
Journal of Agricultural Science; Vol. 11, No. 6; 2019 
ISSN 1916-9752   E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

460 

Chemical Attributes of Soil and Response of Wheat to Serpentinite in 
Direct Seeding System 

Alves A. Alovisi1, Munir Mauad1, Alessandra M. T. Alovisi1, Luciene K. Tokura2, Robervaldo S. Silva1, 
Cezesmundo F. Gomes3, Reinaldo P. Ricieri2, Jair A. C. Siqueira2, Gabriele B. Oliveira1, Bruno F. Lima1 

& Waldenio A. Araújo1 
1 Faculty of Agrarian Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil 
2 State University of West Paraná, Cascavel, Paraná, Brazil 
3 Faculdade Anhanguera de Dourados, Dourados, MS, Brazil 

Correspondence: Alessandra M. Tokura Alovisi, Faculty of Agrarian Sciences, Federal University of Grande 
Dourados, Dourados City, State of Mato Grosso do Sul, Brazil. E-mail: alessandraalovisi@ufgd.edu.br 

 

Received: February 14, 2019      Accepted: March 16, 2019      Online Published: May 15, 2019 

doi:10.5539/jas.v11n6p460          URL: https://doi.org/10.5539/jas.v11n6p460 

 

This study was financed in part by the National Council for Scientific and Technological Development (CNPq). 

 
Abstract 
The serpentinite is an alternative for the correction of soil acidity and is composed of calcium and magnesium 
silicate. The objective of this study was to evaluate the residual effect of the serpentinite application on soil 
chemical attributes and the effects on wheat crop productivity in a no-tillage system. The experimental design 
was a randomized block design, in a subdivided plot scheme, with four replications. The plots were constituted 
by serpentinite doses (0, 2, 4, 8 and 16 Mg ha-1) and in the subplots the soil collection layers (0.0-0.10 and 
0.10-0.20 m). The chemical attributes of the soil evaluated at 41 months after the application of serpentinite, 
presented favorable results of the residual power of this corrective. The main results observed are related to the 
increase of pH, decrease of aluminum content and potential acidity, and increase of Ca, Mg and Si contents, 
cation exchange capacity (CTC) and base saturation. The residual of the serpentinite in the soil contributed with 
an improvement in the chemical attributes of the soil, which favored the increase of the dry mass, number of 
spikes and yield of the wheat crop.  

Keywords: Triticum aestivum L., soil fertility, acidity correction, magnesiumsilicate, silicon 

1. Introduction 
Most of the soils of Brazil present problems of acidity, low availability of nutrients and silicon (Si) for the plants, 
thus requiring constant corrections and fertilization to raise productive potentials. 

The serpentinite is a rock of metamorphic origin, ultrabasic mainly formed by dolomite, calcite and silica, 
therefore a source rich in magnesium and calcium with contents of up to 42% of MgO, being able to contribute 
to the balance of Ca/Mg ratio of the soil, besides presenting high amounts of silicon (up to 45% SiO2) among 
other minerals, contributing to the replacement of these minerals in the soil (Friedman, 2013). 

According to Tavares et al. (2010) the serpentinite can be defined with a calcium and magnesium silicate with 
average SiO2 and MgO contents of 40.56 and 45.70%, respectively. Teixeira et al. (2010) consider the 
serpentinite with a silicate rock powder with chemical characteristics necessary to be considered a soil 
corrective. 

The serpentinite is therefore soil corrective, source of nutrients and silicon, beneficial element, mainly for the 
accumulating cultures of this element, such as the tropical grasses, being able to bring benefits due to the 
increase of the rigidity of the cellular wall, providing better architecture of the plant, increasing photosynthetic 
efficiency. 

In Brazil, studies have reported that potatoes have increased productivity by supplying Si to plants, such as 
wheat (Sarto et al., 2015), sugarcane (Alovisi et al., 2018) and rice (Tokura et al., 2007). This increase in 
productivity may be related to changes in soil chemical attributes. 
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Considering that the use of serpentinite tends to be the agricultural practice in Brazil, a better understanding of 
the effects of this corrective in the chemical properties of the soil and in the development of the wheat crop is 
essential to adopt management strategies to improve agricultural production. 

In view of the above, the objective was to evaluate the residual effect of the serpentinite on the chemical 
characteristics of the soil and the effects on wheat yield in the no-tillage system. 

2. Material and Methods 
The experiment was carried out under field conditions in the experimental area of the Federal University of 
Grande dourados (UFGD) in Dourados-MS, geographical coordinates 54°59′13″ west longitude and 22°14′08″ 
south latitude, with altitude of 434 m, in a typical Dystrophic Red Latosol, clay texture (Santos et al., 2013). 
According to Köppen, the region’s climate is classified as Am, tropical humid or subhumid (Alvares et al., 2013), 
with an average annual rainfall of 1,400 mm, and average temperatures range from 18 °C to 25 ºC in the colder 
and respectively. The experimental area was already cultivated with annual crops (soybean, corn and wheat) for 
more than 20 years.  

