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Abstract

Drought remains the primary abiotic constraint to maize (Zea mays L.) productivity globally. Maize drought
response involves several regulatory quantitative traits and complex gene networks. Therefore, precise location
of drought-related quantitative trait loci (QTL) is imperative for drought tolerance breeding. Despite numerous
studies identifying several drought-related maize QTLs, some QTL from particular genetic backgrounds showed
smaller effects or could not be identified at all in different backgrounds, affected by marker sets, experimental
design, mapping populations and statistical methods. Herein, therefore; using 457 published maize QTLs
conferring for 18 traits, we have performed meta-analysis of data from various experiments to obtain meta-QTL
(MQTL), integrate these fruitful QTL and to mine candidate genes related to drought. Resultantly, 24 MQTL
with confidence interval (CI) < 5 cm were identified to be hot regions. Additionally, 47 drought related gene loci
were observed and several candidate genes of the hot MQTL were reorganized by bioinformatics techniques.
Thirteen gene (sod4, tafl, rpsl, nthr3, ocl3, bas, apx1, asn4, pck2, nacl, gst2, aol and kch4) loci of hot MQTL
regions were homologous to their corresponding gene sequences from the PlantGDB database
(http://www.plantgdb.org/search/). Further, we used a comparative genomics approach to identify the
homologous regions of MQTL in rice (Oryza sativa Japonica) database (http://www.gramene.org) and observed
that drought-related rice gene ATG6 was homologous to maize candidate genes GRMZM2G027857 T01 and
GRMZM2G027857 T02. Conclusively, our identified MQTLs with narrowed CI could be useful for
marker-assisted selection and the candidate genes harnessed for maize drought tolerance breeding.
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1. Introduction

Maize (Zea mays L.) is the third most important cereal in the world after wheat (7Triticum aestivum L.) and rice
(Orzya sativa L., Golam et al., 2011). The continued rise in world human population and consequent food
demands against the backdrop of worsening global climate change has prompted greater need for the crop (Xu et
al., 2014; Maazou et al., 2016). However, as a result of the continuing climate change phenomenon, drought
stress will remain the primary environmental limitation to maize productivity (Rao et al., 2016). The maize crop
is most susceptible to drought stress at the reproductive stage (Tuberosa, 2012). Therefore, maize breeders have
the burden of developing drought resilient crop varieties in order to sustain higher yields and global food security
under the ravaging climate change conditions.
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Drought tolerance breeding has remained a very tedious task because of the high variability of drought stress and
insufficient understanding of its complexity (Hao et al., 2010). Maize drought response involves several
regulatory quantitative traits and complex gene and metabolic networks (Li et al., 2010; Adebayo et al., 2014).
Quantitative trait loci (QTL) analysis of maize drought tolerance involves various aspects, including
morphological traits (such as plant height, ear position, and branches per tassel etc.), root, physiological, and
biochemical related traits (ABA, degree of leaf senescence, photosynthesis parameters, protein content, stomatal
conductance, osmotic adjustment etc.), and yield traits (ear length, 100-kernel weight, ears per plant, and grain
yield etc.) among others (Lu et al., 2006; Edmeades, 2013).

Since increasing yield potential under water-stressed conditions is the first target of all breeding programs, the
identification of QTL for grain yield and its components becomes crucial for all QTL studies (Luo et al., 2006;
Adebayo et al., 2014). The main indicators for identification of yield traits include number of ears per plant, ear
weight, number of grains per ear, 100-grain weight and grain yield (Shin et al., 2015). Amongst all these, grain
yield can best reflect the effect of drought stress (Edmeades et al., 1999). In addition, morphological characters
have a close relationship with plant water absorption and loss. These include a well-developed root system, leaf
morphology, plant type and anthesis-silking interval (Hall et al., 1982; Ribaut et al., 2009).

Whereas drought stress might occur throughout the maize growing period whenever the crop is grown without
irrigation, flowering period is the most susceptible to drought stress (Tuberosa et al., 2002). Under water-limited
conditions, ear growth slows, eventually retarding silk emergence. Consequently, the length of the ASI increases
significantly, which may lead to complete abortion of ears and the plant becomes barren (Maazou et al., 2016).
Thus, maize drought tolerance is a consequence of coordination amongst morphological, physiological and
biochemical characters, and will also depend on genotypes (Li et al., 2010). Additionally, maize drought
tolerance related agronomic traits are not only influenced by external environment, but also controlled by a vast
array of genes with minor effects. To this end, precise quantitative trait loci (QTL) identification becomes the
focal point when researchers apply molecular biology to study the trait (Arcade et al., 2014).

Over the previous two decades, a mounting body of literature underlying yield-related, plant type, root-related
and physiological traits have been published; the number of identified QTL on all maize chromosomes (Chr)
related to water deficit tolerance has increased significantly (Hao et al., 2010). However, there is an obvious
issue that few identical QTL were identified even in the same environment in the same experimental population
by different researchers or different years (Li et al., 2010). Moreover, most data showed that partly or wholly
non-overlapping QTL are affected by different combinations and/or experiments conducted in different
environments (Orf et al., 1999; Rong et al., 2007). Since maize drought tolerance is under highly complex
genetic control, it is difficult to manipulate, making it hard to predict the usefulness of QTL for marker-assisted
selection (MAS). The integration of QTL data from diverse resources to compare their locational position
consistence and specifying co-locations with candidate genes is therefore imperative for selecting QTL for
breeding applications (Hanocq et al., 2007). Despite numerous studies identifying several drought-related maize
QTLs, some QTL from particular genetic backgrounds showed smaller effects or could not be identified at all in
different backgrounds, affected by marker sets, experimental design, mapping populations and statistical
methods (Li et al., 2010). The lack of repeatability of QTL effects across different populations and across
environments limits the use of this kind of QTL for MAS by plant breeders. Further, it is very difficult to
identify the functional drought-tolerant genes and then develop effective molecular markers inside them (Hao et
al., 2010). Therefore, integrating these ‘initial’ QTL, developing a consensus map, and exploiting consensus
QTL and their underlying genes becomes a crucial short cut to assist breeding activities.

