to Goffinet and Gerber 
(2000) as follows: 

var(QTL) = 1/Σ 1/σi
2                                 (3) 

where, σi is the position of the variance for each of the QTLs on the LG. A 95% CI of the consensus QTL was 
calculated from the var (QTL): 

CI = 3.92 × var(QTL)1/2                              (4) 
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The AIC value depends on the simulation of each model. The smallest AIC model is close to the consensus QTL. 
The mean R2 values of the original QTLs in the region were the explained variance of this consensus QTL. In 
this study, the MQTL with less than three original QTLs were discarded. 

2.5 Meta-QTL (MQTL) Interval Mapping of Candidate Genes Under Drought Stress 

The physical locations of meta-QTL (MQTL) were estimated with the help of MaizeGDB (https://maizegdb.org) 
and GRAMENE (http://www.gramene.org) web servers. The B73 RefGen_v2 sequence information of maize 
physical map was integrated with the marker information of IBM2 2008 linkage map which could detect the 
approximate location of given markers or genes on the B73 RefGen_v3. Then, we downloaded the candidate 
gene sequences of the MQTL interval through online batch download tool “Download Region Data” in 
PlantGDB database (http://plantgdb.org). In this study, we only identified annotated transcripts in MQTL with < 
5 Mb interval.  

2.6 Discovery of Drought-Related Gene Loci (and Candidate Genes) in Maize MQTL  

Firstly, we reorganized the MQTL interval and adjacent area of the drought related gene loci of the reference 
map IBM2 2008 Neighbors, retrieved from the NCBI (http://www.ncbi.nlm.nih.gov) web server according to the 
related gene loci for obtaining sequence information. We downloaded the protein sequences of the MQTL 
interval through online batch download tool “Download Region Data” in PlantGDB database. Then, we analyzed 
the conserved domains of all protein sequences using online batch ‘Search tool’ in website Pfam 
(http://pfam.sanger.ac.uk). Lastly, the results of these analyses were compared and integrated with the genetic 
annotation information provided by the NCBI website to dig out drought related genes of MQTL interval and 
adjacent area.  

2.7 Extraction of Drought Related Genes in Maize Based on Gene Comparative Mapping 

Drought related genes were searched from the rice genome database Gramene (http://www.gramene.org) and 
mapped to the maize IBM2008 linkage map by the “Cmap” function of the GRAMENE website. Then, we 
downloaded the protein sequences of the MQTL intervals through online batch download tool “Download 
Region Data” in PlantGDB database. To dig out drought related genes in maize which were homologous to rice, 
we analyzed the conserved domains of the downloaded and predicted maize gene/protein sequences by 
comparing them to the rice drought-related gene/protein sequences through the use of “batch search function” of 
the Pfam (http://pfam.xfam.org) website.  

3. Results 

3.1 Summary of QTL Information Collected 

A total of 457 QTLs for maize yield, plant morphology, and florescence under drought stress condition were 
compiled from 28 published papers and 20 populations. These QTLs were associated with 18 traits categorized 
into three types, including grain yield, flowering date, and plant morphology (height). Amongst the 457 QTL, 
207 from 22 researches and 18 populations were related to grain yield, 130 from 17 published papers and 12 
populations were related to flowering date, whereas 94 from 14 papers and 11 populations were related to plant 
morphology. Population size ranged from 120 to 472, including F2, F3, F2:3, F3:4 and recombinant inbred lines 
(RILs) populations (Table 1). 