The characterization of soil chemical attributes before the application of the serpentinite was performed at depths 
of 0.0-0.10 and 0.10-0.20 m. The chemical determination of the soil followed the methodology described by 
Silva (2009), with the following results: pH in water: 5.7 and 5.4; pH in CaCl2: 5.0 and 4.6; Ca (cmolc dm-3): 3.6 
and 1.5; Mg (cmolc dm-3): 1.9 and 0.9; K (cmolc dm-3): 0.27 and 0.11; Al (cmolc dm-3): 0 and 0.6; H + Al (cmolc 
dm-3): 6.1 and 5.7; SB (cmolc dm-3): 119 and 82; P Mehlich-1 (mg dm-3): 16.4 and 4; MO (g dm-3): 27 and 17 and 
V%: 48 and 31, at depths of 0.0-0.10 and 0.10-0.20 m, respectively.  

The experimental design was a randomized block design in a subdivided plot scheme, with four replications. The 
plots were composed of five serpentinite doses (0, 2, 4, 8 and 16 Mg ha-1), with characteristics (SiO2: 38.40%, 
Al2O3: 1.31%, FeO2: 12.66% CaO: 0.66%, MgO: 35.07%, K2O: 0.01%, N2O: < 0.01%, TiO2:0.03%, MnO: 
0.09% and P2O5: 0.02% and in the subplots the layers of soil collection (0.0-0.10 and 0.10-0.20 m). The 
serpentinite was applied to haul in each plot, according to the treatment and incorporated up to 0.10 m deep. 
After application of the serpentinite the area was cultivated with corn (crop 2013), soy (crop 2013/2014), wheat 
(2014), soybean (2014/2015), and brachiaria (2015).  

Before the sowing of wheat, the soil was sampled at depths of 00-0.10 and 0.10-0.20 m. The soil samples were 
air-dried, sieved, sieved with a 2 mm aperture mesh, and the chemical analysis was carried out where the pH in 
water, pH CaCl2, calcium, magnesium, exchangeable aluminum, phosphorus extracted by Melich-1 and 
potassium, according to methodology described by Silva (2009). The values of CTC pH 7.0, sum of bases (S) 
and saturation by bases (V%) were obtained by calculation. For this determination, the methodology described 
by Korndörfer, Pereira, and Nolla (2004).  

The sowing of wheat was carried out with the use of mechanical seeders on 05/25/2016. The BRS 18-Terena 
wheat variety was used and 160 kg ha-1 of seeds were seeded, with a row spacing of 0.18 m, targeting a 
population of 500 thousand ha-1 plants. At sowing, no maintenance fertilization was used because fertility levels 
were adequate for the wheat crop. 

For leaf analysis of wheat, 30 leaf leaves were collected at the beginning of flowering. The leaves were dried in 
an air circulation oven at 60 ºC until reaching constant weight and later milled in a Willey mill to determine 
macronutrient and micronutrient concentration (Malavolta, Vitti, & Oliveira, 1997). For the determination of 
silicon, the methodology described by Korndörfer et al. (2004). 

At the end of the crop cycle, the entire aerial part was cut to quantify the dry matter of the aerial part (in grams) 
of the plants, counting the number of tillers, number of spikes, percentage of fertile tillers, number of ears, 
number of spikelets, number of grains per spikelet, number of grains per spike, mass of 1000 grains and yield. 
All variables were performed in 6 rows of 1.0 m length randomly at the time of harvest in each experimental unit. 
The grains were quantified and the data transformed in kg ha-1 to 13% (wet basis). 

Data were submitted to analysis of variance and, when there was a significant effect of the serpentinite doses, the 
regression studies were applied at 5% level, with the aid of the statistical program Sisvar (Ferreira, 2014). 

3. Results and Discussion 
3.1 Soil Chemical Attributes 

After 41 months of application of the serpentinite, it was observed that there was a significant effect for all 
chemical attributes of the soil one for interaction between serpentinite doses and depth of soil collection, others 
only isolated effects of doses and depths. 
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For the organic matter and soil phosphorus content, there was only a depth factor effect, with higher values in the 
superficial layer (0.0-0.10 m), with 30.44 and 24.82 g kg-1 of organic matter and 13.60 and 6.39 mg dm-3 
phosphorus in the soil, respectively for the layers of 0.0-0.10 and 0.10-0.20 m. These results can be explained by 
the higher deposition of organic residues that occur in this soil layer over the years and by the low mobility of 
phosphorus both horizontally and vertically, especially in clay soils (Marschner, 2002). 

