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Abstract 
The use of growth regulators in potato crop is an alternative to reduce the aerial growth of plants and redirects 
carbon assimilates and nutrients to the tubers. Therefore, the objective of this study was to evaluate the effects of 
growth regulators, paclobutrazol and trinexapac-ethyl on plant growth and changes on the anatomy of leaves of 
cultivar Markies in summer conditions of the southern region of Brazil. Potato plants cv. Markies were in the 
summer growing season of Southeast region of Brazil and 35 days after planting, the plants were sprayed with 
paclobutrazol (PBZ) at 0.125 and 0.250 L ha-1 and trinexapac-ethyl (TE) at 1.0 and 2.0 L ha-1. Treatment with 
PBZ at both doses reduced the height of potato plants, which resulted in higher index of leaf chlorophyll and 
reduced the content of starch and non-reducing sugars. Both PBZ and TE treated plants exhibited anatomical 
changes in the leaves, including larger epidermal cells and more elongated palisades cells. These data suggest 
that such changes in the anatomy of potato leaf in response to the use of PBZ directly influence leaf metabolism. 
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1. Introduction 
Total production of dry matter by potato plant and its distribution among the different organs of the plant are 
important factors on the yield of tubers (Silva et al., 2009). Potato is mainly a temperate climate plant, which 
perform poorly under warm weather conditions. Potato production depends on the ability of the plant to synthesize 
carbohydrates in the leaves and mobilize them into the growing tubers (Geigenberger et al., 2004; Bahaji et al., 
2014). However, one of the factors that restrict higher yields is related to excessive growth of the aerial parts in 
detriment to smaller growth of the tubers (Prakash et al., 2001). Because potato is mainly a temperate climate plant, 
which performs poorly under warm weather conditions, most cultivars present greater vegetative growth, favoring 
the growth of the aerial part of the plants. The adoption of management practices that may reduce the size of the 
plants can be an alternative to increase the yield of tubers, which can be achieved by applying plant growth 
regulators, to reduce plant height (Rademacher, 2000). 

Most commercial plant regulators inhibit the synthesis of gibberellins and can be used to reduce stem elongation 
and reduce the vegetative growth. Three different types of plant growth regulators that interfere with the synthesis 
of gibberellins are related, like the quaternary compounds, including mepiquat chloride and chlormequat chloride, 
by inhibiting the conversion of geranyl geranyl difastrate to the caurene (Rademacher, 2000). 

Paclobutrazol (PBZ) is one of the most active chemicals to reduce GA synthesis, and alters the growth of several 
species of plants, mainly by reducing the plant height. PBZ blocks oxidation reactions in the pathway of GA 
synthesis, promoting a number of physiological changes in plants, including carbohydrate partitioning (Fletcher et 
al., 2000; Tekalign & Hammes, 2005). PBZ induces morphological and anatomical modifications of the leaf, 
depending on the plant species, stage of growth, rate and method of application. Other effects of PBZ include 
reduction of leaf area (Sebastian et al., 2002; Yeshitela et al., 2004), increases epicuticular wax layer thickness 
(Jenks et al., 2001) and vascular bundle size (Sopher et al., 1999). In peanut (Arachis hypogaea L.), leaves treated 
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with PBZ exhibited well differentiated palisade and spongy mesophyll layers with longer and longer cells (Sankar 
et al., 2016). 

Trinexapac-ethyl (TE) has similar effects of PBZ on several species belonging to the Poaceae family (Fialho et al., 
2009). This product interferes with the inhibition of the 3β-hydroxylase enzyme, reducing the active gibberellic 
acid (GA1) and increasing its GA20 immediate biosynthetic precursor, causing reduction of the cellular elongation 
of the plants during the vegetative stage (Heckman et al., 2002). 

For potato crop, the application of growth regulating products can be used as an alternative to reduce the aerial 
growth of the plants during summer season in Brazil, and to increase the mobilization of assimilates and nutrients 
for the tubers formation, and reduction of transpiration rates and consequently better water use efficiency (Awati et 
al., 2016; Mabvongwe et al., 2016; Bhattarai, 2017). Therefore, the objective of this study was to evaluate the 
effects of growth regulators, paclobutrazol and trinexapac-ethyl on plant growth and the anatomy of leaves of 
cultivar Markies in summer conditions of the southern region of Brazil. 

2. Material and Methods 
The experiment was carried out with the cultivar Markies and conducted in a potato field located in Perdizes 
(19°21′19″ S, 47°16′58″ W), Minas Gerais, Brazil, during the summer season.  

Thirty days before planting, the seed potatoes were removed from the cold room (4 °C and 85% relative humidity) 
and placed at room temperature in the dark to induce spontaneous sprouting of the tubers. The planting was 
mechanized with spacing of 0.38 m between plants, 0.8 m between rows and planting depth of 0.12 m. The 
experimental plots consisted of 19.2 m2, being 2.4 m wide and 8 m long, and a longitudinal distance of 4 m 
between the plots was always maintained.  