Meta-analysis is a statistical analysis that combines data from different sources in a single study, and can
overcome the limits of individual studies by analysing generally all practical data to achieve a more informative
and truthful conclusion (Wang et al., 2006). It combines data from independent researches to identify consensus
QTL across studies, validate QTL effects from across environments or genetic backgrounds and to refine QTL
positions on the consensus map (Rong et al., 2007; Swamy et al., 2011). This method has been proved an
efficient way for use in maize (Goffinet & Gerber, 2000), wheat (Wang et al., 2016), soybean (Wang et al.,
2017), grasses (Swamy et al., 2011), potato (Danan et al., 2011) and rice (Courtois et al., 2009). Although QTL
and other loci gathered from multiple maps remain a manual and tedious task, this is a critical step to reveal
co-locations between genes and QTL. To take advantage of QTL meta-analysis method in maize breeding,
several researchers are aiming at diverse agronomic characters by integrating the results from different
experiments. For instance, Xiang and co-workers (2012) integrated 241 QTL for correlations of ear rot (ER) and
grain moisture content (GM) from 29 studies in maize and observed 29 MQTL and 44 MQTL for ER and GM,
respectively chromosomally located differently. Thus, meta-analysis has been widely used in map integration in
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crops such as wheat (Hanocq et al., 2007), maize (Truntzler et al., 2010), grasses (Swammy et al., 2011) and
cotton (Lacape et al., 2010).

Discovering genes involved in the quantitative traits is the first step in understanding biological processes
underlying these traits. QTLs often have long confidence intervals (CIs), therefore, it is difficult to map genes
related to agronomic traits (Semagn et al., 2013). Fortunately, meta-analysis could narrow down the CI of
integrated QTLs to increase about twofold precision in estimation of QTL position compared to the initial QTL
position of the corresponding region (Goffinet & Gerber, 2000).

In the present study; therefore, we used QTL meta-analysis strategy to integrate and reanalyze QTL for three
agronomically important traits in maize; including yield, plant height and flowering time, under drought stressed
conditions. Additionally, we developed a consensus map and identified consensus QTL for these traits, and have
provided MTQL markers with high effects and narrowed confidence intervals (< 5 cm) for possible employment
in marker assisted selection or fine-mapping QTL for gene mining. Moreover, we used some bioinformatics
tools to dig-out some candidate genes responding to drought stress that were harboured in diverse chromosomal
regions. Further, we used a comparative genomics approach to identify the homologous regions of MQTL in rice
(Oryza sativa Japonica). We hope that several promising MQTL and candidate genes identified herein could be
useful for MAS and maize drought tolerance breeding.

2. Method
2.1 Maize Quantitative Trait Loci (QTL) Data Collection

In this study, we surveyed the QTLs detected under water-deficit condition or under both water-sufficient and
water-deficit conditions. We used twenty-two studies on maize yield and yield-related traits (yield, kernel weight,
kernel row number, kernel number per ear, kernel number per row, ear diameter, ear length, ear weight, kernel
length, kernel width; published from 1994 to 2017), seventeen reports on flowering-date-related traits (male
flowering time, female flowering time and anthesis-silking interval; published from 1994 to 2017), and fourteen
researches on maize plant-type-related traits (plant height, ear height; published from 1994 to 2012) (Table 1).
The English and Chinese literature were retrieved from the PubMed (http://www.ncbi.nlm. nih.gov/pubmed),
and the China Knowledge Resource Integrated Database (CNKI; http://www.cnki.net) and Baidu Scholar
(http://xueshu.baidu.com), respectively. The information including QTL names, map names, traits, likelihood of
odd (LOD) score, proportion of variance explained (R?), marker and linkage group, QTL position, “QTL from”
and “QTL to” was then reorganized.

2.2 Refinement of Maize QTLs

In QTL position refinement procedure, the most important parameter is each QTL map position (most likely
position and confidence interval) and the proportion of phenotype. When a QTL position was not available in the
paper, the 95% confidence interval was calculated according to Darvasi and Soller (1997) using the following
formulae:

CI = 530/(NR?) (1)
CI = 163/(NR?) 2

where, Formular 1 was suitable for both backcross population and F2 population, and formular 2 was suitable for
recombinant inbred line (RIL) population. CI is the confidence interval of a QTL, N is the population size, and
R2 is the phenotypic contribution of a QTL.

2.3 Consensus Map Construction

It is vital to verify connectivity between input maps before performing the construction of the consensus map
(Hanocq et al., 2007). In order to list markers which were not consistent in the different individual maps, in the
current study, we used the command “InfoMap” of the BioMercator 4.2 software (http://www.mybiosoftware.
com/biomercator-2-1-genetic-maps-qtl-integration.html) (URGI, Versailles, France). For each linkage group,
InfoMap display some descriptive statistics about the marker maps to determine if the input data can be used for
creating a consensus map. Then, we used the “ConsMap” command of the MetaQTL software BioMercator V4.2
(URGI, Versailles, France) to create a consensus marker map. The method implemented in MetaQTL is based on
a Weighted Least Square (WLS) strategy (Arcade et al., 2014). For this analysis, the population size and the type
are necessary (in the input data) to determine the accuracy. We used the high-density genetic linkage map IBM2
2008 Neighbors (Intermated B73 x Mol7 Map) as reference map, which covered 8054.28 cm and consisted of
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15 991 markers. The original maps of QTL collected from different researches (which used different
backgrounds, populations and methods) were compared with the reference map to generate a consensus map.