3.2 QTL Number and Distribution on Maize Chromosomes 

Our results showed that the collected QTLs were non-uniformly distributed in all the ten maize chromosomes; 
QTL on Chr 1, 2, 3, 5 and 9 were more uniformly distributed amongst all of them. QTL number was highest (up 
to 83 QTL) on Chr 1 and lowest (29) on Chr 7.  Meanwhile, with regards to yield and flowering date related 
traits, QTL were mostly found on Chr 1, whereas pertaining to plant morphology related traits, the QTL were 
almost uniformly distributed across all ten maize chromosomes. The trait of anthesis-silking interval, with 70 
QTL, was the highest among all the traits (Table 2).  
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Table 2. Summary of QTLs associated with drought tolerance in maize 

Trait Trait Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 QTL number 

Yield-related  

Kernel weight 6 4 4 5 3 3 4 2 2 4 37 

Ear diameter 1 1 - - 2 1 1 1 - - 7 

Ear length 2 2 2 - 2 1 - 1 1 1 12 

Ear number 6 2 3 - 1 4 1 - 2 1 20 

Ear weight 1 2 - - - - - - 2 2 7 

Ear-setting 3 1 3 - 1 1 - 1 3 2 15 

Grain yield 10 1 7 8 9 6 2 4 3 7 57 

Kernel diameter 1 1 1 - - 1 - - - - 4 

Kernel number 4 2 1 3 3 - 1 2 4 3 23 

Kernel row number - 1 2 1 2 1 - - - - 7 

Cob diameter 2 2 - - 2 - 1 1 - - 8 

Cob weight 1 - 1 - 1 - 1 - 2 - 6 

Biomass 1 - - - - - 1 2 - - 4 

Flowering date 

Male flowering 9 7 4 5 4 3 2 3 4 2 43 

Female flowering 7 6 3 1 2 4 5 6 6 3 43 

Anthesis-silking interval 16 9 13 3 6 4 3 5 7 4 70 

Plant type 

Plant height 7 9 2 7 3 5 6 10 7 2 58 

Ear height 6 3 4 5 4 6 1 2 1 4 36 

Total 83 53 50 38 45 40 29 40 44 35 457 

Note. Chr = chromosome. 

 

3.3 Constructed QTL Consensus Map and MQTL Identified by Meta-analysis 

The initial map was projected onto the reference map by BioMecrcator 4.2 software and the consensus map 
constructed. The initial markers of the initial map on Chr 4 and 10 failed to connect with other maps and we 
discarded them in constructing the consensus map [31]. A total of 233 QTL from 22 studies were short-listed for 
grain yield and its components under drought stress. After deleting the QTL with likelihood of odd (LOD) value 
< 2 and phenotypic variance < 5, there were 220 QTLs projected onto a consensus map. The chromosomal 
regions with < 3 original QTLs were not considered for MQTL. Thus, a total of 37 MQTL covering 10 maize 
chromosomes were identified based on the lowest Akaike Information Criteion (AIC) values criteria (Hao et al., 
2010). Each Chr contained an average of 2 to 6 MQTL. There were 6 MQTL on Chr 1; 3 MQTL on Chr 3, 7, 8 
and 9; 4 MQTL on Chr 2, 4 and 6; 5 MQTL on Chr 5; and 2 MQTL on Chr 10 (Table 3; Figure S1). Similar to 
the collected QTL distribution, MQTL on Chr 1 was the highest. Of the identified 37 MQTL, 13 initial QTLs 
were condensed on Chr 10 with the map genetic position of 117.4 cm, which explained 9.69% phenotypic 
variance and narrowed the confidence intervals to 2.44 cm. Twelve initial QTLs were condensed on Chr 1 with 
the map genetic position of 208.46 cm and mean phenotypic variance of more than 10% (reaching up to 12.33%). 
These MQTLs were designated sequentially from MQTL 1 to MQTL 37 according to their Chr locations (Table 
3; Figure S1).  