Before planting it was applied 180 kg ha-1 of N (MAP and ammonium nitrate), 420 kg ha-1 of P2O5 (MAP) and 270 
kg ha-1 of K2O (potassium chloride). Potassium nitrate was applied at 35 and 65 days after planting. All treatments 
received micronutrient applications, via central pivot, throughout the cycle. 

Thirty-five days after planting, the plants were sprayed with PBZ at 0.125 and 0.250 L ha-1 and trinexapac-ethyl 
(TE) at 1.0 and 2.0 L ha-1 using the formulation Cement (250 g a.i. PBZ per liter, Syngenta Crop Protection) and 
Moddus (250 g a.i. Trinexapac-ethyl per liter, Syngenta Crop Protection). During the application, a constant 
pressure was applied in the costal sprayer (CO2) with a bar of four nozzles spaced 0.5 m apart and 0.5 m in relation 
to the plants, at an average rate of 4 km h-1. The control treatment plants were sprayed with water with equivalent 
volumes. 

The evaluations were carried out at 50, 65, 80 and 95 days after planting (DAP). Optical measurements of leaf 
chlorophyll and flavonoids were made on the leaflet of the fourth leaf completely expanded from the apex of the 
plant with the portable meter Dualex® (Force-A, Orsay, France), obtaining the Flavonoid Index (FLVI), the 
Chlorophyll Index (CHLI) and the Nitrogen Balance Index (NBI). The latter was obtained by the relationship 
between CHLI and FLVI. 

The quantification of total soluble sugars of leaves and tubers was carried out according to the phenol-sulfuric acid 
method (Dubois et al., 1956). Reducing sugars were quantified according to the dinitrosalicylic acid (DNS) 
method (Gonçalves et al., 2010). The non-reducing sugar content was obtained by the difference between the total 
soluble sugar content and the reducing sugar content. For the quantification of starch, the method used was 
described by McCready et al. (1950). 

Potato leaf sections were collected at 65 DAP and fixed at FAA50 for 48 hours and maintained in 70% ethanol 
(Johansen, 1940), with three replicates per treatment. Samples (0.25 × 0.25 × 0.25 mm) were dehydrated in 
ethanolic series and embedded in methacrylate (Historesin, Leica, Heidelberg, Germany) according to the 
manufacturer’s recommendations. The material was sectioned 5 μm thick on an automated rotary microtome 
(Leica RM2155, Deerfield, IL, USA) and stained with toluidine blue (O’Brien et al., 1964). The images were 
obtained in light microscopy (AX-70 TRF, Olympus Optical, Tokyo, Japan) coupled to a digital camera (Zeiss 
AxioCam HRc, Göttinger, Germany) to the computer with the Axion Vision image capture program. 
Measurements were taken using Image-Pro Plus software. 

The experiment was conducted in a split plot design, with the plots comprising the different concentrations of 
growth regulators and the subplots the plant evaluation times, in a completely randomized design with three 
repetitions and each experimental unit consisted of two plants. The data were submitted to analysis of variance 
(ANOVA) and regression using the System of Statistical Analysis and Genetics of the UFV (Saeg, 2008). The 
regression model was based on the significance of the regression coefficients using the test-t at 5% probability, the 
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influence on endogenous cytokinin. It has been proposed that PBZ stimulates the synthesis of cytokinin, which 
induces chloroplast differentiation, chlorophyll biosynthesis and prevents chlorophyll degradation (Fletcher et al., 
2000). The use of inhibitors of GA biosynthesis, such as uniconazole, ancymidol and paclobutrazol, increased the 
cytokinin content in rice (Izumi et al., 1988), soybean (Grossman, 1992) and clove plants (Sebastian et al., 2002). 

Plants treated with PBZ had the highest flavonoid indexes (FLVI) in all the evaluations (Figure 1C). PBZ belongs 
to the triazole chemical group and has antifungal action. According to Fletcher et al. (2000), PBZ can also increase 
the tolerance of different plant species to biotic and abiotic stresses, including low and high temperature conditions. 
There is some evidence that components of the photosynthesis system and molecules that regulate some 
constituents of the antioxidant activity in plants are the main targets of triazoles, as a way to increase plant 
tolerance to stress (Kraus & Fletcher, 1994; Lin et al., 2006). This indicates that the higher FLVI observed in plants 
treated with PBZ during the cycle of the crop may have been caused by the activation of the defense mechanism. 