Table 1. Bibliography of Quantitative Trait Loci (QTL) used in this study

Parent lines Ppp ulation Population Environment Marker type Analytical Traits Reference

size type method
Mo17xH99 150 F2:3 2 RFLP CIM GY KW EN EL ED CD KD KR Veldboom & Lee (1996)
SD34xSD35 120 F3 2 RFLP ™M GY EN ASI Agrama & Moussa (1996)
Ac7643S5xAc7729/TZSRWSS5 234 F3 2 AFLP IM and CIM MF FF ASI Ribaut et al.(1996)
Ac764385xAc7729/TZSRWSS 234 F3 2 AFLP IMand CIM GY KN EN Ribaut et al. (1997)
Ki3xCML139 472 F2 2 RFLP CIM ASI FF FH Khairallah et al. (1998)
B73xH99 142 RIL 2 RFLP, SSR and AFLP IM MF FF ASI FH Sari-Gorla et al. (1999)
B73xH99 142 RIL 2 RFLP, SSR and AFLP IM EN EL KN EW KW Frova et al. (1999)
Lo964xLol1016 171 F3 2 RFLP ™M GY Tuberosa et al. (2002)
Huangzao4xYel07 184 F2:3 2 SSR CIM ASI GY ES Li et al. (2003)
N87-1x9526 183 F2:3 2 SSR CIM FH ASI GY EH MF FF Gao (2004)
A118%91huangl5 139 F2:3 2 SSR ™M FH EH MF FF ASI GY Wu (2005)
X178xB73 234 F2 2 SSR CIM MF FF ASI KN EW EN Xiao (2005)

CW GY KW FH EH

N87-1x9526 183 F2:3 2 SSR CIM GY Gao et al. (2005a)
N87-1x9526 183 F2 2 SSR CIM ASI FF MF Gao et al. (2005b)
Zong3x87-1 221 RIL 2 SSR CIM EL KN KW Lu et al. (2006)
5003xp138 450 RIL 2 SSR CIM FH GY Jiang (2006)
D5x7924 180 F5:6 4 SSR CIM EH FH GY ES ASI Zhu (2008)
Huangzao4xYe478 235 F2:3 2 SSR CIM FH Wang (2008)
N87-1x9526 183 F2:4 2 SSR CIM GY ASIFH Fu et al. (2008)
B73xH99 142 RIL 2 RFLP, SSR and AFLP IM MF FF ASI FH EL EW KW KN Marino et al. (2009)
CML444xSC-Malawi 236 RIL 4 RFLP and SSR CIM KW GY KN MF ASI FH Messmer et al. (2009)
Huangzao4xQi319 230 F2:3 4 SSR CIM GY KN KW KR EL ED CD EW Peng et al. (2010)
D5x7924 180 F2:3 2 SSR CIM EH FH GY ES ASI Zhu et al. (2011)
D5x9381 215 F3:4 2 SSR CIM GY ASIEL ED FH KN Wang (2011)
Lin1xXiang97-7 160 F2:3 4 SSR CIM ASIT KW GY FH Chen et al. (2012)
Chang7-2xTS141 218 F2:3 4 SSR CIM EN Zhao et al. (2017)
LanghuangxTS141 202 F2:3 4 SSR CIM EN Zhao et al. (2017)
X178xB73 234 F2:3 6 SSR and AFLP IM and CIM ES GY ASI Hao et al. (2017)

Note. (Population type: RIL = recombinant inbred line; F2:3, F2:4, F3:4, F5:6 = segregating populations at
different stages); Environment: number of geographical locations; (Marker type: SSR = simple sequence repeat,
RFLP = restriction fragment length polymorphism, AFLP = amplified fragment length polymorphism);
(Analytical method: IM = interval mapping, CIM = composite interval mapping); (Traits: FH = plant height; EH
= ear height; ASI = anthesis-silking interval; FF = female flowering; GY = grain yield; KW = kernel weight; EN
= ear number; EL = ear length; ED = ear diameter; CD = cob diameter; KD = kernel diameter; KR = kernel
row number; ES = ear-setting; BIO = biomass; CW = cob weight).

2.4 QTL Projection and Meta-Analysis

We created a consensus map and QTL of individual experiments were projected based on the common marker
between the original map and reference map by means of a homothetic function described by Chardon et al.
(2004). Some controversial markers between original and reference maps were deleted to make sure the analysis
was accurate. When the consensus map was built, meta-analysis was used to determine the existence of the
consensus QTL and locate the confidence interval (CI). Map projection and QTL meta-analysis were performed
using the BioMercator 4.2 software. Although the software has been given five models, the lowest Akaike
Information Criterion (AIC) value is believed to be optimum. In the model, the position of each QTL in LG
decided the consensus QTL position. The formular for meta-analysis was according to Goffinet and Gerber
(2000) as follows:

var(QTL) = 1/21/c] (3)

where, o is the position of the variance for each of the QTLs on the LG. A 95% CI of the consensus QTL was
calculated from the var (QTL):

CI = 3.92 x var(QTL)"? )
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The AIC value depends on the simulation of each model. The smallest AIC model is close to the consensus QTL.
The mean R2 values of the original QTLs in the region were the explained variance of this consensus QTL. In
this study, the MQTL with less than three original QTLs were discarded.

2.5 Meta-QTL (MQTL) Interval Mapping of Candidate Genes Under Drought Stress

The physical locations of meta-QTL (MQTL) were estimated with the help of MaizeGDB (https://maizegdb.org)
and GRAMENE (http://www.gramene.org) web servers. The B73 RefGen v2 sequence information of maize
physical map was integrated with the marker information of IBM2 2008 linkage map which could detect the
approximate location of given markers or genes on the B73 RefGen v3. Then, we downloaded the candidate
gene sequences of the MQTL interval through online batch download tool “Download Region Data” in
PlantGDB database (http:/plantgdb.org). In this study, we only identified annotated transcripts in MQTL with <
5 Mb interval.

2.6 Discovery of Drought-Related Gene Loci (and Candidate Genes) in Maize MOTL

Firstly, we reorganized the MQTL interval and adjacent area of the drought related gene loci of the reference
map IBM2 2008 Neighbors, retrieved from the NCBI (http://www.ncbi.nlm.nih.gov) web server according to the
related gene loci for obtaining sequence information. We downloaded the protein sequences of the MQTL
interval through online batch download tool “Download Region Data” in PlantGDB database. Then, we analyzed
the conserved domains of all protein sequences using online batch ‘Search tool’ in website Pfam
(http://pfam.sanger.ac.uk). Lastly, the results of these analyses were compared and integrated with the genetic
annotation information provided by the NCBI website to dig out drought related genes of MQTL interval and
adjacent area.