A total of 140 flowering time related traits were collected from 17 studies and were projected onto the reference 
map; 133 QTL were successfully projected on all the 10 maize chromosomes. Maximum (25) QTLs were on Chr 
1. In this part, 28 MQTL related to maize flowering date were identified. The number of MQTL on each 
chromosome ranged from 1 to 5. Chromosome 1 had the most number of MQTL, similar to the results of 
meta-analysis on grain yield related traits (Table 3; Figure S1). The phenotypic variance of the MQTL varied 
from 6% to 34.67%, with the confidence interval ranging from 0.69 cm to 31.33 cm. Meanwhile, MQTL51 on 
Chr 7 had minimum CI of 0.69 cm and corresponded to 4 initial QTLs, with an average R2 of 8.75%. MQTL42, 
MQTL46, MQTL47, MQTL58 and MQTL62 on Chr 1, 3, 3, 8 and 9, respectively corresponded to 3, 6, 3, 6 and 
4 initial QTL, with R2 ranging from 6.5% to 18.75%. The location, confidence interval, phenotypic variance and 
flanking markers information of each MQTL are provided in Table 3.  

A total of 94 QTLs collected from 14 researches were associated with plant height and ear height, and were 
distributed on all the ten chromosomes. Among these, 4 QTL could not be projected onto the reference map 
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because they did not have common markers with the reference map or genetic linkage map. The remaining 90 
initial QTL that were projected onto all 10 chromosomes ranged from 5 to 12 QTL on each Chr. Chromosome 9 
had the least (5), whereas Chr 8 had the largest (16) number of QTL. In this part, a total of 13 MQTL were 
distributed on eight chromosomes, with the exception of Chr 3 and 7 (Figure S1). The MQTL of Chr 3 and 7 
were discarded due to less than three initial QTL projected on them. There were 2 MQTL on each of Chr 1, 2 
and 5; whereas Chr 4, 6, 9 and 10 contained 1 MQTL each. Meanwhile, on Chr 8, sixteen initial QTL were 
aggregated to 3 MQTL and positioned at 68.68 cm, 119.05 cm and 152.36 cm, with the confidence interval 
narrowed to 6.63 cm, 3.90 cm and 8.47 cm, respectively. The initial QTL of each MQTL ranged from 3 to 6, 
with the R2 ranging from 6.0% to 29.0% (Table 3).  

 

Table 3. Meta-QTLs for yield, flowering date and plant type related traits under drought stress conditions 
identified by meta-analysis 

Trait Meta-QTL Chr AIC Value
Position of 
MQTL 

CI 
No of 
initial QTL

Mean R2 for 
initial QTL

Flanking markers  
of the position 

Interval of physical map Related gene loci

Y
ie

ld
-r

el
at

ed
 

MQTL1 1 281.62 207.88 7.04 10 13.4 IDP2420-TIDP4556 4,758,454-4,767,124  

MQTL2   222.37 4.11 12 11.7 gpm774d-TIDP8795 21,419,789-22,381,090 tip rpe1 

MQTL3   235.7 4.88 7 11.29 IDP8569-IDP8612 60,047,657-60,678,493 dvr1 sod4 

MQTL4   253.04 5.91 5 18.4 w18-umc2047 266,933,205-263,011,985  

MQTL5  99.34 174.92 4.15 7 7.57 umc11-umc53b 21,419,789-22,003,995 k1s2 

MQTL6 2 106.61 72.4 11.2 5 11.2 umc259b-bzip121 31,889,777-34,239,593  

MQTL7   83.74 2.86 5 9.2 IDP2468-umc1454 63,944,183-69,704,680 mde1 

MQTL8  66.4 122.74 8.49 3 13.33 IDP7614-csu64a(grf) 224,335,836-224,605,071  

MQTL9   140.32 9.23 5 12.6 IDP2512-npi294a 232,489,953-232,824,897  

MQTL10 3 233.9 35.62 4.7 7 12.86 TIDP3332-npi71 1,713,115-2,270,923 npi71 

MQTL11   57.7 3.96 7 11.71 pza00749-IDP9134 9,843,447-10,080,572 pld1 tip4 myb40

MQTL12   80.59 3.75 8 9.75 umc165a-bnl6.16a 176,248,449-191,054,985 gst8 got1 taf1 