In those plants treated with highest dose of TE, an increase of FLVI was determined, reaching maximum content at 
69 DAP, followed by a marked decrease up to the 95 DAP, but not differing from the control at the same date 
(Figure 1C). The trinexapac-ethyl presents structural similarities with 2-oxoglutaric acid and can compete with 
dioxigenases that are dependent on 2-oxoglutaric acid for the formation of gibberellins and metabolism of 
flavonoids (Rademacher, 2000). Thus, anthocyanins and other flavonoids have been reported as the biochemical 
targets of the acylcyclohexanedione compounds. Inhibition of 2-oxyglutarate-dependent dioxygenases, such as 
flavanone 3-hydroxylase, may lead to an alternative pathway in phenylpropanoid metabolism and cause 
considerable changes in the spectrum of flavonoids and related compounds in plants treated with trinexapac-ethyl 
(Rademacher et al., 2006). 

Throughout the crop cycle, a higher index of nitrogen balance (NBI) was present in leaves of plants treated with 
PBZ (Figure 1D). These results indicate that these plants might have greater assimilation of nitrogen by the leaves. 
The remobilization of photoassimilates and nitrogen from the aerial part to the tubers at the end of growing cycle is 
considered as a factor that affects the final production of tubers (Moorby, 1970). 

In the control and PBZ treated plants at rate of 0.125 L ha-1, a decrease in the NBI leaf occurred throughout the 
evaluations. Meanwhile, treatments with 0.250 L ha-1of PBZ and with both doses of TE showed slight increase in 
the NBI between 50 and 65 days, followed by decrease until the end of the evaluations. 

Plants treated with 1.0 L ha-1 TE and control had the highest total soluble sugars contents in leaves at 50 DAP 
(Figure 2A). With the exception of the leaves treated with TE 2.0 L ha-1, the remaining treatments showed a drop at 
65 DAP, followed by an increase on total soluble sugars contents in all treatments until the end of the evaluations. 

The highest percentage of reducing sugars occurred at 50 DAP in control leaves and the lowest content in the 
leaves of plants treated with PBZ 0.250 L ha-1 (Figure 2B). For this treatment, these sugars increased during the 
evaluation days, reaching the highest content at 95 DAP. Plants treated with 1.0 L ha-1 TE had the highest 
non-reducing sugars content at 50 DAP (Figure 2C). For all treatment the lowest level for non-reducing sugars 
was at 65 DAP, with a subsequent increase up to 95 DAP. 
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Kishorekumar et al. (2006) studying the anatomy of Chinese potato leaves (Solenostemon rotundifolius) treated 
with PBZ determined that the thickness of the upper and lower epidermis were increased, as well as the length of 
the palisade and spongy cells and the number of stomata. The authors concluded that the use of triazoles, such as 
PBZ, may be a useful tool for reducing the rate of transpiration and to activate drought escape mechanisms in the 
plant. 

 

Table 1. Effect of paclobutrazol (PBZ) and trinexapac-ethyl (TE) treatments on leaf characteristics. TT: total 
thickness, ECL: epidermal cell length, ECW: epidermal cell width, PCL: palisade cell length, PCW: palisade cell 
width, SMT: spongy mesophyll thickness (μm) 

Treatments TT ECL ECW PCL PCW SMT 

Control 305.9 c 49.6 c 32.1 b 111.7 c 28.4 a 179.3 c 

PBZ 0.125 L ha-1 346.3 b 54.5 b 35.5 a 138.8 a 32.1 a 217.5 b 

PBZ 0.250 L ha-1 394.8 a 55.9 ab 35.8 a 141.7 a 32.9 a 241.4 a 

TE 1.0 L ha-1 314.4 c 57.6 ab 36.3 a 129.4 b 30.1 a 186.8 c 

TE 2.0 L ha-1 339.1 b 58.5 a 36.9 a 130.9 b 31.8 a 193.4 c 

CV (%) 9.2 8.5 7.3 11.5 9.5 7.9 

Note. Means followed by the same lowercase vertical letter do not differ statistically from each other at 5% 
probability by the Tukey test. 

 

The impact of PBZ at cellular level was evident on the increase of total leaf thickness, which can be attributed to 
the increase in epidermal cell diameter, palisade cell length and spongy mesophyll thickness. Meanwhile, the 
increase in the thickness of the leaves treated with the highest TE dose was due only to the increase in the diameter 
of the epidermal cells and the length of the palisade cells. The lower degree of anatomical changes in leaves treated 
with 1.0 L ha-1 TE may occurred due to the low concentration of the product. 

4. Conclusion 
Treatment with PBZ reduced the height of potato plants, which presented higher leaf chlorophyll index and 
reduction in leaf content of starch and non-reducing sugars. Both PBZ and TE treated plants indeced anatomical 
changes in the leaves, resulting in larger epidermal cells and more elongated palisade cells. These data suggest that 
such changes in the anatomy of potato leaf in response to the use of PBZ directly influence leaf chlorophyll and 
carbohydrate metabolism. 
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