2.7 Extraction of Drought Related Genes in Maize Based on Gene Comparative Mapping

Drought related genes were searched from the rice genome database Gramene (http://www.gramene.org) and
mapped to the maize IBM2008 linkage map by the “Cmap” function of the GRAMENE website. Then, we
downloaded the protein sequences of the MQTL intervals through online batch download tool “Download
Region Data” in PlantGDB database. To dig out drought related genes in maize which were homologous to rice,
we analyzed the conserved domains of the downloaded and predicted maize gene/protein sequences by
comparing them to the rice drought-related gene/protein sequences through the use of “batch search function” of
the Pfam (http://pfam.xfam.org) website.

3. Results
3.1 Summary of QTL Information Collected

A total of 457 QTLs for maize yield, plant morphology, and florescence under drought stress condition were
compiled from 28 published papers and 20 populations. These QTLs were associated with 18 traits categorized
into three types, including grain yield, flowering date, and plant morphology (height). Amongst the 457 QTL,
207 from 22 researches and 18 populations were related to grain yield, 130 from 17 published papers and 12
populations were related to flowering date, whereas 94 from 14 papers and 11 populations were related to plant
morphology. Population size ranged from 120 to 472, including F2, F3, F2:3, F3:4 and recombinant inbred lines
(RILs) populations (Table 1).

3.2 OQTL Number and Distribution on Maize Chromosomes

Our results showed that the collected QTLs were non-uniformly distributed in all the ten maize chromosomes;
QTL on Chr 1, 2, 3, 5 and 9 were more uniformly distributed amongst all of them. QTL number was highest (up
to 83 QTL) on Chr 1 and lowest (29) on Chr 7. Meanwhile, with regards to yield and flowering date related
traits, QTL were mostly found on Chr 1, whereas pertaining to plant morphology related traits, the QTL were
almost uniformly distributed across all ten maize chromosomes. The trait of anthesis-silking interval, with 70
QTL, was the highest among all the traits (Table 2).
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Table 2. Summary of QTLs associated with drought tolerance in maize

Trait Trait Chrl Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 QTL number

Kernel weight 6 4 4 5 3 3 4 2 2 4 37

Ear diameter 1 1 - - 2 1 1 1 - - 7

Ear length 2 2 2 - 2 1 - 1 1 1 12

Ear number 6 2 3 - 1 4 1 - 2 1 20

Ear weight 1 2 - - - - - - 2 2 7

Ear-setting 3 1 3 - 1 1 - 1 3 2 15
Yield-related Grain yield 10 1 7 8 9 6 2 4 3 7 57

Kernel diameter 1 1 1 - - 1 - - - - 4

Kernel number 4 2 1 3 3 - 1 2 4 3 23

Kernel row number - 1 2 1 2 1 - - - - 7

Cob diameter 2 2 - - 2 - 1 1 - - 8

Cob weight 1 - 1 - 1 - 1 - 2 - 6

Biomass 1 - - - - - 1 2 - - 4
""""""""" Male flowering 9 7 4 5 4 3 2 3 4 2 43
Flowering date Female flowering 7 6 3 1 2 4 5 6 6 3 43

Anthesis-silking interval 16 9 13 3 6 4 3 5 7 4 70
””””””””” Plantheigt 7 9 2 7 3 5 6 10 7 2 58
Plant type Ear height 3 5 4 6 1 2 1 4 36

Total 83 53 50 38 45 40 29 40 44 35 457

Note. Chr = chromosome.

3.3 Constructed QTL Consensus Map and MQOTL Identified by Meta-analysis

The initial map was projected onto the reference map by BioMecrcator 4.2 software and the consensus map
constructed. The initial markers of the initial map on Chr 4 and 10 failed to connect with other maps and we
discarded them in constructing the consensus map [31]. A total of 233 QTL from 22 studies were short-listed for
grain yield and its components under drought stress. After deleting the QTL with likelihood of odd (LOD) value
< 2 and phenotypic variance < 5, there were 220 QTLs projected onto a consensus map. The chromosomal
regions with < 3 original QTLs were not considered for MQTL. Thus, a total of 37 MQTL covering 10 maize
chromosomes were identified based on the lowest Akaike Information Criteion (AIC) values criteria (Hao et al.,
2010). Each Chr contained an average of 2 to 6 MQTL. There were 6 MQTL on Chr 1; 3 MQTL on Chr 3, 7, 8
and 9; 4 MQTL on Chr 2, 4 and 6; 5 MQTL on Chr 5; and 2 MQTL on Chr 10 (Table 3; Figure S1). Similar to
the collected QTL distribution, MQTL on Chr 1 was the highest. Of the identified 37 MQTL, 13 initial QTLs
were condensed on Chr 10 with the map genetic position of 117.4 cm, which explained 9.69% phenotypic
variance and narrowed the confidence intervals to 2.44 cm. Twelve initial QTLs were condensed on Chr 1 with
the map genetic position of 208.46 cm and mean phenotypic variance of more than 10% (reaching up to 12.33%).
These MQTLs were designated sequentially from MQTL 1 to MQTL 37 according to their Chr locations (Table
3; Figure S1).

A total of 140 flowering time related traits were collected from 17 studies and were projected onto the reference
map; 133 QTL were successfully projected on all the 10 maize chromosomes. Maximum (25) QTLs were on Chr
1. In this part, 28 MQTL related to maize flowering date were identified. The number of MQTL on each
chromosome ranged from 1 to 5. Chromosome 1 had the most number of MQTL, similar to the results of
meta-analysis on grain yield related traits (Table 3; Figure S1). The phenotypic variance of the MQTL varied
from 6% to 34.67%, with the confidence interval ranging from 0.69 cm to 31.33 cm. Meanwhile, MQTL51 on
Chr 7 had minimum CI of 0.69 cm and corresponded to 4 initial QTLs, with an average R2 of 8.75%. MQTLA42,
MQTL46, MQTL47, MQTL58 and MQTL62 on Chr 1, 3, 3, 8 and 9, respectively corresponded to 3, 6, 3, 6 and
4 initial QTL, with R2 ranging from 6.5% to 18.75%. The location, confidence interval, phenotypic variance and
flanking markers information of each MQTL are provided in Table 3.