MQTL13 4 150.63 61.39 2.64 7 10 bnlg1217-pza03385 41,977,452-42,016,246 su1 fie1 

MQTL14   100.21 6.51 5 11.4 umc2365-umc1051 189,494,506-193,438,448  

MQTL15   125.43 10.07 4 12 gpm350b-gpm87a 237,822,149-239,027,984  

MQTL16 5 39.68 80.12 5.24 3 21 pza00818-IDP3834 1,080,009-1,538,562  

MQTL17   98.96 10.46 4 12.25 umc40-umc1679 87,290,927-3,429,663  

MQTL18  165.25 136.43 4.41 5 8.8 IDP4864-bcd207b 20,922,705-23,141,360  

MQTL19   151.53 3.48 7 8.57 bnl10.12-umc1264 175,145,318-175,677,720 rps27b 

MQTL20   196.97 19.97 4 6.25 umc1792-bnlg1695 218,451,914-221,681,657  

MQTL21 6 125.01 225.4 5.69 3 26.33 TIDP3537-mmp160 87,122,202-66,438,133  

MQTL22   253.53 7.22 5 8 gpm250b-IDP4314 134,804,842-142,486,587  

MQTL23   268.86 10.5 4 14.25 gpm631-roa1 153,555,627-154,285,844  

MQTL24   281.52 5.77 3 35 umc237-umc1490 161,024,525-162,276,992  

MQTL25 7 96.07 50.05 7.01 3 12.67 TIDP4658-csu251a 4,549,325-4,816,431  

MQTL26   66.28 4.09 5 10.8 gpm804-rps1 14,539,980-17,234,112 rps15 rps1 taf1 

MQTL27   78 4.78 4 12 umc1660-umc2630 141,594,488-151,703,776 nthr3 oc13 nac1

MQTL28 8 168.68 85.16 15.81 5 8.2 gpm934-IDP9127 20,305,710-20,699,697  

MQTL29   122.68 7.59 6 10.17 umc2357-mmp64 170,061,917-170,127,656  

MQTL30   132.22 3.83 6 11.5 obf4-npi315a 171,334,858-175,442,935 psei2 

MQTL31 9 122.22 102.76 6.79 3 10 znod1-gpm79a 16,979,346-18,607,113  

MQTL32   129.93 3.9 9 9.33 csu355(ext)-polm2 131,908,055-154,478,416 vacs1 phyB2 

         apx1 asn4 pck2 

MQTL33  40.02 145.79 4.72 5 15 pco063085-telomere9L 149,480,368-156,132,972  

MQTL34 10 176.32 117.4 2.44 13 9.69 mpk6-gpm840a 84,128,565-88,611,477 gst2 rps3 nac1 

MQTL35   128.05 8.05 8 9.75 gpm503-IDPCP59559 133,899,843-125,630,737  

F
lo

w
er

in
g 

da
te

 

MQTL36 1 196.91 206.44 22.3 3 7.67 mHbrBT90-Mo17-dpr1 2,978,024-3,792,043  

MQTL37   242.54 8.88 8 9.67 npi234-umc1568 34,652,377-15,808,040  

MQTL38   272.21 9.63 8 9 umc2396-gpm260a 198,104,270-200,547,561  

MQTL39  38.52 303.15 0.24 5 9 pza00978-mab18 283,187,143-287,192,923 ao1 ccs1 

MQTL40 2 63.08 129.77 11.54 4 10.25 IDP1657-mmc0271 202,196,007-198,625,109  

MQTL41  84.82 47.04 5.54 3 18 TIDP5226-pco102445 5,818,068-6,534,813  

MQTL42   157.67 14.9 4 9.5 IDP4819-TIDP6098 222,275,941-222,468,376  

MQTL43 3 130.27 67.31 1.82 6 7.67 IDP2399-gpm713 3,840,177-4,379,610 kch4 
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MQTL44   110.27 3.16 3 10 nrp1-umc92a 29,838,476-31,245,032 nrp1 e4 