There was a significant interaction of the factors serpentinite and depth, for the variables calcium, magnesium, 
sum of bases, cation exchange capacity (CTC) and silicon, indicating that the effects of serpentinite doses on 
these variables depends on the soil layer studied. The residual of the serpentinite doses influenced in a positive 
and linear way the Ca contents in the soil, raising the levels from 27.61 to 35.57 mmolc dm-3 in the layer 
0.0-0.10 m depth, but not altered the contents at a depth of 0.10-0.20 m, with a mean of 27.65 mmolc dm-3 
(Figure 1A). This increase was relatively high considering the CaO contents present in the serpentinite (0.66%). 
It is possible that the increase in this intensity could be associated with the absorption of this nutrient by 
Urochloa (crop present before soil collection) and, after forage decomposition, calcium has been released at the 
soil surface, since the production of phytomass of Urochloa was higher in the higher doses of serpentinite. 
According to Pacheco et al. (2013) calcium may be the third most accumulated element in the Urochloa 
phytomass losing only to N and K. 

Mg levels were also influenced significantly and significantly in the two soil layers evaluated (Figure 1B) with 
relative increases of 56% and 50% in the layers 0.0-0.1 m and 0.1-0.2 m, respectively. This increase was 
expected due to the serpentinite in its chemical composition, 35.07% of MgO due to the presence of dolomite, 
proving to be an efficient alternative for poor soils in this element. Ramos et al. (2006) and Moraes et al. (2018) 
also report that the main justification for magnesium increases was due to the high content of this element in 
magnesium silicates. The Ca and Mg contents were higher in the 0.0-0.10 m layer (Figures 1A and 1B), which 
are due to the solubilization of the corrective and release of Ca and Mg, as well as the mineralization of the 
nutrients of the residues Urochloa plants deposited on the soil. 

The sum of bases was influenced by the residual of the serpentinite doses, where the data adjusted to the 
increasing linear model at the two depths evaluated (Figure 1C). At the depth of 0.0-0.10 m, an estimated 40% 
increase in the residual dose of 16 Mg ha-1 is observed (Figure 1C). In the 0.10-0.20 m layer the increase was 
14%. The highest SB values were observed in the 0.0-0.10 m range (Figure 1C). These results are related to the 
highest values of Ca, Mg and K found in this layer. 

For the cation exchange capacity (CTC layer), the data were fitted to the polynomial model, with a minimum 
CTC value (95.13 mmolc dm-3) obtained with the residual estimate of the application of 16 Mg ha-1 in the layer 
of 0.10-0.20 m and maximum value of CTC (105.67 mmolc dm-3) reached with the residual estimate of the 
application of 12.94 Mg ha-1 in the layer of 0.0-0.10 m (Figure 1D). Although no significant values of CTC were 
obtained for the dose factor alone, CTC in the soil presented higher values in the superficial layer, decreasing 
with increasing depth, this behavior is due to the higher Ca, Mg, K and organic matter layer of 0.0-0.10 m. 

The soil silicon content presented a linear behavior, with soil Si content of 19.66 mg dm-3, in the residual dose of 
16.0 Mg ha-1, 25% increase in the 0.0-0 layer, 10 m (Figure 1E). The increase in Si availability in soil with the 
application of silicates is also reported by Sarto et al. (2014). In the 0.10-0.20 m layer, soil Si contents did not fit 
any mathematical model, presenting a mean of 16.42 mg dm-3 (Figure 1E). Pereira et al. (2007) point out that Si 
presents low mobility in the soil, which may explain the higher levels in the layer where the serpentinite was 
added. 

For the variables pH in water, pH CaCl2, potassium content, aluminum content, potential acidity and base 
saturation, there was only an isolated effect of the residual of the serpentinite doses. The values of pH in water 
(Figure 2A) and pH in CaCl2 (Figure 2B) increased linearly with increasing serpentinite doses, with consequent 
reduction of aluminum content (Figure 2) and potential acidity (Figure 2E), which confirms the neutralizing 
action of the serpentinite. According to Korndorfer and Nolla (2003), hydrolysis of the silicate anion present in 
the serpentinite occurs the release of hydroxyls (OH-), which reacts and neutralizes the H + in solution, raising 
the pH and precipitating Al3+ in the form of Al hydroxide [Al(OH)3)], low solubility and inactive in soil solution 
and therefore non-toxic to plants. The reduction of soil acidity with the use of silicates was also observed by 
other authors such as Alovisi et al. (2018), and Moraes et al. (2018). 

For the potassium content, an adjustment of the data to the quadratic function, with a minimum content of K 
(3.23 mmolc dm-3), achieved with the residual application of the dose of 5.61 Mg ha-1 of serpentinite (Figure 2C). 
Despite the lower value of K in this dose, soil content is still in the high availability range for plants, according 
to Sousa and Lobato (2004). 
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The serpentinite, as a corrective material and prolonged residual effect, can be a viable alternative for correction 
of acid soils, having the benefits that this material provides to the crop and to the soil, in addition, the 
serpentinite presents, in its composition, the silicon, which is one of the beneficial elements that the wheat 
extracts from the soil and that can have direct action in the increase of production. 

4. Conclusions 
The serpentinite promoted a beneficial residual effect on acidity attributes after 41 months of application. 

The application of the serpentinite promoted a positive residual effect on the dry mass, number of spikes and 
yield of the wheat crop. 
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