A total of 94 QTLs collected from 14 researches were associated with plant height and ear height, and were
distributed on all the ten chromosomes. Among these, 4 QTL could not be projected onto the reference map
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because they did not have common markers with the reference map or genetic linkage map. The remaining 90
initial QTL that were projected onto all 10 chromosomes ranged from 5 to 12 QTL on each Chr. Chromosome 9
had the least (5), whereas Chr 8 had the largest (16) number of QTL. In this part, a total of 13 MQTL were
distributed on eight chromosomes, with the exception of Chr 3 and 7 (Figure S1). The MQTL of Chr 3 and 7
were discarded due to less than three initial QTL projected on them. There were 2 MQTL on each of Chr 1, 2
and 5; whereas Chr 4, 6, 9 and 10 contained 1 MQTL each. Meanwhile, on Chr 8, sixteen initial QTL were
aggregated to 3 MQTL and positioned at 68.68 cm, 119.05 cm and 152.36 cm, with the confidence interval
narrowed to 6.63 cm, 3.90 cm and 8.47 cm, respectively. The initial QTL of each MQTL ranged from 3 to 6,
with the R2 ranging from 6.0% to 29.0% (Table 3).

Table 3. Meta-QTLs for yield, flowering date and plant type related traits under drought stress conditions
identified by meta-analysis

Trait  Meta-QTL Chr AIC Value Ilz/?él”t[lin of CI Eiij QTL ?1/1[;?; lng;(jr zgﬁilgiﬁi’rﬁers Interval of physical map  Related gene loci

MQTL1 1  281.62 207.88 7.04 10 13.4 IDP2420-TIDP4556 4,758,454-4,767,124
MQTL2 222.37 411 12 11.7 gpm774d-TIDP8795  21,419,789-22,381,090 tip rpel
MQTL3 235.7 488 7 11.29 IDP8569-IDP8612 60,047,657-60,678,493  dvrl sod4
MQTL4 253.04 591 5 18.4 w18-umc2047 266,933,205-263,011,985
MQTLS5 99.34 174.92 415 7 7.57 umcll-umc53b 21,419,789-22,003,995  Kkls2
MQTL6 2 106.61 724 112 5 11.2 umc259b-bzip121 31,889,777-34,239,593
MQTL7 83.74 286 5 9.2 IDP2468-umc1454 63,944,183-69,704,680  mdel
MQTLS8 66.4 122.74 849 3 13.33 IDP7614-csu64a(grf)  224,335,836-224,605,071
MQTL9 140.32 923 5 12.6 IDP2512-npi294a 232,489,953-232,824,897
MQTL10 3 2339 35.62 4.7 7 12.86 TIDP3332-npi71 1,713,115-2,270,923 npi71
MQTL11 57.7 3.96 7 11.71 pza00749-IDP9134 9,843,447-10,080,572 pld1 tip4 myb40
MQTLI12 80.59 375 8 9.75 umcl65a-bnl6.16a 176,248,449-191,054,985 gst8 gotl tafl
MQTL13 4  150.63 61.39 264 7 10 bnlg1217-pza03385 41,977,452-42,016,246  sul fiel
MQTL14 100.21 6.51 5 11.4 umc2365-umc1051 189,494,506-193,438,448
MQTL15 125.43 10.07 4 12 gpm350b-gpm87a 237,822,149-239,027,984
MQTL16 5  39.68 80.12 524 3 21 pza00818-IDP3834 1,080,009-1,538,562

2 MQTL17 98.96 10.46 4 12.25 umc40-umc1679 87,290,927-3,429,663

= MQTLI18 165.25 136.43 441 5 8.8 IDP4864-bcd207b 20,922,705-23,141,360

% MQTL19 151.53 348 7 8.57 bnl10.12-umc1264 175,145,318-175,677,720 rps27b

= MQTL20 196.97 19.97 4 6.25 umc1792-bnlg1695 218,451,914-221,681,657
MQTL21 6  125.01 225.4 569 3 26.33 TIDP3537-mmp160 87,122,202-66,438,133
MQTL22 253.53 722 5 8 gpm250b-IDP4314 134,804,842-142,486,587
MQTL23 268.86 105 4 14.25 gpm631-roal 153,555,627-154,285,844
MQTL24 281.52 577 3 35 umc237-umc1490 161,024,525-162,276,992
MQTL25 7  96.07 50.05 7.01 3 12.67 TIDP4658-csu251a 4,549,325-4,816,431
MQTL26 66.28 4.09 5 10.8 gpm804-rpsl 14,539,980-17,234,112  rps15 rpsl tafl
MQTL27 78 478 4 12 umc1660-umc2630 141,594,488-151,703,776 nthr3 oc13 nacl
MQTL28 8  168.68 85.16 1581 5 8.2 gpm934-IDP9127 20,305,710-20,699,697
MQTL29 122.68 759 6 10.17 umc2357-mmp64 170,061,917-170,127,656
MQTL30 132.22 383 6 11.5 obf4-npi315a 171,334,858-175,442,935 psei2
MQTL31 9 12222 102.76 6.79 3 10 znod1-gpm79a 16,979,346-18,607,113
MQTL32 129.93 39 9 9.33 csu355(ext)-polm2 131,908,055-154,478,416 vacsl phyB2

apx1 asn4 pck2
MQTL33 40.02 145.79 472 5 15 pco063085-telomere9L.  149,480,368-156,132,972
MQTL34 10 176.32 117.4 244 13 9.69 mpk6-gpm840a 84,128,565-88,611,477  gst2 rps3 nacl
MQTL35 128.05 8.05 8 9.75 gpm503-IDPCP59559  133,899,843-125,630,737
77777777 MQTL36 1 19691 20644 223 3 767  mHbrBT90-Mol7-dprl 2,978,024-3,792043