MQTL45   123.21 14.44 3 8.67 agrp97-tda64 136,086,344-137,548,200  

MQTL46 4 74.97 132.83 11.04 6 9.33 gst26-bnl17.09 36,299,524-36,460,064  

MQTL47 5 96.45 197.49 11.5 3 7.33 ucsd64a-IDP3964 7,052,510-7,265,191  

MQTL48   292.29 25.51 3 6 umc68-bnl5.24 205,440,973-217,012,402  

MQTL49 6 79.13 266.21 13.63 5 9.8 csu116a-csu382a(cld) 107,401,374-132,064,555  

MQTL50   284.09 5.65 3 34.67 bnl8.08c-umc1859 154,096,569-154,494,718  

MQTL51 7 122.15 81.85 0.69 4 8.75 IDP4192-TIDP5555 124,265,889-129,111,170 asc1 

MQTL52   104.81 11.14 3 15.67 gpm392-IDP4527 153,455,716-153,584,620  

MQTL53   137.63 9.49 4 8 gpm683b-agrr44 165,268,333-166,901,107  

MQTL54 8 123.15 120.82 1.68 6 6.5 bnl17.20-rack2 39,115,777-74,024,212 prp1 

MQTL55   151.76 11.48 4 13 IDP6608-umc1121 141,912,596-147,824,187  

MQTL56   190.04 8.11 3 24.67 npi328a-cdo187 165,636,122-166,244,750  

MQTL57 9 143.2 73.74 13.14 3 12 gpm117a-TIDP6487 4,382,875-5,538,490  

MQTL58   130.71 3.29 4 18.75 asg37-IDP8628 95,980,842-96,199,121 fdh2 mrpa pep1

MQTL59   162.13 12.51 5 9.2 IDP1691-rps22a 134,286,389-143,421,988  

MQTL60   195.06 28.19 3 7 jpsb596-pco088782b 150,643,209-153,998,887  

MQTL61 10 52.88 129.12 31.33 3 8 pco072368-TIDP5776 85,246,955-92,538,469  

P
la

nt
 ty

pe
 

MQTL62 1 53.45 334.99 9.41 3 13 bif2-bnlg1908 173,096,051-218,832,513  

MQTL63   405.02 7.57 3 29 umc2589-umc1500 283,187,143-287,192,923  

MQTL64 2 92.29 55.93 28.87 3 11.33 pza02208-nrpd2/e2 5,764,847-5,967,363  

MQTL65   101.8 4.66 6 10.83 wt1-AY110266 29,500,958-32,443,663 myb49 gpa1 sam2

MQTL66 4 75.09 123.78 6.8 3 8.33 isu144b-mmp111 15,257,930-17,982,099  

MQTL67 5 88.99 166.45 8.28 3 6 umc2298-dupssr7 87,032,692-112,385,161  

MQTL68   210.61 8.65 4 10 IDP6595-IDP7362 173,381,107-155,810,019  

MQTL69 6 65.71 325.66 9.42 6 11 umc238a-uaz81 164,260,857-165,096,553  

MQTL70 8 146.96 68.68 6.63 6 8.5 IDP6944-TIDP5457 4,805,115-4,918,906  

MQTL71   119.05 3.9 3 11.67 mmp120-bnlg1067 24,558,727-25,351,500 rgp2 

MQTL72   152.36 8.47 5 25.2 rap2-lg4 132,473,577-132,963,880  

MQTL73 9 31.3 149.79 4.01 3 9.33 umc1357-umc1494 135,613,607-138,953,873 gols3 

MQTL74 10 37.06 123.69 5.85 4 8.5 umc1938-TIDP5692 83,332,319-83,950,011  

Note. QTL = quantitative trait loci; MQTL = meta-QTL; Chr = chromosome; AIC = Akaike Information 
Criterion; CI = confidence interval; cm = centi Morgan; R2 = phenotypic variance. 