MQTL37 242.54 8.88 8 9.67 npi234-umc1568 34,652,377-15,808,040

2 MQTL38 272.21 9.63 8 9 umc2396-gpm260a 198,104,270-200,547,561

;0 MQTL39 38.52 303.15 024 5 9 pza00978-mab18 283,187,143-287,192,923 aol ccsl

dg MQTL40 2 63.08 129.77 11.54 4 10.25 IDP1657-mmc0271 202,196,007-198,625,109

f MQTL41 84.82 47.04 554 3 18 TIDP5226-pco102445  5,818,068-6,534,813
MQTL42 157.67 149 4 9.5 IDP4819-TIDP6098 222,275,941-222,468,376
MQTL43 3  130.27 67.31 182 6 7.67 IDP2399-gpm713 3,840,177-4,379,610 kch4
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MQTL44 11027  3.16 3 10 nrpl-umc92a 29,838,476-31,245,032  nrpl e4
MQTL45 12321 1444 3 8.67 agrp97-tda64 136,086,344-137,548,200
MQTL46 4  74.97 13283 11.04 6 9.33 5t26-bn17.09 36,299,524-36,460,064
MQTL47 5  96.45 19749 115 3 733 ucsd64a-TDP3964 7,052,510-7,265,191
MQTL48 29229 2551 3 6 umc68-bnls.24 205,440,973-217,012,402
MQTL49 6  79.13 26621 13.63 5 9.8 csull6a-csu382a(cld)  107,401,374-132,064,555
MQTL50 28409 565 3 34.67 bnl8.08c-ume1859 154,096,569-154,494,718

2 MQTL51 7 12215 8185 0.69 4 8.75 IDP4192-TIDP5555  124,265,889-129,111,170 ascl

ED MQTL52 104.81 11.14 3 15.67 2pm392-IDP4527 153,455,716-153,584,620

§ MQTL53 13763 949 4 8 2pm683b-agrrdd 165,268,333-166,901,107

2  MOQTLS4 8 12315 12082 168 6 65 bnl17.20-rack2 39,115,777-74,024,212  prpl
MQTL55 15176 1148 4 13 IDP6608-ume1121 141,912,596-147,824,187
MQTL56 19004 811 3 24.67 npi328a-cdo187 165,636,122-166,244,750
MQTL57 9 1432 73.74 13.14 3 12 epm117a-TIDP6487  4,382,875-5,538,490
MQTL58 13071 329 4 18.75 asg37-IDP8628 95,980,842-96,199,121  fdh2 mrpa pepl
MQTL59 16213 1251 5 9.2 IDP1691-rps22a 134,286,389-143 421,988
MQTL60 19506 28.19 3 7 jpsb596-pco088782b  150,643,209-153,998,887
MQTL61 10 52.88 12912 3133 3 8 pco072368-TIDPS776  85,246,955-92,538,469

________ MQTL62 1 5345 33499 941 3 13 bi2-bnlgl908  173,096,051-218832,513

MQTL63 405.02 757 3 29 ume2589-ume1500 283,187,143-287,192,923
MQTL64 2 92.29 55.93 28.87 3 11.33 p2za02208-nrpd2/e2 5,764,847-5,967,363
MQTL65 101.8 4.66 6 10.83 wt1-AY 110266 29,500,958-32,443,663  myb49 gpal sam2
MQTL66 4  75.09 12378 68 3 8.33 isul44b-mmpl11 15,257,930-17,982,099

2 MQTL67 88.99 16645 828 3 6 umc2298-dupsst7 87,032,692-112,385,161

g MQTL68 21061 865 4 10 IDP6595-IDP7362 173,381,107-155,810,019

=  MQTL&Y 6 6571 32566 942 6 11 umc238a-uaz81 164,260,857-165,096,553
MQTL70 8 14696  68.68 6.63 6 8.5 IDP6944-TIDP5457  4,805,115-4,918,906
MQTL71 11905 39 3 11.67 mmp120-bnlgl067  24,558,727-25,351,500  rgp2
MQTL72 15236 847 5 252 rap2-lgd 132,473,577-132,963,880
MQTL73 9 313 14979 401 3 9.33 umcl357-umcl494  135,613,607-138,953,873 gols3
MQTL74 10 37.06 12369 585 4 8.5 umc1938-TIDP5692  83,332,319-83,950,011

Note. QTL = quantitative trait loci; MQTL

Criterion; CI = confidence interval; cm = centi Morgan; R* = phenotypic variance.

3.4 Gene Mining With MOTL Intervals Associated With Maize Drought Tolerance

meta-QTL; Chr = chromosome; AIC = Akaike Information

With the help of flanking marking between MQTL, we observed 9 859 genes. MQTL32 of Chr 9 had the most (2
415) number of genes whilst there were no genes in the MQTL13 interval. After sorting out the loci information
from the IBM2 2008 Neighbors map, 15 991 marker loci were found to confer 4 170 genes, among which 1 392
genes got annotated functions (Li et al., 2010). In the current study, 118 genes were located within or close to the
hot regions detected by meta-analysis. According to functional annotation from the NCBI, 45 gene loci were
inferred to 24 hot MQTL regions linked to maize drought tolerance. We downloaded the protein and gene
sequences of the hot MQTL regions from the online website PlantGDB. Then, using “Batch search tool” on
Pfam website, we analysed the conserved domains of all the sequences. Subsequently, the conserved domain
information of these genes was compared with the gene loci information from NCBI. Resultantly, we found out
that the gene loci sod4 and gene sequence GRMZM2G169890 TO1 of interval MQTL3 had the same conserved
domain and the sequence homology ratio of up to 100%.

The conserved domain of tafl and rpsl in the MQTL12 and MQTL26 were homologous to the gene sequences
GRMZM2G002276_T01 and GRMZMS5G895282 TO1, with sequence homology ratios of 84% and 87%,
respectively. On MQTL27, three gene loci’s (nthr3, oc13 and basl) conserved domains were 73%, 100% and
97% identical to the gene sequences GRMZM2G073377 T01, GRMZM2G116658 T01 and
GRMZM2G077673_TO1, respectively. On the MQTL32 interval, there were also three gene loci (apx1, asn4 and
pck2) possessing the same conserved domains with the gene sequences GRMZM2G054300 TO2,
GRMZM2G078472 T01 and GRMZMS5G870932 TO1, respectively, and sequence homology ratios of 100%,
89% and 99%, respectively. Besides, the conserved domain of aol and kch4 on the MQTL39 and MQTL43
intervals were homologous to the gene sequences GRMZM2G141535 T02 (78%) and GRMZM2G093313 T02
(99%), respectively (Table 4).
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Table 4. Gene loci in MQTL intervals possessing identical conserved domains with predicted genes from maize
sequence database

Trait MQTL Chr Gene loci Gene ID Conserved proportion (%)
MQTL3 1 sod4 GRMZM2G169890 _T01 100%
MQTLI2 3 tafl GRMZM2G002276_T01 84%
MQTL26 7 rpsl GRMZM5G895282 T01 87%
MQTL27 7 nthr3 GRMZM2G073377 _T01 73%
MQTL27 7 ocl3 GRMZM2G116658 T01 100%
Yield MQTL27 7 basl GRMZM2G077673_T01 97%
MQTL32 9 apx1 GRMZM2G054300_T02 100%
MQTL32 9 asn4 GRMZM2G078472 _T01 89%
MQTL32 9 pck2 GRMZM5G870932_T01 99%
MQTL34 10 nacl GRMZM2G015605_T01 93%
MQTL34 10 gst2 GRMZM2G132093_P01 99%
Flowermgdate ”””” MQTL39 1 a0l GRMZM2G141535 102 718%
MQTL43 3 kch4 GRMZM2G093313_T02 99%

Note. Chr = chromosome.

3.5 Extraction of Maize Drought Tolerance Candidate Genes by Gene Comparative Mapping

By scavenging the Oryza sativa Japonica website GRAMENE, 47 genes were found located on all the 11 Oryza
sativa Japonica chromosomes, except on Chr 12. Then, the gene ATG6, located in region 28.070-28.076 cm on
Chr 1 of Oryza sativa genetic map IGCN 1998, was transposed onto Chr 8 between the marker rpgc131b and
rgpcl12 of maize genetic map IBM2008 by ‘Cmap’ function of the website GRAMENE (Figure 1).
Subsequently, the physical map was digged and the Oryza sativa gene was positioned on the region of
13.150-162.498 cm on the maize physical map B73 RefGen v2. The online website PlantGDB was used to
download predicted gene protein sequences within the range, and the conserved domains were compared with
Oryza sativa drought related gene ATG6. Finally, homologous genes GRMZM2G027857 TOl and
GRMZM2G027857 _T02 on Chr 8 (160,471-160,478 cm) were found (Figure 2). Through NCBI local blast,
genes GRMZM2G027857 _TO1 and GRMZM2G027857 _TO02 had the same sequence as gene ATG6. It became
clear then that gene GRMZM2G027857 _T01 and GRMZM2G027857 T02 were candidate genes for response to
drought stress in maize.
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Figure 1. Colinearity comparison of the drought related rice gene A7G6 to maize genes onto an IBM2 Neighbors
2008 map
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Figure 2. Mapping of maize genes (onto maize B73 RefGen_v3 map) homologous to rice gene A7G6

4. Discussion

Drought stress is the major abiotic factor causing a series of complex physiological and biochemical alterations
in maize, resulting in yield reduction (Hao et al., 2010). The genetic improvement of maize drought tolerance is
therefore critical for sustained food security in the face of the changing global climate. Molecular breeding,
encompassing MAS, presents a quicker and better way of improving crop drought tolerance, consequently
leading to sustained higher yields (Xu et al., 2014). To date, marker assisted selection has been successfully used
in crop genetics and breeding programs in various crops (Aslam et al., 2015).

Efficient molecular breeding scheme entails the dissection of genetic bases underpinning agronomic traits. This
involves the correct identification of these traits. The majority of agriculturally important traits are quantitative,
meaning that they are controlled by QTL (Wang et al., 2016). Moreover, most important traits are controlled by
numerous genes with minor effects. Therefore, an in-depth integration and re-analysis of QTL information is
critical for precise location of QTL and quantitative trait genes (QTGs) and understanding the molecular basis
underlying these traits and for proper designing of molecular breeding schemes (Blum, 2011; Wang et al., 2016).

Since drought tolerance is best explained as the crop’s ability to maintain stable productivity under drought
stress, grain yield definitely becomes the final target for selection and breeding for drought tolerance (Hao et al.,
2010). QTL mapping of grain yield related traits under drought stress conditions in maize have been widely
studied (Lu et al., 2006; Hao et al., 2010; Li et al., 2010). In addition, an array of researches has shown that there
is a significant correlation between plant height and drought tolerance under water-limited conditions (Edmeades,
1999; Ziyomo & Bernardo, 2013; Rex & Yu, 2017). Further, it is well known that the most vital stage for yield
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loss due to moisture deficit is just before and during flowering; thus flowering date can be an important indicator
of drought tolerance (Tuberosa, 2012).

Previously, an array of QTL has been found in maize under drought stress conditions (Veldboom et al., 1994;
Frova et al., 1999; Messmer et al., 2009). However, the QTL identified in individual studies usually had too
large confidence intervals, which made it difficult to identify the candidate genes related to drought and conduct
positional cloning in maize (Arcade et al., 2014). Therefore, integrating QTL data from various researches and
narrowing the confidence intervals (CIs) can be essential in eventual QTL cloning and MAS breeding. The
meta-analysis methodology proposed by Goffinet and Gerber (2000) has been widely applied in QTL studies.
This method is a powerful tool for integrating QTLs detected in different genetic backgrounds and environments
and refining QTL position and accuracy, which could be further pursued for MAS or the identification of
candidate genes. Peleman and van der Voort (2003) also put forward the technical system of molecular breeding
design which suggested that QTL of related agronomic traits should be located first, then allelic variation of
these loci evaluated, and lastly, molecular breeding design carried out. This method has been used in integrated
QTL of wheat (Zhao et al., 2006), tomato (Sarfatti et al., 1991; Van der Beek et al., 1992), Lactuca sativa
(Witsenboer et al., 1995) and maize (Wang et al., 2016).