 

3.4 Gene Mining With MQTL Intervals Associated With Maize Drought Tolerance 

With the help of flanking marking between MQTL, we observed 9 859 genes. MQTL32 of Chr 9 had the most (2 
415) number of genes whilst there were no genes in the MQTL13 interval. After sorting out the loci information 
from the IBM2 2008 Neighbors map, 15 991 marker loci were found to confer 4 170 genes, among which 1 392 
genes got annotated functions (Li et al., 2010). In the current study, 118 genes were located within or close to the 
hot regions detected by meta-analysis. According to functional annotation from the NCBI, 45 gene loci were 
inferred to 24 hot MQTL regions linked to maize drought tolerance. We downloaded the protein and gene 
sequences of the hot MQTL regions from the online website PlantGDB. Then, using “Batch search tool” on 
Pfam website, we analysed the conserved domains of all the sequences. Subsequently, the conserved domain 
information of these genes was compared with the gene loci information from NCBI. Resultantly, we found out 
that the gene loci sod4 and gene sequence GRMZM2G169890_T01 of interval MQTL3 had the same conserved 
domain and the sequence homology ratio of up to 100%.  

The conserved domain of taf1 and rps1 in the MQTL12 and MQTL26 were homologous to the gene sequences 
GRMZM2G002276_T01 and GRMZM5G895282_T01, with sequence homology ratios of 84% and 87%, 
respectively. On MQTL27, three gene loci’s (nthr3, oc13 and bas1) conserved domains were 73%, 100% and 
97% identical to the gene sequences GRMZM2G073377_T01, GRMZM2G116658_T01 and 
GRMZM2G077673_T01, respectively. On the MQTL32 interval, there were also three gene loci (apx1, asn4 and 
pck2) possessing the same conserved domains with the gene sequences GRMZM2G054300_T02, 
GRMZM2G078472_T01 and GRMZM5G870932_T01, respectively, and sequence homology ratios of 100%, 
89% and 99%, respectively. Besides, the conserved domain of ao1 and kch4 on the MQTL39 and MQTL43 
intervals were homologous to the gene sequences GRMZM2G141535_T02 (78%) and GRMZM2G093313_T02 
(99%), respectively (Table 4). 
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Table 4. Gene loci in MQTL intervals possessing identical conserved domains with predicted genes from maize 
sequence database 

Trait  MQTL Chr Gene loci Gene ID Conserved proportion (%)

Yield  

MQTL3 1 sod4 GRMZM2G169890_T01 100% 
MQTL12 3 taf1 GRMZM2G002276_T01 84% 
MQTL26 7 rps1 GRMZM5G895282_T01 87% 
MQTL27 7 nthr3 GRMZM2G073377_T01 73% 
MQTL27 7 oc13 GRMZM2G116658_T01 100% 
MQTL27 7 bas1 GRMZM2G077673_T01 97% 
MQTL32 9 apx1 GRMZM2G054300_T02 100% 
MQTL32 9 asn4 GRMZM2G078472_T01 89% 
MQTL32 9 pck2 GRMZM5G870932_T01 99% 
MQTL34 10 nac1 GRMZM2G015605_T01 93% 
MQTL34 10 gst2 GRMZM2G132093_P01 99% 

Flowering date  
MQTL39 1 ao1 GRMZM2G141535_T02 78% 
MQTL43 3 kch4 GRMZM2G093313_T02 99% 

Note. Chr = chromosome. 

 

3.5 Extraction of Maize Drought Tolerance Candidate Genes by Gene Comparative Mapping 

By scavenging the Oryza sativa Japonica website GRAMENE, 47 genes were found located on all the 11 Oryza 
sativa Japonica chromosomes, except on Chr 12. Then, the gene ATG6, located in region 28.070-28.076 cm on 
Chr 1 of Oryza sativa genetic map IGCN 1998, was transposed onto Chr 8 between the marker rpgc131b and 
rgpc112 of maize genetic map IBM2008 by ‘Cmap’ function of the website GRAMENE (Figure 1). 
Subsequently, the physical map was digged and the Oryza sativa gene was positioned on the region of 
13.150-162.498 cm on the maize physical map B73 RefGen_v2. The online website PlantGDB was used to 
download predicted gene protein sequences within the range, and the conserved domains were compared with 
Oryza sativa drought related gene ATG6. Finally, homologous genes GRMZM2G027857_T01 and 
GRMZM2G027857_T02 on Chr 8 (160,471-160,478 cm) were found (Figure 2). Through NCBI local blast, 
genes GRMZM2G027857_T01 and GRMZM2G027857_T02 had the same sequence as gene ATG6. It became 
clear then that gene GRMZM2G027857_T01 and GRMZM2G027857_T02 were candidate genes for response to 
drought stress in maize.  
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loss due to moisture deficit is just before and during flowering; thus flowering date can be an important indicator 
of drought tolerance (Tuberosa, 2012).  