In the present study, we compiled 457 QTLs related to maize drought tolerance conferring for 18 traits and from
26 previously published researches, and detected 24 MQTs through meta-analysis strategy. As observed by
Goffinet and Gerber (2000), the number meta-QTLs and the size of their Cls depend on the initial QTL number,
position and CI estimates. Herein our study, the distribution of 443 QTLs under drought stress condition was
such that QTL clusters were greatly universal in ten chromosomes. Even our observed MQTLs covered all the
chromosomes of the maize genome, this suggesting that maize drought tolerance is a complex quantitative trait
controlled by numerous genes with complicated mechanisms (Li et al., 2010). In agreement, Yan et al. (2004)
reported that QTLs affecting five vital agronomic traits of maize clustered in chromosomes. Wang et al. (2006)
collected 1201 published QTLs affecting 68 traits and imported them into a local CMap software to construct an
integrated QTL map, which found that QTL clusters were greatly universal in every chromosomes. In our
current study, we observed that QTL clusters existed in chromosomes. For instance, the intervals 200-210 cm
and 220 cm — 230 ¢cm on Chr 1 had more than 10 QTLs and these QTLs have been confirmed to control different
yield and yield related traits. Tuberosa et al. (2002) made several possible explanations regarding the observed
QTL distribution pattern, the most persuasive of which may be one-factor multi-effect or a close linkage between
genes that control different traits. Probably, the QTL controlling same traits might not be at random distribution,
but there might be QTL concentration on the chromosome that controls a particular trait which might be related
to the presence of gene clusters. By comparing the research results from different experiments, here, our finding
verifies the universality of QTL cluster distribution. Further, our findings provide a reference for the selection of
multi-effect regions in molecular MAS.

Identification and cloning of QTLs can be hampered by imperfect QTL mapping. Those QTLs identified from
individual mapping studies usually contain broad confidence interval, where too many genes are mapped and
true quantitative trait genes (QTGs) are obscured (Wang et al., 2006). Herein, our integrated maize QTL map
had high density of molecular markers from meta-analysis, which clearly reduced the confidence intervals in the
MQTL compared with the original maps. The average genetic distance of consistent QTL was 155.05 cm and
there were 32% MQTL with confidence interval of < 5 cm which were selected to be hot MQTL. These ‘real’
QTLs with precise locations were then compared with genes related to drought tolerance in maize and rice, and
some candidate genes for drought tolerance were obtained. A total 118 genes were located within or close to the
detected hot MQTL regions; and 45 genes from these regions were inferred to 24 maize drought tolerance hot
MQTL regions (Table 3).

Predicted genes similar to drought tolerance related genes were identified in many MQTL regions. After
comparing the gene loci information (from NCBI) and the gene sequences (from the online website PlantGDB)
of these hot MQTL regions, we observed that thirteen gene loci (sod4, tafl, rpsl, nthr3, ocl3, bas, apxl, asn4,
pck2, nacl, gst2, aol and kch4) had the same conserved domains with their corresponding maize gene sequences,
with sequence homology ratios ranging from 73% to 100% (Table 4). This result confirmed the reliability of
MQTLs detected. In agreement, the gene loci fdh2, pepl, phyB2, and nacl, along with the gene of gst and rps
family were related to maize drought-tolerance QTLs (Li et al., 2010). This confirms that our meta-analysis can
be relied upon and the hot MQTL regions identified herein can be useful in QTG cloning.

However, not all maize genes were overlapped with ‘real” QTLs. This could be explained by the fact that some
maize genes affecting morphology were not mapped onto IBM2 2008 Neighbors map. Additionally, QTLs with
small effect are concealed by mapping populations with lower detection power and ‘overview’ analysis that tend
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to exclude QTLs with small effect (Wang et al., 2006). To address this, the combination of meta-analysis within
a species of interest and synteny-based projections from a related model plant could be an effective way of
identifying new candidate genes for trait variation (Chardon et al., 2004).

Our gene comparative mapping analysis identified 47 maize drought tolerance related genes that were located on
11 Oryza sativa Japonica chromosomes, except on Chr 12. By transposing the rice gene 47G6 (located between
28.070-28.076 cm on Chr 1 of Oryza sativa IGCN 1998 genetic map), onto Chr 8 (between rpgcl31b and
rgpcl12 markers) of maize IBM2008 genetic map, we observed that the rice gene was located between
13.150-162.498 cm on the B73 RefGen v3 maize physical map (Figure 2). Subsequently, analysis using
bioinformatics tools identified that ATG6 is homologous to maize genes GRMZM2G027857 T0l and
GRMZM2G027857 T02 on Chr 8 (Figure 2), and that these two were candidate genes for maize drought
tolerance. This validates that the employment of a comparative genomics approach in QTL meta-analysis
improves the power to detect promising MQTLs and mining out candidate genes underlying drought stress
tolerance as has already been reported by previous researchers (Hao et al., 2010; Swamy et al., 2011; Wang et al.,
2016).

5. Conclusion

In summary, our meta-analysis using 457 original QTLs from diverse studies, conferring 18 traits for yield, plant
morphology and flowering time under drought stress in maize, detected 24 MQTLs through the integration of
these original QTLs. A total of 47 drought related gene loci were identified and several candidate genes of the
hot MQTL were reorganized by bioinformatics techniques. Thirteen gene loci of hot MQTL regions were
homologous to their corresponding gene sequences from the PlantGDB database. Further, we used a comparative
genomics approach to identify the homologous regions of MQTL in rice database and observed that
drought-related rice gene ATG6 was homologous to maize candidate genes GRMZM2G027857 T01 and
GRMZM2G027857 T02. The identified hot MQTL regions with narrowed Cls and the candidate genes identified
in the current study can serve as valuable reference for MAS and discovering novel genomic segments
conferring drought tolerance, and cloned, respectively, to further unravel the molecular mechanisms
underpinning maize drought tolerance.
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Figure A1l. MQTLs revealed by meta-analysis of reported grain yield-, flowering date- and plant type related
traits under drought stress conditions, on maize chromosomes, from 1 to 10. Red triangles represent MQTLs
related to grain yield, yellow circles represent MQTLs related to flowering date, whereas green squares represent
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