Previously, an array of QTL has been found in maize under drought stress conditions (Veldboom et al., 1994; 
Frova et al., 1999; Messmer et al., 2009). However, the QTL identified in individual studies usually had too 
large confidence intervals, which made it difficult to identify the candidate genes related to drought and conduct 
positional cloning in maize (Arcade et al., 2014). Therefore, integrating QTL data from various researches and 
narrowing the confidence intervals (CIs) can be essential in eventual QTL cloning and MAS breeding. The 
meta-analysis methodology proposed by Goffinet and Gerber (2000) has been widely applied in QTL studies. 
This method is a powerful tool for integrating QTLs detected in different genetic backgrounds and environments 
and refining QTL position and accuracy, which could be further pursued for MAS or the identification of 
candidate genes. Peleman and van der Voort (2003) also put forward the technical system of molecular breeding 
design which suggested that QTL of related agronomic traits should be located first, then allelic variation of 
these loci evaluated, and lastly, molecular breeding design carried out. This method has been used in integrated 
QTL of wheat (Zhao et al., 2006), tomato (Sarfatti et al., 1991; Van der Beek et al., 1992), Lactuca sativa 
(Witsenboer et al., 1995) and maize (Wang et al., 2016).  

In the present study, we compiled 457 QTLs related to maize drought tolerance conferring for 18 traits and from 
26 previously published researches, and detected 24 MQTs through meta-analysis strategy. As observed by 
Goffinet and Gerber (2000), the number meta-QTLs and the size of their CIs depend on the initial QTL number, 
position and CI estimates. Herein our study, the distribution of 443 QTLs under drought stress condition was 
such that QTL clusters were greatly universal in ten chromosomes. Even our observed MQTLs covered all the 
chromosomes of the maize genome, this suggesting that maize drought tolerance is a complex quantitative trait 
controlled by numerous genes with complicated mechanisms (Li et al., 2010). In agreement, Yan et al. (2004) 
reported that QTLs affecting five vital agronomic traits of maize clustered in chromosomes. Wang et al. (2006) 
collected 1201 published QTLs affecting 68 traits and imported them into a local CMap software to construct an 
integrated QTL map, which found that QTL clusters were greatly universal in every chromosomes. In our 
current study, we observed that QTL clusters existed in chromosomes. For instance, the intervals 200-210 cm 
and 220 cm – 230 cm on Chr 1 had more than 10 QTLs and these QTLs have been confirmed to control different 
yield and yield related traits. Tuberosa et al. (2002) made several possible explanations regarding the observed 
QTL distribution pattern, the most persuasive of which may be one-factor multi-effect or a close linkage between 
genes that control different traits. Probably, the QTL controlling same traits might not be at random distribution, 
but there might be QTL concentration on the chromosome that controls a particular trait which might be related 
to the presence of gene clusters. By comparing the research results from different experiments, here, our finding 
verifies the universality of QTL cluster distribution. Further, our findings provide a reference for the selection of 
multi-effect regions in molecular MAS. 

Identification and cloning of QTLs can be hampered by imperfect QTL mapping. Those QTLs identified from 
individual mapping studies usually contain broad confidence interval, where too many genes are mapped and 
true quantitative trait genes (QTGs) are obscured (Wang et al., 2006). Herein, our integrated maize QTL map 
had high density of molecular markers from meta-analysis, which clearly reduced the confidence intervals in the 
MQTL compared with the original maps. The average genetic distance of consistent QTL was 155.05 cm and 
there were 32% MQTL with confidence interval of < 5 cm which were selected to be hot MQTL. These ‘real’ 
QTLs with precise locations were then compared with genes related to drought tolerance in maize and rice, and 
some candidate genes for drought tolerance were obtained. A total 118 genes were located within or close to the 
detected hot MQTL regions; and 45 genes from these regions were inferred to 24 maize drought tolerance hot 
MQTL regions (Table 3).  

Predicted genes similar to drought tolerance related genes were identified in many MQTL regions. After 
comparing the gene loci information (from NCBI) and the gene sequences (from the online website PlantGDB) 
of these hot MQTL regions, we observed that thirteen gene loci (sod4, taf1, rps1, nthr3, oc13, bas, apx1, asn4, 
pck2, nac1, gst2, ao1 and kch4) had the same conserved domains with their corresponding maize gene sequences, 
with sequence homology ratios ranging from 73% to 100% (Table 4). This result confirmed the reliability of 
MQTLs detected. In agreement, the gene loci fdh2, pep1, phyB2, and nac1, along with the gene of gst and rps 
family were related to maize drought-tolerance QTLs (Li et al., 2010). This confirms that our meta-analysis can 
be relied upon and the hot MQTL regions identified herein can be useful in QTG cloning.  

However, not all maize genes were overlapped with ‘real’ QTLs. This could be explained by the fact that some 
maize genes affecting morphology were not mapped onto IBM2 2008 Neighbors map. Additionally, QTLs with 
small effect are concealed by mapping populations with lower detection power and ‘overview’ analysis that tend 
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to exclude QTLs with small effect (Wang et al., 2006). To address this, the combination of meta-analysis within 
a species of interest and synteny-based projections from a related model plant could be an effective way of 
identifying new candidate genes for trait variation (Chardon et al., 2004).  

Our gene comparative mapping analysis identified 47 maize drought tolerance related genes that were located on 
11 Oryza sativa Japonica chromosomes, except on Chr 12. By transposing the rice gene ATG6 (located between 
28.070-28.076 cm on Chr 1 of Oryza sativa IGCN 1998 genetic map), onto Chr 8 (between rpgc131b and 
rgpc112 markers) of maize IBM2008 genetic map, we observed that the rice gene was located between 
13.150-162.498 cm on the B73 RefGen_v3 maize physical map (Figure 2). Subsequently, analysis using 
bioinformatics tools identified that ATG6 is homologous to maize genes GRMZM2G027857_T01 and 
GRMZM2G027857_T02 on Chr 8 (Figure 2), and that these two were candidate genes for maize drought 
tolerance. This validates that the employment of a comparative genomics approach in QTL meta-analysis 
improves the power to detect promising MQTLs and mining out candidate genes underlying drought stress 
tolerance as has already been reported by previous researchers (Hao et al., 2010; Swamy et al., 2011; Wang et al., 
2016).  

5. Conclusion 

In summary, our meta-analysis using 457 original QTLs from diverse studies, conferring 18 traits for yield, plant 
morphology and flowering time under drought stress in maize, detected 24 MQTLs through the integration of 
these original QTLs. A total of 47 drought related gene loci were identified and several candidate genes of the 
hot MQTL were reorganized by bioinformatics techniques. Thirteen gene loci of hot MQTL regions were 
homologous to their corresponding gene sequences from the PlantGDB database. Further, we used a comparative 
genomics approach to identify the homologous regions of MQTL in rice database and observed that 
drought-related rice gene ATG6 was homologous to maize candidate genes GRMZM2G027857_T01 and 
GRMZM2G027857_T02. The identified hot MQTL regions with narrowed CIs and the candidate genes identified 
in the current study can serve as valuable reference for MAS and discovering novel genomic segments 
conferring drought tolerance, and cloned, respectively, to further unravel the molecular mechanisms 
underpinning maize drought tolerance.  
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